| /* |
| * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <algorithm> |
| #include <array> |
| #include <vector> |
| |
| #include "modules/audio_processing/agc2/rnn_vad/rnn.h" |
| #include "modules/audio_processing/agc2/rnn_vad/test_utils.h" |
| #include "rtc_base/checks.h" |
| #include "test/gtest.h" |
| #include "third_party/rnnoise/src/rnn_activations.h" |
| #include "third_party/rnnoise/src/rnn_vad_weights.h" |
| |
| namespace webrtc { |
| namespace rnn_vad { |
| namespace test { |
| |
| using rnnoise::RectifiedLinearUnit; |
| using rnnoise::SigmoidApproximated; |
| |
| namespace { |
| |
| void TestFullyConnectedLayer(FullyConnectedLayer* fc, |
| rtc::ArrayView<const float> input_vector, |
| const float expected_output) { |
| RTC_CHECK(fc); |
| fc->ComputeOutput(input_vector); |
| const auto output = fc->GetOutput(); |
| EXPECT_NEAR(expected_output, output[0], 3e-6f); |
| } |
| |
| void TestGatedRecurrentLayer( |
| GatedRecurrentLayer* gru, |
| rtc::ArrayView<const float> input_sequence, |
| rtc::ArrayView<const float> expected_output_sequence) { |
| RTC_CHECK(gru); |
| auto gru_output_view = gru->GetOutput(); |
| const size_t input_sequence_length = |
| rtc::CheckedDivExact(input_sequence.size(), gru->input_size()); |
| const size_t output_sequence_length = |
| rtc::CheckedDivExact(expected_output_sequence.size(), gru->output_size()); |
| ASSERT_EQ(input_sequence_length, output_sequence_length) |
| << "The test data length is invalid."; |
| // Feed the GRU layer and check the output at every step. |
| gru->Reset(); |
| for (size_t i = 0; i < input_sequence_length; ++i) { |
| SCOPED_TRACE(i); |
| gru->ComputeOutput( |
| input_sequence.subview(i * gru->input_size(), gru->input_size())); |
| const auto expected_output = expected_output_sequence.subview( |
| i * gru->output_size(), gru->output_size()); |
| ExpectNearAbsolute(expected_output, gru_output_view, 3e-6f); |
| } |
| } |
| |
| } // namespace |
| |
| // Bit-exactness check for fully connected layers. |
| TEST(RnnVadTest, CheckFullyConnectedLayerOutput) { |
| const std::array<int8_t, 1> bias = {-50}; |
| const std::array<int8_t, 24> weights = { |
| 127, 127, 127, 127, 127, 20, 127, -126, -126, -54, 14, 125, |
| -126, -126, 127, -125, -126, 127, -127, -127, -57, -30, 127, 80}; |
| FullyConnectedLayer fc(24, 1, bias, weights, SigmoidApproximated); |
| // Test on different inputs. |
| { |
| const std::array<float, 24> input_vector = { |
| 0.f, 0.f, 0.f, 0.f, 0.f, |
| 0.f, 0.215833917f, 0.290601075f, 0.238759011f, 0.244751841f, |
| 0.f, 0.0461241305f, 0.106401242f, 0.223070428f, 0.630603909f, |
| 0.690453172f, 0.f, 0.387645692f, 0.166913897f, 0.f, |
| 0.0327451192f, 0.f, 0.136149868f, 0.446351469f}; |
| TestFullyConnectedLayer(&fc, {input_vector}, 0.436567038f); |
| } |
| { |
| const std::array<float, 24> input_vector = { |
| 0.592162728f, 0.529089332f, 1.18205106f, |
| 1.21736848f, 0.f, 0.470851123f, |
| 0.130675942f, 0.320903003f, 0.305496395f, |
| 0.0571633279f, 1.57001138f, 0.0182026215f, |
| 0.0977443159f, 0.347477973f, 0.493206412f, |
| 0.9688586f, 0.0320267938f, 0.244722098f, |
| 0.312745273f, 0.f, 0.00650715502f, |
| 0.312553257f, 1.62619662f, 0.782880902f}; |
| TestFullyConnectedLayer(&fc, {input_vector}, 0.874741316f); |
| } |
| { |
| const std::array<float, 24> input_vector = { |
| 0.395022154f, 0.333681047f, 0.76302278f, |
| 0.965480626f, 0.f, 0.941198349f, |
| 0.0892967582f, 0.745046318f, 0.635769248f, |
| 0.238564298f, 0.970656633f, 0.014159563f, |
| 0.094203949f, 0.446816623f, 0.640755892f, |
| 1.20532358f, 0.0254284926f, 0.283327013f, |
| 0.726210058f, 0.0550272502f, 0.000344108557f, |
| 0.369803518f, 1.56680179f, 0.997883797f}; |
| TestFullyConnectedLayer(&fc, {input_vector}, 0.672785878f); |
| } |
| } |
| |
| TEST(RnnVadTest, CheckGatedRecurrentLayer) { |
| const std::array<int8_t, 12> bias = {96, -99, -81, -114, 49, 119, |
| -118, 68, -76, 91, 121, 125}; |
| const std::array<int8_t, 60> weights = { |
| 124, 9, 1, 116, -66, -21, -118, -110, 104, 75, -23, -51, |
| -72, -111, 47, 93, 77, -98, 41, -8, 40, -23, -43, -107, |
| 9, -73, 30, -32, -2, 64, -26, 91, -48, -24, -28, -104, |
| 74, -46, 116, 15, 32, 52, -126, -38, -121, 12, -16, 110, |
| -95, 66, -103, -35, -38, 3, -126, -61, 28, 98, -117, -43}; |
| const std::array<int8_t, 60> recurrent_weights = { |
| -3, 87, 50, 51, -22, 27, -39, 62, 31, -83, -52, -48, |
| -6, 83, -19, 104, 105, 48, 23, 68, 23, 40, 7, -120, |
| 64, -62, 117, 85, -51, -43, 54, -105, 120, 56, -128, -107, |
| 39, 50, -17, -47, -117, 14, 108, 12, -7, -72, 103, -87, |
| -66, 82, 84, 100, -98, 102, -49, 44, 122, 106, -20, -69}; |
| GatedRecurrentLayer gru(5, 4, bias, weights, recurrent_weights, |
| RectifiedLinearUnit); |
| // Test on different inputs. |
| { |
| const std::array<float, 20> input_sequence = { |
| 0.89395463f, 0.93224651f, 0.55788344f, 0.32341808f, 0.93355054f, |
| 0.13475326f, 0.97370994f, 0.14253306f, 0.93710381f, 0.76093364f, |
| 0.65780413f, 0.41657975f, 0.49403164f, 0.46843281f, 0.75138855f, |
| 0.24517593f, 0.47657707f, 0.57064998f, 0.435184f, 0.19319285f}; |
| const std::array<float, 16> expected_output_sequence = { |
| 0.0239123f, 0.5773077f, 0.f, 0.f, |
| 0.01282811f, 0.64330572f, 0.f, 0.04863098f, |
| 0.00781069f, 0.75267816f, 0.f, 0.02579715f, |
| 0.00471378f, 0.59162533f, 0.11087593f, 0.01334511f}; |
| TestGatedRecurrentLayer(&gru, input_sequence, expected_output_sequence); |
| } |
| } |
| |
| // TODO(bugs.webrtc.org/9076): Remove when the issue is fixed. |
| // Bit-exactness test checking that precomputed frame-wise features lead to the |
| // expected VAD probabilities. |
| TEST(RnnVadTest, RnnBitExactness) { |
| // Init. |
| auto features_reader = CreateSilenceFlagsFeatureMatrixReader(); |
| auto vad_probs_reader = CreateVadProbsReader(); |
| ASSERT_EQ(features_reader.second, vad_probs_reader.second); |
| const size_t num_frames = features_reader.second; |
| // Frame-wise buffers. |
| float expected_vad_probability; |
| float is_silence; |
| std::array<float, kFeatureVectorSize> features; |
| |
| // Compute VAD probability using the precomputed features. |
| RnnBasedVad vad; |
| for (size_t i = 0; i < num_frames; ++i) { |
| SCOPED_TRACE(i); |
| // Read frame data. |
| RTC_CHECK(vad_probs_reader.first->ReadValue(&expected_vad_probability)); |
| // The features file also includes a silence flag for each frame. |
| RTC_CHECK(features_reader.first->ReadValue(&is_silence)); |
| RTC_CHECK( |
| features_reader.first->ReadChunk({features.data(), features.size()})); |
| // Skip silent frames. |
| ASSERT_TRUE(is_silence == 0.f || is_silence == 1.f); |
| if (is_silence == 1.f) { |
| ASSERT_EQ(expected_vad_probability, 0.f); |
| continue; |
| } |
| // Compute and check VAD probability. |
| vad.ComputeVadProbability({features.data(), features.size()}); |
| EXPECT_NEAR(expected_vad_probability, vad.vad_probability(), 3e-6f); |
| } |
| } |
| |
| } // namespace test |
| } // namespace rnn_vad |
| } // namespace webrtc |