blob: 7bdbe41e08d73d90740b16bbff8c9e88e54ab724 [file] [log] [blame]
@//
@// Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
@//
@// Use of this source code is governed by a BSD-style license
@// that can be found in the LICENSE file in the root of the source
@// tree. An additional intellectual property rights grant can be found
@// in the file PATENTS. All contributing project authors may
@// be found in the AUTHORS file in the root of the source tree.
@//
@// This file was originally licensed as follows. It has been
@// relicensed with permission from the copyright holders.
@//
@//
@// File Name: armSP_FFT_CToC_SC16_Radix4_unsafe_s.s
@// OpenMAX DL: v1.0.2
@// Last Modified Revision: 7761
@// Last Modified Date: Wed, 26 Sep 2007
@//
@// (c) Copyright 2007-2008 ARM Limited. All Rights Reserved.
@//
@//
@//
@// Description:
@// Compute a Radix 4 FFT stage for a N point complex signal
@//
@//
@// Include standard headers
#include "dl/api/arm/armCOMM_s.h"
#include "dl/api/arm/omxtypes_s.h"
@// Import symbols required from other files
@// (For example tables)
@// Set debugging level
@//DEBUG_ON SETL {TRUE}
@// Guarding implementation by the processor name
@// Guarding implementation by the processor name
@// Import symbols required from other files
@// (For example tables)
@//Input Registers
#define pSrc r0
#define pDst r2
#define pTwiddle r1
#define subFFTNum r6
#define subFFTSize r7
@//Output Registers
@//Local Scratch Registers
#define grpCount r3
#define pointStep r4
#define outPointStep r5
#define stepTwiddle r12
#define setCount r14
#define srcStep r8
#define setStep r9
#define dstStep r10
#define twStep r11
#define t1 r3
@// Neon Registers
#define dW1 D0.S16
#define dW2 D1.S16
#define dW3 D2.S16
#define dXr0 D4.S16
#define dXi0 D5.S16
#define dXr1 D6.S16
#define dXi1 D7.S16
#define dXr2 D8.S16
#define dXi2 D9.S16
#define dXr3 D10.S16
#define dXi3 D11.S16
#define dYr0 D12.S16
#define dYi0 D13.S16
#define dYr1 D14.S16
#define dYi1 D15.S16
#define dYr2 D16.S16
#define dYi2 D17.S16
#define dYr3 D18.S16
#define dYi3 D19.S16
#define qT0 Q8.S32
#define qT1 Q9.S32
#define qT2 Q6.S32
#define qT3 Q7.S32
#define dZr0 D20.S16
#define dZi0 D21.S16
#define dZr1 D22.S16
#define dZi1 D23.S16
#define dZr2 D24.S16
#define dZi2 D25.S16
#define dZr3 D26.S16
#define dZi3 D27.S16
#define qY0 Q6.S16
#define qY1 Q7.S16
#define qY2 Q8.S16
#define qY3 Q9.S16
#define qX0 Q2.S16
#define qZ0 Q10.S16
#define qZ1 Q11.S16
#define qZ2 Q12.S16
#define qZ3 Q13.S16
.MACRO FFTSTAGE scaled, inverse , name
@// Define stack arguments
@// Update grpCount and grpSize rightaway inorder to reuse pGrpCount and pGrpSize regs
LSL grpCount,subFFTSize,#2
LSR subFFTNum,subFFTNum,#2
MOV subFFTSize,grpCount
@// pOut0+1 increments pOut0 by 4 bytes
@// pOut0+outPointStep == increment of 4*outPointStep bytes = size bytes
MOV stepTwiddle,#0
SMULBB outPointStep,grpCount,subFFTNum
@// pT0+1 increments pT0 by 4 bytes
@// pT0+pointStep = increment of 4*pointStep bytes = grpSize bytes
LSL pointStep,subFFTNum,#2 @// 2*grpSize
VLD1 dW1,[pTwiddle :64] @//[wi | wr]
MOV srcStep,pointStep,LSL #1 @// srcStep = 2*pointStep
VLD1 dW2,[pTwiddle :64] @//[wi | wr]
ADD setStep,srcStep,pointStep @// setStep = 3*pointStep
VLD1 dW3,[pTwiddle :64]
@//RSB setStep,setStep,#16 @// setStep = - 3*pointStep+16
RSB setStep,setStep,#0 @// setStep = - 3*pointStep
MOV dstStep,outPointStep,LSL #1
ADD dstStep,dstStep,outPointStep @// dstStep = 3*outPointStep
RSB dstStep,dstStep,#16 @// dstStep = - 3*outPointStep+16
grpLoop\name:
ADD stepTwiddle,stepTwiddle,pointStep
ADD pTwiddle,pTwiddle,stepTwiddle @// set pTwiddle to the first point
MOV twStep,stepTwiddle,LSL #2
SUB twStep,stepTwiddle,twStep @// twStep = -3*stepTwiddle
MOV setCount,pointStep,LSR #2
ADD pSrc,pSrc,pointStep @// increment to data[1] of the next set
@// Loop on the sets : 4 at a time
setLoop\name:
VLD2 {dXr1,dXi1},[pSrc :128],pointStep @// data[1]
VLD2 {dXr2,dXi2},[pSrc :128],pointStep @// data[2]
SUBS setCount,setCount,#4 @// decrement the loop counter
.ifeqs "\inverse", "TRUE"
VMULL qT0,dXr1,dW1[0]
VMLAL qT0,dXi1,dW1[1] @// real part
VMULL qT1,dXi1,dW1[0]
VMLSL qT1,dXr1,dW1[1] @// imag part
.ELSE
VMULL qT0,dXr1,dW1[0]
VMLSL qT0,dXi1,dW1[1] @// real part
VMULL qT1,dXi1,dW1[0]
VMLAL qT1,dXr1,dW1[1] @// imag part
.ENDIF
.ifeqs "\inverse", "TRUE"
VMULL qT2,dXr2,dW2[0]
VMLAL qT2,dXi2,dW2[1] @// real part
VMULL qT3,dXi2,dW2[0]
VMLSL qT3,dXr2,dW2[1] @// imag part
.ELSE
VMULL qT2,dXr2,dW2[0]
VMLSL qT2,dXi2,dW2[1] @// real part
VMULL qT3,dXi2,dW2[0]
VMLAL qT3,dXr2,dW2[1] @// imag part
.ENDIF
VLD2 {dXr3,dXi3},[pSrc :128],setStep @// data[3] & update pSrc for the next set
VRSHRN dZr1,qT0,#15
VRSHRN dZi1,qT1,#15
VLD2 {dXr0,dXi0},[pSrc :128],pointStep @// data[0]
ADD pSrc,pSrc,#16 @// set pSrc to data[1] of the next set
.ifeqs "\inverse", "TRUE"
VMULL qT0,dXr3,dW3[0]
VMLAL qT0,dXi3,dW3[1] @// real part
VMULL qT1,dXi3,dW3[0]
VMLSL qT1,dXr3,dW3[1] @// imag part
.ELSE
VMULL qT0,dXr3,dW3[0]
VMLSL qT0,dXi3,dW3[1] @// real part
VMULL qT1,dXi3,dW3[0]
VMLAL qT1,dXr3,dW3[1] @// imag part
.ENDIF
VRSHRN dZr2,qT2,#15
VRSHRN dZi2,qT3,#15
VRSHRN dZr3,qT0,#15
VRSHRN dZi3,qT1,#15
.ifeqs "\scaled", "TRUE"
@// finish first stage of 4 point FFT
VHADD qY0,qX0,qZ2
VHSUB qY2,qX0,qZ2
VHADD qY1,qZ1,qZ3
VHSUB qY3,qZ1,qZ3
@// finish second stage of 4 point FFT
.ifeqs "\inverse", "TRUE"
VHSUB qZ0,qY2,qY1
VHADD dZr2,dYr0,dYi3
VST2 {dZr0,dZi0},[pDst :128],outPointStep
VHSUB dZi2,dYi0,dYr3
VHADD qZ1,qY2,qY1
VST2 {dZr2,dZi2},[pDst :128],outPointStep
VHSUB dZr3,dYr0,dYi3
VST2 {dZr1,dZi1},[pDst :128],outPointStep
VHADD dZi3,dYi0,dYr3
VST2 {dZr3,dZi3},[pDst :128],dstStep
.ELSE
VHSUB qZ0,qY2,qY1
VHSUB dZr3,dYr0,dYi3
VST2 {dZr0,dZi0},[pDst :128],outPointStep
VHADD dZi3,dYi0,dYr3
VHADD qZ1,qY2,qY1
VST2 {dZr3,dZi3},[pDst :128],outPointStep
VHADD dZr2,dYr0,dYi3
VHSUB dZi2,dYi0,dYr3
VST2 {dZr1,dZi1},[pDst :128],outPointStep
VST2 {dZr2,dZi2},[pDst :128],dstStep
.ENDIF
.ELSE
@// finish first stage of 4 point FFT
VADD qY0,qX0,qZ2
VSUB qY2,qX0,qZ2
VADD qY1,qZ1,qZ3
VSUB qY3,qZ1,qZ3
@// finish second stage of 4 point FFT
.ifeqs "\inverse", "TRUE"
VSUB qZ0,qY2,qY1
VADD dZr2,dYr0,dYi3
VST2 {dZr0,dZi0},[pDst :128],outPointStep
VSUB dZi2,dYi0,dYr3
VADD qZ1,qY2,qY1
VST2 {dZr2,dZi2},[pDst :128],outPointStep
VSUB dZr3,dYr0,dYi3
VST2 {dZr1,dZi1},[pDst :128],outPointStep
VADD dZi3,dYi0,dYr3
VST2 {dZr3,dZi3},[pDst :128],dstStep
.ELSE
VSUB qZ0,qY2,qY1
VSUB dZr3,dYr0,dYi3
VST2 {dZr0,dZi0},[pDst :128],outPointStep
VADD dZi3,dYi0,dYr3
VADD qZ1,qY2,qY1
VST2 {dZr3,dZi3},[pDst :128],outPointStep
VADD dZr2,dYr0,dYi3
VSUB dZi2,dYi0,dYr3
VST2 {dZr1,dZi1},[pDst :128],outPointStep
VST2 {dZr2,dZi2},[pDst :128],dstStep
.ENDIF
.ENDIF
BGT setLoop\name
VLD1 dW1,[pTwiddle :64],stepTwiddle @//[wi | wr]
SUBS grpCount,grpCount,#4 @// subtract 4 since grpCount multiplied by 4
VLD1 dW2,[pTwiddle :64],stepTwiddle @//[wi | wr]
ADD pSrc,pSrc,srcStep @// increment pSrc for the next grp
VLD1 dW3,[pTwiddle :64],twStep @//[wi | wr]
BGT grpLoop\name
@// Reset and Swap pSrc and pDst for the next stage
MOV t1,pDst
SUB pDst,pSrc,outPointStep,LSL #2 @// pDst -= size; pSrc -= 4*size bytes
SUB pSrc,t1,outPointStep
.endm
M_START armSP_FFTFwd_CToC_SC16_Radix4_OutOfPlace_unsafe,r4
FFTSTAGE "FALSE","FALSE",FWD
M_END
M_START armSP_FFTInv_CToC_SC16_Radix4_OutOfPlace_unsafe,r4
FFTSTAGE "FALSE","TRUE",INV
M_END
M_START armSP_FFTFwd_CToC_SC16_Sfs_Radix4_OutOfPlace_unsafe,r4
FFTSTAGE "TRUE","FALSE",FWDSFS
M_END
M_START armSP_FFTInv_CToC_SC16_Sfs_Radix4_OutOfPlace_unsafe,r4
FFTSTAGE "TRUE","TRUE",INVSFS
M_END
.END