blob: 925aee335b18de534d5828733379cda68339ec91 [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>
#include "dl/sp/api/armSP.h"
#include "dl/sp/api/omxSP.h"
#include "dl/sp/src/test/aligned_ptr.h"
#include "dl/sp/src/test/compare.h"
#include "dl/sp/src/test/gensig.h"
#include "dl/sp/src/test/test_util.h"
#define MAX_FFT_ORDER TWIDDLE_TABLE_ORDER
int verbose;
void main(int argc, char* argv[]) {
struct Options options;
struct TestInfo info;
SetDefaultOptions(&options, 0, MAX_FFT_ORDER);
ProcessCommandLine(&options, argc, argv,
"Test forward and inverse floating-point FFT\n");
verbose = options.verbose_;
if (verbose > 255)
DumpOptions(stderr, &options);
info.real_only_ = options.real_only_;
info.max_fft_order_ = options.max_fft_order_;
info.min_fft_order_ = options.min_fft_order_;
info.do_forward_tests_ = options.do_forward_tests_;
info.do_inverse_tests_ = options.do_inverse_tests_;
/* No known failures */
info.known_failures_ = 0;
info.forward_threshold_ = 138.81;
info.inverse_threshold_ = 138.81;
if (options.test_mode_) {
RunAllTests(&info);
} else {
TestOneFFT(options.fft_log_size_,
options.signal_type_,
options.signal_value_,
&info,
"Float FFT");
}
}
void DumpFFTSpec(OMXFFTSpec_C_FC32* pSpec) {
ARMsFFTSpec_FC32* p = (ARMsFFTSpec_FC32*) pSpec;
printf(" N = %d\n", p->N);
printf(" pBitRev = %p\n", p->pBitRev);
printf(" pTwiddle = %p\n", p->pTwiddle);
printf(" pBuf = %p\n", p->pBuf);
}
void GenerateSignal(OMX_FC32* x, OMX_FC32* fft, int size, int signal_type,
float signal_value) {
GenerateTestSignalAndFFT((struct ComplexFloat *) x,
(struct ComplexFloat *) fft,
size,
signal_type,
signal_value,
0);
}
float RunOneForwardTest(int fft_log_size, int signal_type, float signal_value,
struct SnrResult* snr) {
OMX_FC32* x;
OMX_FC32* y;
struct AlignedPtr* x_aligned;
struct AlignedPtr* y_aligned;
OMX_FC32* y_true;
OMX_INT n, fft_spec_buffer_size;
OMXResult status;
OMXFFTSpec_C_FC32 * fft_fwd_spec = NULL;
int fft_size;
fft_size = 1 << fft_log_size;
status = omxSP_FFTGetBufSize_C_FC32(fft_log_size, &fft_spec_buffer_size);
if (verbose > 63) {
printf("fft_spec_buffer_size = %d\n", fft_spec_buffer_size);
}
fft_fwd_spec = (OMXFFTSpec_C_FC32*) malloc(fft_spec_buffer_size);
status = omxSP_FFTInit_C_FC32(fft_fwd_spec, fft_log_size);
if (status) {
fprintf(stderr,
"Failed to init forward FFT: status = %d, order %d \n",
status, fft_log_size);
exit(1);
}
x_aligned = AllocAlignedPointer(32, sizeof(*x) * fft_size);
y_aligned = AllocAlignedPointer(32, sizeof(*y) * (fft_size + 2));
y_true = (OMX_FC32*) malloc(sizeof(*y_true) * fft_size);
x = x_aligned->aligned_pointer_;
y = y_aligned->aligned_pointer_;
GenerateSignal(x, y_true, fft_size, signal_type, signal_value);
if (verbose > 63) {
printf("Signal\n");
DumpArrayComplexFloat("x", fft_size, x);
printf("Expected FFT output\n");
DumpArrayComplexFloat("y", fft_size, y_true);
}
status = omxSP_FFTFwd_CToC_FC32_Sfs(x, y, fft_fwd_spec);
if (status) {
fprintf(stderr, "Forward FFT failed: status = %d\n", status);
exit(1);
}
if (verbose > 63) {
printf("FFT Output\n");
DumpArrayComplexFloat("y", fft_size, y);
}
CompareComplexFloat(snr, y, y_true, fft_size);
FreeAlignedPointer(x_aligned);
FreeAlignedPointer(y_aligned);
free(fft_fwd_spec);
return snr->complex_snr_;
}
float RunOneInverseTest(int fft_log_size, int signal_type, float signal_value,
struct SnrResult* snr) {
OMX_FC32* x;
OMX_FC32* y;
OMX_FC32* z;
struct AlignedPtr* x_aligned;
struct AlignedPtr* y_aligned;
struct AlignedPtr* z_aligned;
OMX_INT n, fft_spec_buffer_size;
OMXResult status;
OMXFFTSpec_C_FC32 * fft_fwd_spec = NULL;
OMXFFTSpec_C_FC32 * fft_inv_spec = NULL;
int fft_size;
fft_size = 1 << fft_log_size;
status = omxSP_FFTGetBufSize_C_FC32(fft_log_size, &fft_spec_buffer_size);
if (verbose > 3) {
printf("fft_spec_buffer_size = %d\n", fft_spec_buffer_size);
}
fft_inv_spec = (OMXFFTSpec_C_FC32*)malloc(fft_spec_buffer_size);
status = omxSP_FFTInit_C_FC32(fft_inv_spec, fft_log_size);
if (status) {
fprintf(stderr, "Failed to init backward FFT: status = %d, order %d\n",
status, fft_log_size);
exit(1);
}
x_aligned = AllocAlignedPointer(32, sizeof(*x) * fft_size);
y_aligned = AllocAlignedPointer(32, sizeof(*y) * (fft_size + 2));
z_aligned = AllocAlignedPointer(32, sizeof(*z) * fft_size);
x = x_aligned->aligned_pointer_;
y = y_aligned->aligned_pointer_;
z = z_aligned->aligned_pointer_;
GenerateSignal(x, y, fft_size, signal_type, signal_value);
if (verbose > 63) {
printf("Inverse FFT Input Signal\n");
DumpArrayComplexFloat("x", fft_size, y);
printf("Expected Inverse FFT output\n");
DumpArrayComplexFloat("x", fft_size, x);
}
status = omxSP_FFTInv_CToC_FC32_Sfs(y, z, fft_inv_spec);
if (status) {
fprintf(stderr, "Inverse FFT failed: status = %d\n", status);
exit(1);
}
if (verbose > 63) {
printf("Actual Inverse FFT Output\n");
DumpArrayComplexFloat("z", fft_size, z);
}
CompareComplexFloat(snr, z, x, fft_size);
FreeAlignedPointer(x_aligned);
FreeAlignedPointer(y_aligned);
FreeAlignedPointer(z_aligned);
free(fft_inv_spec);
return snr->complex_snr_;
}