Formalized Real 16-bit FFT for APM.
It also prepares for introducing Real 16-bit FFT Neon code from Openmax to SPL. CL https://webrtc-codereview.appspot.com/1819004/ takes care of that, but this CL is a prerequisite of that one.
Tested audioproc with an offline file. Bit exact.
R=andrew@webrtc.org, rtoy@google.com
Review URL: https://webrtc-codereview.appspot.com/1830004
git-svn-id: http://webrtc.googlecode.com/svn/trunk@4390 4adac7df-926f-26a2-2b94-8c16560cd09d
diff --git a/webrtc/common_audio/signal_processing/include/real_fft.h b/webrtc/common_audio/signal_processing/include/real_fft.h
index 8d6280c..579a305 100644
--- a/webrtc/common_audio/signal_processing/include/real_fft.h
+++ b/webrtc/common_audio/signal_processing/include/real_fft.h
@@ -13,70 +13,112 @@
#include "webrtc/typedefs.h"
+// For ComplexFFT(), the maximum fft order is 10;
+// for OpenMax FFT in ARM, it is 12;
+// WebRTC APM uses orders of only 7 and 8.
+enum {kMaxFFTOrder = 10};
+
struct RealFFT;
#ifdef __cplusplus
extern "C" {
#endif
+typedef struct RealFFT* (*CreateRealFFT)(int order);
+typedef void (*FreeRealFFT)(struct RealFFT* self);
typedef int (*RealForwardFFT)(struct RealFFT* self,
- const int16_t* data_in,
- int16_t* data_out);
+ const int16_t* real_data_in,
+ int16_t* complex_data_out);
typedef int (*RealInverseFFT)(struct RealFFT* self,
- const int16_t* data_in,
- int16_t* data_out);
+ const int16_t* complex_data_in,
+ int16_t* real_data_out);
+extern CreateRealFFT WebRtcSpl_CreateRealFFT;
+extern FreeRealFFT WebRtcSpl_FreeRealFFT;
extern RealForwardFFT WebRtcSpl_RealForwardFFT;
extern RealInverseFFT WebRtcSpl_RealInverseFFT;
-struct RealFFT* WebRtcSpl_CreateRealFFT(int order);
-void WebRtcSpl_FreeRealFFT(struct RealFFT* self);
+struct RealFFT* WebRtcSpl_CreateRealFFTC(int order);
+void WebRtcSpl_FreeRealFFTC(struct RealFFT* self);
-// TODO(kma): Implement FFT functions for real signals.
+#if (defined WEBRTC_DETECT_ARM_NEON) || (defined WEBRTC_ARCH_ARM_NEON)
+struct RealFFT* WebRtcSpl_CreateRealFFTNeon(int order);
+void WebRtcSpl_FreeRealFFTNeon(struct RealFFT* self);
+#endif
-// Compute the forward FFT for a complex signal of length 2^order.
+// Compute an FFT for a real-valued signal of length of 2^order,
+// where 1 < order <= MAX_FFT_ORDER. Transform length is determined by the
+// specification structure, which must be initialized prior to calling the FFT
+// function with WebRtcSpl_CreateRealFFT().
+// The relationship between the input and output sequences can
+// be expressed in terms of the DFT, i.e.:
+// x[n] = (2^(-scalefactor)/N) . SUM[k=0,...,N-1] X[k].e^(jnk.2.pi/N)
+// n=0,1,2,...N-1
+// N=2^order.
+// The conjugate-symmetric output sequence is represented using a CCS vector,
+// which is of length N+2, and is organized as follows:
+// Index: 0 1 2 3 4 5 . . . N-2 N-1 N N+1
+// Component: R0 0 R1 I1 R2 I2 . . . R[N/2-1] I[N/2-1] R[N/2] 0
+// where R[n] and I[n], respectively, denote the real and imaginary components
+// for FFT bin 'n'. Bins are numbered from 0 to N/2, where N is the FFT length.
+// Bin index 0 corresponds to the DC component, and bin index N/2 corresponds to
+// the foldover frequency.
+//
// Input Arguments:
// self - pointer to preallocated and initialized FFT specification structure.
-// data_in - the input signal.
+// real_data_in - the input signal. For an ARM Neon platform, it must be
+// aligned on a 32-byte boundary.
//
// Output Arguments:
-// data_out - the output signal; must be different to data_in.
+// complex_data_out - the output complex signal with (2^order + 2) 16-bit
+// elements. For an ARM Neon platform, it must be different
+// from real_data_in, and aligned on a 32-byte boundary.
//
// Return Value:
// 0 - FFT calculation is successful.
-// -1 - Error
-//
+// -1 - Error with bad arguments (NULL pointers).
int WebRtcSpl_RealForwardFFTC(struct RealFFT* self,
- const int16_t* data_in,
- int16_t* data_out);
+ const int16_t* real_data_in,
+ int16_t* complex_data_out);
#if (defined WEBRTC_DETECT_ARM_NEON) || (defined WEBRTC_ARCH_ARM_NEON)
int WebRtcSpl_RealForwardFFTNeon(struct RealFFT* self,
- const int16_t* data_in,
- int16_t* data_out);
+ const int16_t* real_data_in,
+ int16_t* complex_data_out);
#endif
-// Compute the inverse FFT for a complex signal of length 2^order.
+// Compute the inverse FFT for a conjugate-symmetric input sequence of length of
+// 2^order, where 1 < order <= MAX_FFT_ORDER. Transform length is determined by
+// the specification structure, which must be initialized prior to calling the
+// FFT function with WebRtcSpl_CreateRealFFT().
+// For a transform of length M, the input sequence is represented using a packed
+// CCS vector of length M+2, which is explained in the comments for
+// WebRtcSpl_RealForwardFFTC above.
+//
// Input Arguments:
// self - pointer to preallocated and initialized FFT specification structure.
-// data_in - the input signal.
+// complex_data_in - the input complex signal with (2^order + 2) 16-bit
+// elements. For an ARM Neon platform, it must be aligned on
+// a 32-byte boundary.
//
// Output Arguments:
-// data_out - the output signal; must be different to data_in.
+// real_data_out - the output real signal. For an ARM Neon platform, it must
+// be different to complex_data_in, and aligned on a 32-byte
+// boundary.
//
// Return Value:
-// 0 or a positive number - a value that the elements in the |data_out| should
-// be shifted left with in order to get correct
-// physical values.
-// -1 - Error
+// 0 or a positive number - a value that the elements in the |real_data_out|
+// should be shifted left with in order to get
+// correct physical values.
+// -1 - Error with bad arguments (NULL pointers).
int WebRtcSpl_RealInverseFFTC(struct RealFFT* self,
- const int16_t* data_in,
- int16_t* data_out);
+ const int16_t* complex_data_in,
+ int16_t* real_data_out);
#if (defined WEBRTC_DETECT_ARM_NEON) || (defined WEBRTC_ARCH_ARM_NEON)
int WebRtcSpl_RealInverseFFTNeon(struct RealFFT* self,
- const int16_t* data_in,
- int16_t* data_out);
+ const int16_t* complex_data_in,
+ int16_t* real_data_out);
#endif
#ifdef __cplusplus
diff --git a/webrtc/common_audio/signal_processing/real_fft.c b/webrtc/common_audio/signal_processing/real_fft.c
index bd54432..fc5be9a 100644
--- a/webrtc/common_audio/signal_processing/real_fft.c
+++ b/webrtc/common_audio/signal_processing/real_fft.c
@@ -18,55 +18,109 @@
int order;
};
-struct RealFFT* WebRtcSpl_CreateRealFFT(int order) {
+struct RealFFT* WebRtcSpl_CreateRealFFTC(int order) {
struct RealFFT* self = NULL;
- // This constraint comes from ComplexFFT().
- if (order > 10 || order < 0) {
+ if (order > kMaxFFTOrder || order < 0) {
return NULL;
}
self = malloc(sizeof(struct RealFFT));
+ if (self == NULL) {
+ return NULL;
+ }
self->order = order;
return self;
}
-void WebRtcSpl_FreeRealFFT(struct RealFFT* self) {
- free(self);
+void WebRtcSpl_FreeRealFFTC(struct RealFFT* self) {
+ if (self != NULL) {
+ free(self);
+ }
}
-// WebRtcSpl_ComplexFFT and WebRtcSpl_ComplexIFFT use in-place algorithm,
-// so copy data from data_in to data_out in the next two functions.
+// The C version FFT functions (i.e. WebRtcSpl_RealForwardFFTC and
+// WebRtcSpl_RealInverseFFTC) are real-valued FFT wrappers for complex-valued
+// FFT implementation in SPL.
int WebRtcSpl_RealForwardFFTC(struct RealFFT* self,
- const int16_t* data_in,
- int16_t* data_out) {
- memcpy(data_out, data_in, sizeof(int16_t) * (1 << (self->order + 1)));
- WebRtcSpl_ComplexBitReverse(data_out, self->order);
- return WebRtcSpl_ComplexFFT(data_out, self->order, 1);
+ const int16_t* real_data_in,
+ int16_t* complex_data_out) {
+ int i = 0;
+ int j = 0;
+ int result = 0;
+ int n = 1 << self->order;
+ // The complex-value FFT implementation needs a buffer to hold 2^order
+ // 16-bit COMPLEX numbers, for both time and frequency data.
+ int16_t complex_buffer[2 << kMaxFFTOrder];
+
+ // Insert zeros to the imaginary parts for complex forward FFT input.
+ for (i = 0, j = 0; i < n; i += 1, j += 2) {
+ complex_buffer[j] = real_data_in[i];
+ complex_buffer[j + 1] = 0;
+ };
+
+ WebRtcSpl_ComplexBitReverse(complex_buffer, self->order);
+ result = WebRtcSpl_ComplexFFT(complex_buffer, self->order, 1);
+
+ // For real FFT output, use only the first N + 2 elements from
+ // complex forward FFT.
+ memcpy(complex_data_out, complex_buffer, sizeof(int16_t) * (n + 2));
+
+ return result;
}
int WebRtcSpl_RealInverseFFTC(struct RealFFT* self,
- const int16_t* data_in,
- int16_t* data_out) {
- memcpy(data_out, data_in, sizeof(int16_t) * (1 << (self->order + 1)));
- WebRtcSpl_ComplexBitReverse(data_out, self->order);
- return WebRtcSpl_ComplexIFFT(data_out, self->order, 1);
+ const int16_t* complex_data_in,
+ int16_t* real_data_out) {
+ int i = 0;
+ int j = 0;
+ int result = 0;
+ int n = 1 << self->order;
+ // Create the buffer specific to complex-valued FFT implementation.
+ int16_t complex_buffer[2 << kMaxFFTOrder];
+
+ // For n-point FFT, first copy the first n + 2 elements into complex
+ // FFT, then construct the remaining n - 2 elements by real FFT's
+ // conjugate-symmetric properties.
+ memcpy(complex_buffer, complex_data_in, sizeof(int16_t) * (n + 2));
+ for (i = n + 2; i < 2 * n; i += 2) {
+ complex_buffer[i] = complex_data_in[2 * n - i];
+ complex_buffer[i + 1] = -complex_data_in[2 * n - i + 1];
+ }
+
+ WebRtcSpl_ComplexBitReverse(complex_buffer, self->order);
+ result = WebRtcSpl_ComplexIFFT(complex_buffer, self->order, 1);
+
+ // Strip out the imaginary parts of the complex inverse FFT output.
+ for (i = 0, j = 0; i < n; i += 1, j += 2) {
+ real_data_out[i] = complex_buffer[j];
+ }
+
+ return result;
}
#if defined(WEBRTC_DETECT_ARM_NEON) || defined(WEBRTC_ARCH_ARM_NEON)
// TODO(kma): Replace the following function bodies into optimized functions
// for ARM Neon.
+struct RealFFT* WebRtcSpl_CreateRealFFTNeon(int order) {
+ return WebRtcSpl_CreateRealFFTC(order);
+}
+
+void WebRtcSpl_FreeRealFFTNeon(struct RealFFT* self) {
+ WebRtcSpl_FreeRealFFTC(self);
+}
+
int WebRtcSpl_RealForwardFFTNeon(struct RealFFT* self,
- const int16_t* data_in,
- int16_t* data_out) {
- return WebRtcSpl_RealForwardFFTC(self, data_in, data_out);
+ const int16_t* real_data_in,
+ int16_t* complex_data_out) {
+ return WebRtcSpl_RealForwardFFTC(self, real_data_in, complex_data_out);
}
int WebRtcSpl_RealInverseFFTNeon(struct RealFFT* self,
- const int16_t* data_in,
- int16_t* data_out) {
- return WebRtcSpl_RealInverseFFTC(self, data_in, data_out);
+ const int16_t* complex_data_in,
+ int16_t* real_data_out) {
+ return WebRtcSpl_RealInverseFFTC(self, complex_data_in, real_data_out);
}
-#endif
+#endif // WEBRTC_DETECT_ARM_NEON || WEBRTC_ARCH_ARM_NEON
diff --git a/webrtc/common_audio/signal_processing/real_fft_unittest.cc b/webrtc/common_audio/signal_processing/real_fft_unittest.cc
index 5dc1c89..fa98836 100644
--- a/webrtc/common_audio/signal_processing/real_fft_unittest.cc
+++ b/webrtc/common_audio/signal_processing/real_fft_unittest.cc
@@ -17,9 +17,17 @@
namespace webrtc {
namespace {
-const int kOrder = 4;
-const int kLength = 1 << (kOrder + 1); // +1 to hold complex data.
-const int16_t kRefData[kLength] = {
+// FFT order.
+const int kOrder = 5;
+// Lengths for real FFT's time and frequency bufffers.
+// For N-point FFT, the length requirements from API are N and N+2 respectively.
+const int kTimeDataLength = 1 << kOrder;
+const int kFreqDataLength = (1 << kOrder) + 2;
+// For complex FFT's time and freq buffer. The implementation requires
+// 2*N 16-bit words.
+const int kComplexFftDataLength = 2 << kOrder;
+// Reference data for time signal.
+const int16_t kRefData[kTimeDataLength] = {
11739, 6848, -8688, 31980, -30295, 25242, 27085, 19410,
-26299, 15607, -10791, 11778, -23819, 14498, -25772, 10076,
1173, 6848, -8688, 31980, -30295, 2522, 27085, 19410,
@@ -40,36 +48,58 @@
EXPECT_TRUE(fft == NULL);
}
-// TODO(andrew): This won't always be the case, but verifies the current code
-// at least.
-TEST_F(RealFFTTest, RealAndComplexAreIdentical) {
- int16_t real_data[kLength] = {0};
- int16_t real_data_out[kLength] = {0};
- int16_t complex_data[kLength] = {0};
- memcpy(real_data, kRefData, sizeof(kRefData));
- memcpy(complex_data, kRefData, sizeof(kRefData));
+TEST_F(RealFFTTest, RealAndComplexMatch) {
+ int i = 0;
+ int j = 0;
+ int16_t real_fft_time[kTimeDataLength] = {0};
+ int16_t real_fft_freq[kFreqDataLength] = {0};
+ // One common buffer for complex FFT's time and frequency data.
+ int16_t complex_fft_buff[kComplexFftDataLength] = {0};
+ // Prepare the inputs to forward FFT's.
+ memcpy(real_fft_time, kRefData, sizeof(kRefData));
+ for (i = 0, j = 0; i < kTimeDataLength; i += 1, j += 2) {
+ complex_fft_buff[j] = kRefData[i];
+ complex_fft_buff[j + 1] = 0; // Insert zero's to imaginary parts.
+ };
+
+ // Create and run real forward FFT.
RealFFT* fft = WebRtcSpl_CreateRealFFT(kOrder);
EXPECT_TRUE(fft != NULL);
+ EXPECT_EQ(0, WebRtcSpl_RealForwardFFT(fft, real_fft_time, real_fft_freq));
- EXPECT_EQ(0, WebRtcSpl_RealForwardFFT(fft, real_data, real_data_out));
- WebRtcSpl_ComplexBitReverse(complex_data, kOrder);
- EXPECT_EQ(0, WebRtcSpl_ComplexFFT(complex_data, kOrder, 1));
+ // Run complex forward FFT.
+ WebRtcSpl_ComplexBitReverse(complex_fft_buff, kOrder);
+ EXPECT_EQ(0, WebRtcSpl_ComplexFFT(complex_fft_buff, kOrder, 1));
- for (int i = 0; i < kLength; i++) {
- EXPECT_EQ(real_data_out[i], complex_data[i]);
+ // Verify the results between complex and real forward FFT.
+ for (i = 0; i < kFreqDataLength; i++) {
+ EXPECT_EQ(real_fft_freq[i], complex_fft_buff[i]);
}
- memcpy(complex_data, kRefData, sizeof(kRefData));
+ // Prepare the inputs to inverse real FFT.
+ // We use whatever data in complex_fft_buff[] since we don't care
+ // about data contents. Only kFreqDataLength 16-bit words are copied
+ // from complex_fft_buff to real_fft_freq since remaining words (2nd half)
+ // are conjugate-symmetric to the first half in theory.
+ memcpy(real_fft_freq, complex_fft_buff, sizeof(real_fft_freq));
- int real_scale = WebRtcSpl_RealInverseFFT(fft, real_data, real_data_out);
+ // Run real inverse FFT.
+ int real_scale = WebRtcSpl_RealInverseFFT(fft, real_fft_freq, real_fft_time);
EXPECT_GE(real_scale, 0);
- WebRtcSpl_ComplexBitReverse(complex_data, kOrder);
- int complex_scale = WebRtcSpl_ComplexIFFT(complex_data, kOrder, 1);
+
+ // Run complex inverse FFT.
+ WebRtcSpl_ComplexBitReverse(complex_fft_buff, kOrder);
+ int complex_scale = WebRtcSpl_ComplexIFFT(complex_fft_buff, kOrder, 1);
+
+ // Verify the results between complex and real inverse FFT.
+ // They are not bit-exact, since complex IFFT doesn't produce
+ // exactly conjugate-symmetric data (between first and second half).
EXPECT_EQ(real_scale, complex_scale);
- for (int i = 0; i < kLength; i++) {
- EXPECT_EQ(real_data_out[i], complex_data[i]);
+ for (i = 0, j = 0; i < kTimeDataLength; i += 1, j += 2) {
+ EXPECT_LE(abs(real_fft_time[i] - complex_fft_buff[j]), 1);
}
+
WebRtcSpl_FreeRealFFT(fft);
}
diff --git a/webrtc/common_audio/signal_processing/spl_init.c b/webrtc/common_audio/signal_processing/spl_init.c
index 1645f63..4387cc8 100644
--- a/webrtc/common_audio/signal_processing/spl_init.c
+++ b/webrtc/common_audio/signal_processing/spl_init.c
@@ -28,6 +28,8 @@
CrossCorrelation WebRtcSpl_CrossCorrelation;
DownsampleFast WebRtcSpl_DownsampleFast;
ScaleAndAddVectorsWithRound WebRtcSpl_ScaleAndAddVectorsWithRound;
+CreateRealFFT WebRtcSpl_CreateRealFFT;
+FreeRealFFT WebRtcSpl_FreeRealFFT;
RealForwardFFT WebRtcSpl_RealForwardFFT;
RealInverseFFT WebRtcSpl_RealInverseFFT;
@@ -45,6 +47,8 @@
WebRtcSpl_DownsampleFast = WebRtcSpl_DownsampleFastC;
WebRtcSpl_ScaleAndAddVectorsWithRound =
WebRtcSpl_ScaleAndAddVectorsWithRoundC;
+ WebRtcSpl_CreateRealFFT = WebRtcSpl_CreateRealFFTC;
+ WebRtcSpl_FreeRealFFT = WebRtcSpl_FreeRealFFTC;
WebRtcSpl_RealForwardFFT = WebRtcSpl_RealForwardFFTC;
WebRtcSpl_RealInverseFFT = WebRtcSpl_RealInverseFFTC;
}
@@ -63,6 +67,8 @@
WebRtcSpl_DownsampleFast = WebRtcSpl_DownsampleFastNeon;
WebRtcSpl_ScaleAndAddVectorsWithRound =
WebRtcSpl_ScaleAndAddVectorsWithRoundNeon;
+ WebRtcSpl_CreateRealFFT = WebRtcSpl_CreateRealFFTNeon;
+ WebRtcSpl_FreeRealFFT = WebRtcSpl_FreeRealFFTNeon;
WebRtcSpl_RealForwardFFT = WebRtcSpl_RealForwardFFTNeon;
WebRtcSpl_RealInverseFFT = WebRtcSpl_RealInverseFFTNeon;
}
@@ -80,6 +86,8 @@
WebRtcSpl_DownsampleFast = WebRtcSpl_DownsampleFast_mips;
WebRtcSpl_ScaleAndAddVectorsWithRound =
WebRtcSpl_ScaleAndAddVectorsWithRoundC;
+ WebRtcSpl_CreateRealFFT = WebRtcSpl_CreateRealFFTC;
+ WebRtcSpl_FreeRealFFT = WebRtcSpl_FreeRealFFTC;
WebRtcSpl_RealForwardFFT = WebRtcSpl_RealForwardFFTC;
WebRtcSpl_RealInverseFFT = WebRtcSpl_RealInverseFFTC;
#if defined(MIPS_DSP_R1_LE)
diff --git a/webrtc/modules/audio_processing/aecm/aecm_core.c b/webrtc/modules/audio_processing/aecm/aecm_core.c
index e4fe349..391a1db 100644
--- a/webrtc/modules/audio_processing/aecm/aecm_core.c
+++ b/webrtc/modules/audio_processing/aecm/aecm_core.c
@@ -244,8 +244,6 @@
CalcLinearEnergies WebRtcAecm_CalcLinearEnergies;
StoreAdaptiveChannel WebRtcAecm_StoreAdaptiveChannel;
ResetAdaptiveChannel WebRtcAecm_ResetAdaptiveChannel;
-WindowAndFFT WebRtcAecm_WindowAndFFT;
-InverseFFTAndWindow WebRtcAecm_InverseFFTAndWindow;
int WebRtcAecm_CreateCore(AecmCore_t **aecmInst)
{
@@ -351,41 +349,36 @@
aecm->mseChannelCount = 0;
}
-static void WindowAndFFTC(AecmCore_t* aecm,
+static void WindowAndFFT(AecmCore_t* aecm,
int16_t* fft,
const int16_t* time_signal,
complex16_t* freq_signal,
- int time_signal_scaling)
-{
- int i, j;
+ int time_signal_scaling) {
+ int i = 0;
- memset(fft, 0, sizeof(int16_t) * PART_LEN4);
- // FFT of signal
- for (i = 0, j = 0; i < PART_LEN; i++, j += 2)
- {
- // Window time domain signal and insert into real part of
- // transformation array |fft|
- fft[j] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(
- (time_signal[i] << time_signal_scaling),
- WebRtcAecm_kSqrtHanning[i],
- 14);
- fft[PART_LEN2 + j] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(
- (time_signal[i + PART_LEN] << time_signal_scaling),
- WebRtcAecm_kSqrtHanning[PART_LEN - i],
- 14);
- // Inserting zeros in imaginary parts not necessary since we
- // initialized the array with all zeros
- }
+ // FFT of signal
+ for (i = 0; i < PART_LEN; i++) {
+ // Window time domain signal and insert into real part of
+ // transformation array |fft|
+ fft[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(
+ (time_signal[i] << time_signal_scaling),
+ WebRtcAecm_kSqrtHanning[i],
+ 14);
+ fft[PART_LEN + i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(
+ (time_signal[i + PART_LEN] << time_signal_scaling),
+ WebRtcAecm_kSqrtHanning[PART_LEN - i],
+ 14);
+ }
- // Do forward FFT, then take only the first PART_LEN complex samples,
- // and change signs of the imaginary parts.
- WebRtcSpl_RealForwardFFT(aecm->real_fft, fft, (int16_t*)freq_signal);
- for (i = 0; i < PART_LEN; i++) {
- freq_signal[i].imag = -freq_signal[i].imag;
- }
+ // Do forward FFT, then take only the first PART_LEN complex samples,
+ // and change signs of the imaginary parts.
+ WebRtcSpl_RealForwardFFT(aecm->real_fft, fft, (int16_t*)freq_signal);
+ for (i = 0; i < PART_LEN; i++) {
+ freq_signal[i].imag = -freq_signal[i].imag;
+ }
}
-static void InverseFFTAndWindowC(AecmCore_t* aecm,
+static void InverseFFTAndWindow(AecmCore_t* aecm,
int16_t* fft,
complex16_t* efw,
int16_t* output,
@@ -395,17 +388,9 @@
int32_t tmp32no1;
// Synthesis
- for (i = 1; i < PART_LEN; i++)
- {
- j = WEBRTC_SPL_LSHIFT_W32(i, 1);
- fft[j] = efw[i].real;
-
- // mirrored data, even
- fft[PART_LEN4 - j] = efw[i].real;
- fft[j + 1] = -efw[i].imag;
-
- //mirrored data, odd
- fft[PART_LEN4 - (j - 1)] = efw[i].imag;
+ for (i = 1, j = 2; i < PART_LEN; i += 1, j += 2) {
+ fft[j] = efw[i].real;
+ fft[j + 1] = -efw[i].imag;
}
fft[0] = efw[0].real;
fft[1] = -efw[0].imag;
@@ -413,31 +398,23 @@
fft[PART_LEN2] = efw[PART_LEN].real;
fft[PART_LEN2 + 1] = -efw[PART_LEN].imag;
- // Inverse FFT. Then take only the real values, and keep outCFFT
- // to scale the samples in the next block.
- outCFFT = WebRtcSpl_RealInverseFFT(aecm->real_fft, fft, (int16_t*)efw);
- for (i = 0; i < PART_LEN; i++) {
- efw[i].real = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(
- efw[i].real,
- WebRtcAecm_kSqrtHanning[i],
- 14);
- tmp32no1 = WEBRTC_SPL_SHIFT_W32((int32_t)efw[i].real,
- outCFFT - aecm->dfaCleanQDomain);
- efw[i].real = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
- tmp32no1 + aecm->outBuf[i],
- WEBRTC_SPL_WORD16_MIN);
- output[i] = efw[i].real;
+ // Inverse FFT. Keep outCFFT to scale the samples in the next block.
+ outCFFT = WebRtcSpl_RealInverseFFT(aecm->real_fft, fft, output);
- tmp32no1 = WEBRTC_SPL_MUL_16_16_RSFT(
- efw[PART_LEN + i].real,
- WebRtcAecm_kSqrtHanning[PART_LEN - i],
- 14);
+ for (i = 0; i < PART_LEN; i++) {
+ output[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(
+ output[i], WebRtcAecm_kSqrtHanning[i], 14);
+ tmp32no1 = WEBRTC_SPL_SHIFT_W32((int32_t)output[i],
+ outCFFT - aecm->dfaCleanQDomain);
+ output[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
+ tmp32no1 + aecm->outBuf[i], WEBRTC_SPL_WORD16_MIN);
+
+ tmp32no1 = WEBRTC_SPL_MUL_16_16_RSFT(output[PART_LEN + i],
+ WebRtcAecm_kSqrtHanning[PART_LEN - i], 14);
tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1,
- outCFFT - aecm->dfaCleanQDomain);
+ outCFFT - aecm->dfaCleanQDomain);
aecm->outBuf[i] = (int16_t)WEBRTC_SPL_SAT(
- WEBRTC_SPL_WORD16_MAX,
- tmp32no1,
- WEBRTC_SPL_WORD16_MIN);
+ WEBRTC_SPL_WORD16_MAX, tmp32no1, WEBRTC_SPL_WORD16_MIN);
}
// Copy the current block to the old position (aecm->outBuf is shifted elsewhere)
@@ -522,9 +499,6 @@
#if (defined WEBRTC_DETECT_ARM_NEON || defined WEBRTC_ARCH_ARM_NEON)
static void WebRtcAecm_InitNeon(void)
{
- // TODO(kma): Check why WebRtcAecm_InverseFFTAndWindowNeon() doesn't work.
- WebRtcAecm_WindowAndFFT = WebRtcAecm_WindowAndFFTNeon;
- WebRtcAecm_InverseFFTAndWindow = InverseFFTAndWindowC;
WebRtcAecm_StoreAdaptiveChannel = WebRtcAecm_StoreAdaptiveChannelNeon;
WebRtcAecm_ResetAdaptiveChannel = WebRtcAecm_ResetAdaptiveChannelNeon;
WebRtcAecm_CalcLinearEnergies = WebRtcAecm_CalcLinearEnergiesNeon;
@@ -654,8 +628,6 @@
COMPILE_ASSERT(PART_LEN % 16 == 0);
// Initialize function pointers.
- WebRtcAecm_WindowAndFFT = WindowAndFFTC;
- WebRtcAecm_InverseFFTAndWindow = InverseFFTAndWindowC;
WebRtcAecm_CalcLinearEnergies = CalcLinearEnergiesC;
WebRtcAecm_StoreAdaptiveChannel = StoreAdaptiveChannelC;
WebRtcAecm_ResetAdaptiveChannel = ResetAdaptiveChannelC;
@@ -1403,7 +1375,7 @@
time_signal_scaling = WebRtcSpl_NormW16(tmp16no1);
#endif
- WebRtcAecm_WindowAndFFT(aecm, fft, time_signal, freq_signal, time_signal_scaling);
+ WindowAndFFT(aecm, fft, time_signal, freq_signal, time_signal_scaling);
// Extract imaginary and real part, calculate the magnitude for all frequency bins
freq_signal[0].imag = 0;
@@ -1843,7 +1815,7 @@
ComfortNoise(aecm, ptrDfaClean, efw, hnl);
}
- WebRtcAecm_InverseFFTAndWindow(aecm, fft, efw, output, nearendClean);
+ InverseFFTAndWindow(aecm, fft, efw, output, nearendClean);
return 0;
}
diff --git a/webrtc/modules/audio_processing/aecm/aecm_core.h b/webrtc/modules/audio_processing/aecm/aecm_core.h
index 988cb46..64251d5 100644
--- a/webrtc/modules/audio_processing/aecm/aecm_core.h
+++ b/webrtc/modules/audio_processing/aecm/aecm_core.h
@@ -294,37 +294,10 @@
typedef void (*ResetAdaptiveChannel)(AecmCore_t* aecm);
extern ResetAdaptiveChannel WebRtcAecm_ResetAdaptiveChannel;
-typedef void (*WindowAndFFT)(
- AecmCore_t* aecm,
- int16_t* fft,
- const int16_t* time_signal,
- complex16_t* freq_signal,
- int time_signal_scaling);
-extern WindowAndFFT WebRtcAecm_WindowAndFFT;
-
-typedef void (*InverseFFTAndWindow)(
- AecmCore_t* aecm,
- int16_t* fft, complex16_t* efw,
- int16_t* output,
- const int16_t* nearendClean);
-extern InverseFFTAndWindow WebRtcAecm_InverseFFTAndWindow;
-
// For the above function pointers, functions for generic platforms are declared
// and defined as static in file aecm_core.c, while those for ARM Neon platforms
// are declared below and defined in file aecm_core_neon.s.
#if (defined WEBRTC_DETECT_ARM_NEON) || defined (WEBRTC_ARCH_ARM_NEON)
-void WebRtcAecm_WindowAndFFTNeon(AecmCore_t* aecm,
- int16_t* fft,
- const int16_t* time_signal,
- complex16_t* freq_signal,
- int time_signal_scaling);
-
-void WebRtcAecm_InverseFFTAndWindowNeon(AecmCore_t* aecm,
- int16_t* fft,
- complex16_t* efw,
- int16_t* output,
- const int16_t* nearendClean);
-
void WebRtcAecm_CalcLinearEnergiesNeon(AecmCore_t* aecm,
const uint16_t* far_spectrum,
int32_t* echo_est,
diff --git a/webrtc/modules/audio_processing/aecm/aecm_core_neon.S b/webrtc/modules/audio_processing/aecm/aecm_core_neon.S
index 4e28873..a8fb1e1 100644
--- a/webrtc/modules/audio_processing/aecm/aecm_core_neon.S
+++ b/webrtc/modules/audio_processing/aecm/aecm_core_neon.S
@@ -17,185 +17,10 @@
#include "webrtc/system_wrappers/interface/asm_defines.h"
GLOBAL_LABEL WebRtcAecm_kSqrtHanning
-GLOBAL_FUNCTION WebRtcAecm_WindowAndFFTNeon
-GLOBAL_FUNCTION WebRtcAecm_InverseFFTAndWindowNeon
GLOBAL_FUNCTION WebRtcAecm_CalcLinearEnergiesNeon
GLOBAL_FUNCTION WebRtcAecm_StoreAdaptiveChannelNeon
GLOBAL_FUNCTION WebRtcAecm_ResetAdaptiveChannelNeon
-@ void WebRtcAecm_WindowAndFFTNeon(AecmCore_t* aecm,
-@ int16_t* fft,
-@ const int16_t* time_signal,
-@ complex16_t* freq_signal,
-@ int time_signal_scaling);
-.align 2
-DEFINE_FUNCTION WebRtcAecm_WindowAndFFTNeon
- push {r4, r5, r6, lr}
-
- ldr r12, [sp, #16] @ time_signal_scaling
- vdup.16 d16, r12
-
- vmov.i16 d21, #0 @ For imaginary parts of |fft|.
- vmov.i16 d27, #0 @ For imaginary parts of |fft|.
- adr r5, WebRtcAecm_kSqrtHanning
- adr lr, kSqrtHanningReversed
- add r4, r1, #(PART_LEN2 * 2) @ &fft[PART_LEN2]
- add r12, r2, #(PART_LEN * 2) @ time_signal[PART_LEN]
- mov r6, #(PART_LEN / 4) @ Loop counter, unrolled by 4
-
-LOOP_PART_LEN:
- vld1.16 d0, [r2, :64]! @ time_signal[i]
- vld1.16 d22, [r12, :64]! @ time_signal[i + PART_LEN]
- vld1.16 d17, [r5, :64]! @ WebRtcAecm_kSqrtHanning[i]
- vld1.16 d23, [lr, :64]! @ kSqrtHanningReversed[i]
- vshl.s16 d18, d0, d16
- vshl.s16 d22, d22, d16
- vmull.s16 q9, d18, d17
- vmull.s16 q12, d22, d23
- subs r6, #1
- vshrn.i32 d20, q9, #14
- vshrn.i32 d26, q12, #14
- vst2.16 {d20, d21}, [r1, :128]! @ fft[j]
- vst2.16 {d26, d27}, [r4, :128]! @ fft[PART_LEN2 + j]
- bgt LOOP_PART_LEN
-
- @ WebRtcSpl_RealForwardFFT(aecm->real_fft, fft, (int16_t*)freq_signal);
- movw r12, #offset_aecm_real_fft
- sub r1, #(PART_LEN * 4) @ Get r1 back to &fft[0].
- mov r2, r3 @ freq_signal
- mov r4, r3
- ldr r0, [r0, r12] @ aecm->real_fft
- CALL_FUNCTION WebRtcSpl_RealForwardFFTNeon
-
- mov r12, #(PART_LEN * 2 / 16) @ Loop counter, unrolled by 16.
-
-LOOP_PART_LEN2:
- @ freq_signal[i].imag = - freq_signal[i].imag;
- vld2.16 {d20, d21, d22, d23}, [r4, :256]
- subs r12, #1
- vneg.s16 d22, d22
- vneg.s16 d23, d23
- vst2.16 {d20, d21, d22, d23}, [r4, :256]!
- bgt LOOP_PART_LEN2
-
- pop {r4, r5, r6, pc}
-
-@ void WebRtcAecm_InverseFFTAndWindowNeon(AecmCore_t* aecm,
-@ int16_t* fft,
-@ complex16_t* efw,
-@ int16_t* output,
-@ const int16_t* nearendClean);
-.align 2
-DEFINE_FUNCTION WebRtcAecm_InverseFFTAndWindowNeon
- push {r4-r8, lr}
-
- @ Values of r0, r1, and r3 will change in WebRtcSpl_ComplexIFFT
- @ and WebRtcSpl_ComplexBitReverse.
- mov r4, r1
- mov r5, r0
- mov r7, r3
-
- add r3, r1, #((PART_LEN4 - 6) * 2) @ &fft[PART_LEN4 - 6]
- mov r6, #(PART_LEN / 4) @ Loop counter, unrolled by 4
- add r12, r2, #(PART_LEN * 4) @ &efw[PART_LEN]
- mov r8, #-16
-
-LOOP_PRE_IFFT:
- vld2.16 {q10}, [r2, :128]!
- vmov q11, q10
- vneg.s16 d23, d23
- vst2.16 {d22, d23}, [r1, :128]!
- vrev64.16 q10, q10
- subs r6, #1
- vst2.16 {q10}, [r3], r8
- bgt LOOP_PRE_IFFT
-
- @ fft[PART_LEN2] = efw[PART_LEN].real;
- @ fft[PART_LEN2 + 1] = -efw[PART_LEN].imag;
- ldr r8, [r12]
- ssub16 r12, r6, r8
- mov r3, #(PART_LEN2 * 2)
- pkhbt r8, r8, r12
- str r8, [r4, r3]
-
- @ outCFFT = WebRtcSpl_RealInverseFFT(aecm->real_fft, fft, (int16_t*)efw);
- movw r12, #offset_aecm_real_fft
- sub r1, #(PART_LEN * 4) @ Get r1 back to &fft[0].
- sub r2, #(PART_LEN * 4) @ Get r2 back to &efw[0].
- mov r4, r2 @ Keep efw in r4.
- ldr r0, [r0, r12] @ aecm->real_fft
- CALL_FUNCTION WebRtcSpl_RealInverseFFTNeon
-
- movw r6, #offset_aecm_outBuf
- movw r12, #offset_aecm_dfaCleanQDomain
- ldr r8, [r5, r6] @ &aecm->outBuf[0]
- ldrsh r2, [r5, r12] @ &aecm->dfaCleanQDomain[0]
-
- adr r12, kSqrtHanningReversed
- adr r6, WebRtcAecm_kSqrtHanning
- rsb r0, r2, r0 @ outCFFT - aecm->dfaCleanQDomain
- vdup.32 q9, r0
- add r0, r4, #(PART_LEN * 4) @ &efw[PART_LEN]
- mov r3, #(PART_LEN / 4) @ Loop counter, unrolled by 4
-
-LOOP_POST_IFFT:
- vld2.16 {d4, d5}, [r4, :128] @ &efw[i];
- vld1.16 d17, [r6, :64]! @ WebRtcAecm_kSqrtHanning[i]
- vld1.16 d20, [r8, :64] @ aecm->outBuf[i]
- vmull.s16 q8, d4, d17
- vmovl.s16 q10, d20
- vrshr.s32 q8, q8, #14
- vld1.16 d0, [r0, :64]! @ &efw[PART_LEN + i]
- vshl.s32 q8, q8, q9
- vld1.16 d1, [r12, :64]! @ kSqrtHanningReversed[i]
- vadd.i32 q8, q10
- vmull.s16 q0, d0, d1
- vqmovn.s32 d16, q8
- vshr.s32 q0, q0, #14
- vst2.16 {d4, d5}, [r4, :128]! @ &efw[i];
- vshl.s32 q0, q0, q9
- vst1.16 d16, [r7, :64]! @ output[i]
- vqmovn.s32 d0, q0
- subs r3, #1
- vst1.16 d0, [r8, :64]! @ aecm->outBuf[i]
- bgt LOOP_POST_IFFT
-
- movw r3, #offset_aecm_xBuf
- movw r12, #offset_aecm_dBufNoisy
- ldr r3, [r5, r3] @ &aecm->xBuf[0]
- ldr r1, [r5, r12] @ &aecm->dBufNoisy[0]
- add r2, r3, #(PART_LEN * 2) @ &aecm->xBuf[PART_LEN]
- add r0, r1, #(PART_LEN * 2) @ &aecm->dBufNoisy[PART_LEN]
- mov r4, #(PART_LEN / 16) @ Loop counter, unrolled by 16.
-
-LOOP_COPY:
- vld1.16 {q10, q11}, [r2, :256]!
- vld1.16 {q12, q13}, [r0, :256]!
- subs r4, #1
- vst1.16 {q10, q11}, [r3, :256]!
- vst1.16 {q12, q13}, [r1, :256]!
- bgt LOOP_COPY
-
- ldr r2, [sp, #16]
- cmp r2, #0 @ Check if (nearendClean != NULL).
- beq END
-
- movw r4, #offset_aecm_dBufClean
- ldr r1, [r5, r4] @ &aecm->dBufClean[0]
- add r0, r1, #(PART_LEN * 2) @ &aecm->dBufClean[PART_LEN]
-
- vld1.16 {q10, q11}, [r0, :256]!
- vld1.16 {q12, q13}, [r0, :256]!
- vst1.16 {q10, q11}, [r1, :256]!
- vst1.16 {q12, q13}, [r1, :256]!
- vld1.16 {q10, q11}, [r0, :256]!
- vld1.16 {q12, q13}, [r0, :256]!
- vst1.16 {q10, q11}, [r1, :256]!
- vst1.16 {q12, q13}, [r1, :256]!
-
-END:
- pop {r4-r8, pc}
-
@ void WebRtcAecm_CalcLinearEnergiesNeon(AecmCore_t* aecm,
@ const uint16_t* far_spectrum,
@ int32_t* echo_est,
diff --git a/webrtc/modules/audio_processing/ns/nsx_core.c b/webrtc/modules/audio_processing/ns/nsx_core.c
index 6076d3f..44cd685 100644
--- a/webrtc/modules/audio_processing/ns/nsx_core.c
+++ b/webrtc/modules/audio_processing/ns/nsx_core.c
@@ -12,7 +12,6 @@
#include <assert.h>
#include <math.h>
-#include <stdio.h>
#include <stdlib.h>
#include <string.h>
@@ -436,26 +435,6 @@
355, 330
};
-// Declare function pointers.
-NoiseEstimation WebRtcNsx_NoiseEstimation;
-PrepareSpectrum WebRtcNsx_PrepareSpectrum;
-SynthesisUpdate WebRtcNsx_SynthesisUpdate;
-AnalysisUpdate WebRtcNsx_AnalysisUpdate;
-Denormalize WebRtcNsx_Denormalize;
-CreateComplexBuffer WebRtcNsx_CreateComplexBuffer;
-
-#if (defined WEBRTC_DETECT_ARM_NEON || defined WEBRTC_ARCH_ARM_NEON)
-// Initialize function pointers for ARM Neon platform.
-static void WebRtcNsx_InitNeon(void) {
- WebRtcNsx_NoiseEstimation = WebRtcNsx_NoiseEstimationNeon;
- WebRtcNsx_PrepareSpectrum = WebRtcNsx_PrepareSpectrumNeon;
- WebRtcNsx_SynthesisUpdate = WebRtcNsx_SynthesisUpdateNeon;
- WebRtcNsx_AnalysisUpdate = WebRtcNsx_AnalysisUpdateNeon;
- WebRtcNsx_Denormalize = WebRtcNsx_DenormalizeNeon;
- WebRtcNsx_CreateComplexBuffer = WebRtcNsx_CreateComplexBufferNeon;
-}
-#endif
-
// Update the noise estimation information.
static void UpdateNoiseEstimate(NsxInst_t* inst, int offset) {
int32_t tmp32no1 = 0;
@@ -614,7 +593,6 @@
// Filter the data in the frequency domain, and create spectrum.
static void PrepareSpectrumC(NsxInst_t* inst, int16_t* freq_buf) {
int i = 0, j = 0;
- int16_t tmp16 = 0;
for (i = 0; i < inst->magnLen; i++) {
inst->real[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(inst->real[i],
@@ -626,22 +604,19 @@
freq_buf[0] = inst->real[0];
freq_buf[1] = -inst->imag[0];
for (i = 1, j = 2; i < inst->anaLen2; i += 1, j += 2) {
- tmp16 = (inst->anaLen << 1) - j;
freq_buf[j] = inst->real[i];
freq_buf[j + 1] = -inst->imag[i];
- freq_buf[tmp16] = inst->real[i];
- freq_buf[tmp16 + 1] = inst->imag[i];
}
freq_buf[inst->anaLen] = inst->real[inst->anaLen2];
freq_buf[inst->anaLen + 1] = -inst->imag[inst->anaLen2];
}
-// Denormalize the input buffer.
-static __inline void DenormalizeC(NsxInst_t* inst, int16_t* in, int factor) {
- int i = 0, j = 0;
+// Denormalize the real-valued signal |in|, the output from inverse FFT.
+static __inline void Denormalize(NsxInst_t* inst, int16_t* in, int factor) {
+ int i = 0;
int32_t tmp32 = 0;
- for (i = 0, j = 0; i < inst->anaLen; i += 1, j += 2) {
- tmp32 = WEBRTC_SPL_SHIFT_W32((int32_t)in[j],
+ for (i = 0; i < inst->anaLen; i += 1) {
+ tmp32 = WEBRTC_SPL_SHIFT_W32((int32_t)in[i],
factor - inst->normData);
inst->real[i] = WebRtcSpl_SatW32ToW16(tmp32); // Q0
}
@@ -701,18 +676,32 @@
}
}
-// Create a complex number buffer (out[]) as the intput (in[]) interleaved with
-// zeros, and normalize it.
-static __inline void CreateComplexBufferC(NsxInst_t* inst,
- int16_t* in,
- int16_t* out) {
- int i = 0, j = 0;
- for (i = 0, j = 0; i < inst->anaLen; i += 1, j += 2) {
- out[j] = WEBRTC_SPL_LSHIFT_W16(in[i], inst->normData); // Q(normData)
- out[j + 1] = 0; // Insert zeros in imaginary part
+// Normalize the real-valued signal |in|, the input to forward FFT.
+static __inline void NormalizeRealBuffer(NsxInst_t* inst,
+ const int16_t* in,
+ int16_t* out) {
+ int i = 0;
+ for (i = 0; i < inst->anaLen; ++i) {
+ out[i] = WEBRTC_SPL_LSHIFT_W16(in[i], inst->normData); // Q(normData)
}
}
+// Declare function pointers.
+NoiseEstimation WebRtcNsx_NoiseEstimation;
+PrepareSpectrum WebRtcNsx_PrepareSpectrum;
+SynthesisUpdate WebRtcNsx_SynthesisUpdate;
+AnalysisUpdate WebRtcNsx_AnalysisUpdate;
+
+#if (defined WEBRTC_DETECT_ARM_NEON || defined WEBRTC_ARCH_ARM_NEON)
+// Initialize function pointers for ARM Neon platform.
+static void WebRtcNsx_InitNeon(void) {
+ WebRtcNsx_NoiseEstimation = WebRtcNsx_NoiseEstimationNeon;
+ WebRtcNsx_PrepareSpectrum = WebRtcNsx_PrepareSpectrumNeon;
+ WebRtcNsx_SynthesisUpdate = WebRtcNsx_SynthesisUpdateNeon;
+ WebRtcNsx_AnalysisUpdate = WebRtcNsx_AnalysisUpdateNeon;
+}
+#endif
+
void WebRtcNsx_CalcParametricNoiseEstimate(NsxInst_t* inst,
int16_t pink_noise_exp_avg,
int32_t pink_noise_num_avg,
@@ -900,17 +889,14 @@
WebRtcNsx_PrepareSpectrum = PrepareSpectrumC;
WebRtcNsx_SynthesisUpdate = SynthesisUpdateC;
WebRtcNsx_AnalysisUpdate = AnalysisUpdateC;
- WebRtcNsx_Denormalize = DenormalizeC;
- WebRtcNsx_CreateComplexBuffer = CreateComplexBufferC;
#ifdef WEBRTC_DETECT_ARM_NEON
- uint64_t features = WebRtc_GetCPUFeaturesARM();
- if ((features & kCPUFeatureNEON) != 0)
- {
- WebRtcNsx_InitNeon();
- }
+ uint64_t features = WebRtc_GetCPUFeaturesARM();
+ if ((features & kCPUFeatureNEON) != 0) {
+ WebRtcNsx_InitNeon();
+ }
#elif defined(WEBRTC_ARCH_ARM_NEON)
- WebRtcNsx_InitNeon();
+ WebRtcNsx_InitNeon();
#endif
inst->initFlag = 1;
@@ -1606,7 +1592,7 @@
right_shifts_in_magnU16 = WEBRTC_SPL_MAX(right_shifts_in_magnU16, 0);
// create realImag as winData interleaved with zeros (= imag. part), normalize it
- WebRtcNsx_CreateComplexBuffer(inst, winData, realImag);
+ NormalizeRealBuffer(inst, winData, realImag);
// FFT output will be in winData[].
WebRtcSpl_RealForwardFFT(inst->real_fft, realImag, winData);
@@ -1838,8 +1824,7 @@
// Inverse FFT output will be in rfft_out[].
outCIFFT = WebRtcSpl_RealInverseFFT(inst->real_fft, realImag, rfft_out);
- // Denormalize.
- WebRtcNsx_Denormalize(inst, rfft_out, outCIFFT);
+ Denormalize(inst, rfft_out, outCIFFT);
//scale factor: only do it after END_STARTUP_LONG time
gainFactor = 8192; // 8192 = Q13(1.0)
diff --git a/webrtc/modules/audio_processing/ns/nsx_core.h b/webrtc/modules/audio_processing/ns/nsx_core.h
index f1cf43c..1ad369f 100644
--- a/webrtc/modules/audio_processing/ns/nsx_core.h
+++ b/webrtc/modules/audio_processing/ns/nsx_core.h
@@ -201,19 +201,6 @@
int16_t* new_speech);
extern AnalysisUpdate WebRtcNsx_AnalysisUpdate;
-// Denormalize the input buffer.
-typedef void (*Denormalize)(NsxInst_t* inst,
- int16_t* in,
- int factor);
-extern Denormalize WebRtcNsx_Denormalize;
-
-// Create a complex number buffer, as the intput interleaved with zeros,
-// and normalize it.
-typedef void (*CreateComplexBuffer)(NsxInst_t* inst,
- int16_t* in,
- int16_t* out);
-extern CreateComplexBuffer WebRtcNsx_CreateComplexBuffer;
-
#if (defined WEBRTC_DETECT_ARM_NEON) || defined (WEBRTC_ARCH_ARM_NEON)
// For the above function pointers, functions for generic platforms are declared
// and defined as static in file nsx_core.c, while those for ARM Neon platforms
@@ -222,16 +209,12 @@
uint16_t* magn,
uint32_t* noise,
int16_t* q_noise);
-void WebRtcNsx_CreateComplexBufferNeon(NsxInst_t* inst,
- int16_t* in,
- int16_t* out);
void WebRtcNsx_SynthesisUpdateNeon(NsxInst_t* inst,
int16_t* out_frame,
int16_t gain_factor);
void WebRtcNsx_AnalysisUpdateNeon(NsxInst_t* inst,
int16_t* out,
int16_t* new_speech);
-void WebRtcNsx_DenormalizeNeon(NsxInst_t* inst, int16_t* in, int factor);
void WebRtcNsx_PrepareSpectrumNeon(NsxInst_t* inst, int16_t* freq_buff);
#endif
diff --git a/webrtc/modules/audio_processing/ns/nsx_core_neon.S b/webrtc/modules/audio_processing/ns/nsx_core_neon.S
index a0d4a2c..7269b28 100644
--- a/webrtc/modules/audio_processing/ns/nsx_core_neon.S
+++ b/webrtc/modules/audio_processing/ns/nsx_core_neon.S
@@ -20,8 +20,6 @@
GLOBAL_FUNCTION WebRtcNsx_PrepareSpectrumNeon
GLOBAL_FUNCTION WebRtcNsx_SynthesisUpdateNeon
GLOBAL_FUNCTION WebRtcNsx_AnalysisUpdateNeon
-GLOBAL_FUNCTION WebRtcNsx_DenormalizeNeon
-GLOBAL_FUNCTION WebRtcNsx_CreateComplexBufferNeon
GLOBAL_LABEL WebRtcNsx_kLogTable
GLOBAL_LABEL WebRtcNsx_kCounterDiv
GLOBAL_LABEL WebRtcNsx_kLogTableFrac
@@ -426,6 +424,7 @@
pop {r4, r5, r6, pc}
+@ TODO(kma): Remove copying to 2nd half of freq_buf, for real FFT interface.
@ void PrepareSpectrumNeon(NsxInst_t* inst, int16_t* freq_buf);
.align 2
DEFINE_FUNCTION WebRtcNsx_PrepareSpectrumNeon
@@ -542,35 +541,6 @@
pop {r4-r9}
bx r14
-@ void WebRtcNsx_DenormalizeNeon(NsxInst_t* inst, int16_t* in, int factor);
-.align 2
-DEFINE_FUNCTION WebRtcNsx_DenormalizeNeon
- movw r12, #offset_nsx_normData
- movw r3, #offset_nsx_real
- ldr r12, [r0, r12] @ inst->normData
- add r3, r0 @ &inst->real[0]
- sub r2, r12
- vdup.32 q10, r2
-
- movw r2, #offset_nsx_anaLen
- ldrsh r2, [r0, r2] @ inst->anaLen
- add r0, r3, r2, lsl #1 @ &inst->real[inst->anaLen]
-
-LOOP_ANALEN:
- vld2.16 {d0, d1}, [r1]! @ &in[]
- vld2.16 {d2, d3}, [r1]! @ &in[]
- vmovl.s16 q2, d0
- vmovl.s16 q3, d2
- vshl.s32 q2, q10
- vshl.s32 q3, q10
- vqmovn.s32 d0, q2
- vqmovn.s32 d1, q3
- vst1.16 {d0, d1}, [r3]! @ inst->real[]
- cmp r3, r0
- blt LOOP_ANALEN
-
- bx r14
-
@ void SynthesisUpdateNeon(NsxInst_t* inst,
@ int16_t* out_frame,
@ int16_t gain_factor);
@@ -704,33 +674,3 @@
POST_LOOP_WINDOW_DATA:
pop {r4-r6}
bx r14
-
-@ void CreateComplexBufferNeon(NsxInst_t* inst, int16_t* in, int16_t* out);
-.align 2
-DEFINE_FUNCTION WebRtcNsx_CreateComplexBufferNeon
- movw r3, #offset_nsx_anaLen
- movw r12, #offset_nsx_normData
- ldrsh r3, [r0, r3] @ inst->anaLen
- ldr r12, [r0, r12] @ inst->normData
- add r3, r1, r3, lsl #1 @ &in[inst->anaLen]
-
- vmov.i16 d7, #0 @ For writing to imaginary parts.
- vmov.i16 d5, #0 @ For writing to imaginary parts.
- vdup.i16 q10, r12
-
-LOOP_CREATE_COMPLEX_BUFFER: @ Unrolled by 16.
- vld1.16 {d0, d1, d2, d3}, [r1]! @ in[]
- cmp r1, r3
- vshl.s16 q0, q10
- vshl.s16 q1, q10
- vmov d4, d1
- vmov d1, d5
- vmov d6, d3
- vmov d3, d7
- vst2.16 {d0, d1}, [r2]!
- vst2.16 {d4, d5}, [r2]!
- vst2.16 {d2, d3}, [r2]!
- vst2.16 {d6, d7}, [r2]!
- blt LOOP_CREATE_COMPLEX_BUFFER
-
- bx r14