blob: 2f7459943f480a9c85d4acf03be4c803dea594db [file] [log] [blame]
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "video/frame_encode_metadata_writer.h"
#include <cstddef>
#include <vector>
#include "api/video/i420_buffer.h"
#include "api/video/video_frame.h"
#include "api/video/video_timing.h"
#include "common_video/h264/h264_common.h"
#include "common_video/test/utilities.h"
#include "modules/video_coding/include/video_coding_defines.h"
#include "rtc_base/time_utils.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
namespace test {
namespace {
const rtc::scoped_refptr<I420Buffer> kFrameBuffer = I420Buffer::Create(4, 4);
inline size_t FrameSize(const size_t& min_frame_size,
const size_t& max_frame_size,
const int& s,
const int& i) {
return min_frame_size + (s + 1) * i % (max_frame_size - min_frame_size);
}
class FakeEncodedImageCallback : public EncodedImageCallback {
public:
FakeEncodedImageCallback() : num_frames_dropped_(0) {}
Result OnEncodedImage(const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info,
const RTPFragmentationHeader* fragmentation) override {
return Result(Result::OK);
}
void OnDroppedFrame(DropReason reason) override { ++num_frames_dropped_; }
size_t GetNumFramesDropped() { return num_frames_dropped_; }
private:
size_t num_frames_dropped_;
};
enum class FrameType {
kNormal,
kTiming,
kDropped,
};
bool IsTimingFrame(const EncodedImage& image) {
return image.timing_.flags != VideoSendTiming::kInvalid &&
image.timing_.flags != VideoSendTiming::kNotTriggered;
}
// Emulates |num_frames| on |num_streams| frames with capture timestamps
// increased by 1 from 0. Size of each frame is between
// |min_frame_size| and |max_frame_size|, outliers are counted relatevely to
// |average_frame_sizes[]| for each stream.
std::vector<std::vector<FrameType>> GetTimingFrames(
const int64_t delay_ms,
const size_t min_frame_size,
const size_t max_frame_size,
std::vector<size_t> average_frame_sizes,
const int num_streams,
const int num_frames) {
FakeEncodedImageCallback sink;
FrameEncodeMetadataWriter encode_timer(&sink);
VideoCodec codec_settings;
codec_settings.numberOfSimulcastStreams = num_streams;
codec_settings.timing_frame_thresholds = {delay_ms,
kDefaultOutlierFrameSizePercent};
encode_timer.OnEncoderInit(codec_settings, false);
const size_t kFramerate = 30;
VideoBitrateAllocation bitrate_allocation;
for (int si = 0; si < num_streams; ++si) {
bitrate_allocation.SetBitrate(si, 0,
average_frame_sizes[si] * 8 * kFramerate);
}
encode_timer.OnSetRates(bitrate_allocation, kFramerate);
std::vector<std::vector<FrameType>> result(num_streams);
int64_t current_timestamp = 0;
for (int i = 0; i < num_frames; ++i) {
current_timestamp += 1;
VideoFrame frame = VideoFrame::Builder()
.set_timestamp_rtp(current_timestamp * 90)
.set_timestamp_ms(current_timestamp)
.set_video_frame_buffer(kFrameBuffer)
.build();
encode_timer.OnEncodeStarted(frame);
for (int si = 0; si < num_streams; ++si) {
// every (5+s)-th frame is dropped on s-th stream by design.
bool dropped = i % (5 + si) == 0;
EncodedImage image;
image.SetEncodedData(EncodedImageBuffer::Create(max_frame_size));
image.set_size(FrameSize(min_frame_size, max_frame_size, si, i));
image.capture_time_ms_ = current_timestamp;
image.SetTimestamp(static_cast<uint32_t>(current_timestamp * 90));
image.SetSpatialIndex(si);
if (dropped) {
result[si].push_back(FrameType::kDropped);
continue;
}
encode_timer.FillTimingInfo(si, &image);
if (IsTimingFrame(image)) {
result[si].push_back(FrameType::kTiming);
} else {
result[si].push_back(FrameType::kNormal);
}
}
}
return result;
}
} // namespace
TEST(FrameEncodeMetadataWriterTest, MarksTimingFramesPeriodicallyTogether) {
const int64_t kDelayMs = 29;
const size_t kMinFrameSize = 10;
const size_t kMaxFrameSize = 20;
const int kNumFrames = 1000;
const int kNumStreams = 3;
// No outliers as 1000 is larger than anything from range [10,20].
const std::vector<size_t> kAverageSize = {1000, 1000, 1000};
auto frames = GetTimingFrames(kDelayMs, kMinFrameSize, kMaxFrameSize,
kAverageSize, kNumStreams, kNumFrames);
// Timing frames should be tirggered every delayMs.
// As no outliers are expected, frames on all streams have to be
// marked together.
int last_timing_frame = -1;
for (int i = 0; i < kNumFrames; ++i) {
int num_normal = 0;
int num_timing = 0;
int num_dropped = 0;
for (int s = 0; s < kNumStreams; ++s) {
if (frames[s][i] == FrameType::kTiming) {
++num_timing;
} else if (frames[s][i] == FrameType::kNormal) {
++num_normal;
} else {
++num_dropped;
}
}
// Can't have both normal and timing frames at the same timstamp.
EXPECT_TRUE(num_timing == 0 || num_normal == 0);
if (num_dropped < kNumStreams) {
if (last_timing_frame == -1 || i >= last_timing_frame + kDelayMs) {
// If didn't have timing frames for a period, current sent frame has to
// be one. No normal frames should be sent.
EXPECT_EQ(num_normal, 0);
} else {
// No unneeded timing frames should be sent.
EXPECT_EQ(num_timing, 0);
}
}
if (num_timing > 0)
last_timing_frame = i;
}
}
TEST(FrameEncodeMetadataWriterTest, MarksOutliers) {
const int64_t kDelayMs = 29;
const size_t kMinFrameSize = 2495;
const size_t kMaxFrameSize = 2505;
const int kNumFrames = 1000;
const int kNumStreams = 3;
// Possible outliers as 1000 lies in range [995, 1005].
const std::vector<size_t> kAverageSize = {998, 1000, 1004};
auto frames = GetTimingFrames(kDelayMs, kMinFrameSize, kMaxFrameSize,
kAverageSize, kNumStreams, kNumFrames);
// All outliers should be marked.
for (int i = 0; i < kNumFrames; ++i) {
for (int s = 0; s < kNumStreams; ++s) {
if (FrameSize(kMinFrameSize, kMaxFrameSize, s, i) >=
kAverageSize[s] * kDefaultOutlierFrameSizePercent / 100) {
// Too big frame. May be dropped or timing, but not normal.
EXPECT_NE(frames[s][i], FrameType::kNormal);
}
}
}
}
TEST(FrameEncodeMetadataWriterTest, NoTimingFrameIfNoEncodeStartTime) {
int64_t timestamp = 1;
constexpr size_t kFrameSize = 500;
EncodedImage image;
image.SetEncodedData(EncodedImageBuffer::Create(kFrameSize));
image.capture_time_ms_ = timestamp;
image.SetTimestamp(static_cast<uint32_t>(timestamp * 90));
FakeEncodedImageCallback sink;
FrameEncodeMetadataWriter encode_timer(&sink);
VideoCodec codec_settings;
// Make all frames timing frames.
codec_settings.timing_frame_thresholds.delay_ms = 1;
encode_timer.OnEncoderInit(codec_settings, false);
VideoBitrateAllocation bitrate_allocation;
bitrate_allocation.SetBitrate(0, 0, 500000);
encode_timer.OnSetRates(bitrate_allocation, 30);
// Verify a single frame works with encode start time set.
VideoFrame frame = VideoFrame::Builder()
.set_timestamp_ms(timestamp)
.set_timestamp_rtp(timestamp * 90)
.set_video_frame_buffer(kFrameBuffer)
.build();
encode_timer.OnEncodeStarted(frame);
encode_timer.FillTimingInfo(0, &image);
EXPECT_TRUE(IsTimingFrame(image));
// New frame, now skip OnEncodeStarted. Should not result in timing frame.
image.capture_time_ms_ = ++timestamp;
image.SetTimestamp(static_cast<uint32_t>(timestamp * 90));
image.timing_ = EncodedImage::Timing();
encode_timer.FillTimingInfo(0, &image);
EXPECT_FALSE(IsTimingFrame(image));
}
TEST(FrameEncodeMetadataWriterTest,
AdjustsCaptureTimeForInternalSourceEncoder) {
const int64_t kEncodeStartDelayMs = 2;
const int64_t kEncodeFinishDelayMs = 10;
constexpr size_t kFrameSize = 500;
int64_t timestamp = 1;
EncodedImage image;
image.SetEncodedData(EncodedImageBuffer::Create(kFrameSize));
image.capture_time_ms_ = timestamp;
image.SetTimestamp(static_cast<uint32_t>(timestamp * 90));
FakeEncodedImageCallback sink;
FrameEncodeMetadataWriter encode_timer(&sink);
VideoCodec codec_settings;
// Make all frames timing frames.
codec_settings.timing_frame_thresholds.delay_ms = 1;
encode_timer.OnEncoderInit(codec_settings, true);
VideoBitrateAllocation bitrate_allocation;
bitrate_allocation.SetBitrate(0, 0, 500000);
encode_timer.OnSetRates(bitrate_allocation, 30);
// Verify a single frame without encode timestamps isn't a timing frame.
encode_timer.FillTimingInfo(0, &image);
EXPECT_FALSE(IsTimingFrame(image));
// New frame, but this time with encode timestamps set in timing_.
// This should be a timing frame.
image.capture_time_ms_ = ++timestamp;
image.SetTimestamp(static_cast<uint32_t>(timestamp * 90));
image.timing_ = EncodedImage::Timing();
image.timing_.encode_start_ms = timestamp + kEncodeStartDelayMs;
image.timing_.encode_finish_ms = timestamp + kEncodeFinishDelayMs;
encode_timer.FillTimingInfo(0, &image);
EXPECT_TRUE(IsTimingFrame(image));
// Frame is captured kEncodeFinishDelayMs before it's encoded, so restored
// capture timestamp should be kEncodeFinishDelayMs in the past.
EXPECT_NEAR(image.capture_time_ms_, rtc::TimeMillis() - kEncodeFinishDelayMs,
1);
}
TEST(FrameEncodeMetadataWriterTest, NotifiesAboutDroppedFrames) {
const int64_t kTimestampMs1 = 47721840;
const int64_t kTimestampMs2 = 47721850;
const int64_t kTimestampMs3 = 47721860;
const int64_t kTimestampMs4 = 47721870;
FakeEncodedImageCallback sink;
FrameEncodeMetadataWriter encode_timer(&sink);
encode_timer.OnEncoderInit(VideoCodec(), false);
// Any non-zero bitrate needed to be set before the first frame.
VideoBitrateAllocation bitrate_allocation;
bitrate_allocation.SetBitrate(0, 0, 500000);
encode_timer.OnSetRates(bitrate_allocation, 30);
EncodedImage image;
VideoFrame frame = VideoFrame::Builder()
.set_timestamp_rtp(kTimestampMs1 * 90)
.set_timestamp_ms(kTimestampMs1)
.set_video_frame_buffer(kFrameBuffer)
.build();
image.capture_time_ms_ = kTimestampMs1;
image.SetTimestamp(static_cast<uint32_t>(image.capture_time_ms_ * 90));
frame.set_timestamp(image.capture_time_ms_ * 90);
frame.set_timestamp_us(image.capture_time_ms_ * 1000);
encode_timer.OnEncodeStarted(frame);
EXPECT_EQ(0u, sink.GetNumFramesDropped());
encode_timer.FillTimingInfo(0, &image);
image.capture_time_ms_ = kTimestampMs2;
image.SetTimestamp(static_cast<uint32_t>(image.capture_time_ms_ * 90));
image.timing_ = EncodedImage::Timing();
frame.set_timestamp(image.capture_time_ms_ * 90);
frame.set_timestamp_us(image.capture_time_ms_ * 1000);
encode_timer.OnEncodeStarted(frame);
// No OnEncodedImageCall for timestamp2. Yet, at this moment it's not known
// that frame with timestamp2 was dropped.
EXPECT_EQ(0u, sink.GetNumFramesDropped());
image.capture_time_ms_ = kTimestampMs3;
image.SetTimestamp(static_cast<uint32_t>(image.capture_time_ms_ * 90));
image.timing_ = EncodedImage::Timing();
frame.set_timestamp(image.capture_time_ms_ * 90);
frame.set_timestamp_us(image.capture_time_ms_ * 1000);
encode_timer.OnEncodeStarted(frame);
encode_timer.FillTimingInfo(0, &image);
EXPECT_EQ(1u, sink.GetNumFramesDropped());
image.capture_time_ms_ = kTimestampMs4;
image.SetTimestamp(static_cast<uint32_t>(image.capture_time_ms_ * 90));
image.timing_ = EncodedImage::Timing();
frame.set_timestamp(image.capture_time_ms_ * 90);
frame.set_timestamp_us(image.capture_time_ms_ * 1000);
encode_timer.OnEncodeStarted(frame);
encode_timer.FillTimingInfo(0, &image);
EXPECT_EQ(1u, sink.GetNumFramesDropped());
}
TEST(FrameEncodeMetadataWriterTest, RestoresCaptureTimestamps) {
EncodedImage image;
const int64_t kTimestampMs = 123456;
FakeEncodedImageCallback sink;
FrameEncodeMetadataWriter encode_timer(&sink);
encode_timer.OnEncoderInit(VideoCodec(), false);
// Any non-zero bitrate needed to be set before the first frame.
VideoBitrateAllocation bitrate_allocation;
bitrate_allocation.SetBitrate(0, 0, 500000);
encode_timer.OnSetRates(bitrate_allocation, 30);
image.capture_time_ms_ = kTimestampMs; // Correct timestamp.
image.SetTimestamp(static_cast<uint32_t>(image.capture_time_ms_ * 90));
VideoFrame frame = VideoFrame::Builder()
.set_timestamp_ms(image.capture_time_ms_)
.set_timestamp_rtp(image.capture_time_ms_ * 90)
.set_video_frame_buffer(kFrameBuffer)
.build();
encode_timer.OnEncodeStarted(frame);
image.capture_time_ms_ = 0; // Incorrect timestamp.
encode_timer.FillTimingInfo(0, &image);
EXPECT_EQ(kTimestampMs, image.capture_time_ms_);
}
TEST(FrameEncodeMetadataWriterTest, CopiesRotation) {
EncodedImage image;
const int64_t kTimestampMs = 123456;
FakeEncodedImageCallback sink;
FrameEncodeMetadataWriter encode_timer(&sink);
encode_timer.OnEncoderInit(VideoCodec(), false);
// Any non-zero bitrate needed to be set before the first frame.
VideoBitrateAllocation bitrate_allocation;
bitrate_allocation.SetBitrate(0, 0, 500000);
encode_timer.OnSetRates(bitrate_allocation, 30);
image.SetTimestamp(static_cast<uint32_t>(kTimestampMs * 90));
VideoFrame frame = VideoFrame::Builder()
.set_timestamp_ms(kTimestampMs)
.set_timestamp_rtp(kTimestampMs * 90)
.set_rotation(kVideoRotation_180)
.set_video_frame_buffer(kFrameBuffer)
.build();
encode_timer.OnEncodeStarted(frame);
encode_timer.FillTimingInfo(0, &image);
EXPECT_EQ(kVideoRotation_180, image.rotation_);
}
TEST(FrameEncodeMetadataWriterTest, SetsContentType) {
EncodedImage image;
const int64_t kTimestampMs = 123456;
FakeEncodedImageCallback sink;
FrameEncodeMetadataWriter encode_timer(&sink);
VideoCodec codec;
codec.mode = VideoCodecMode::kScreensharing;
encode_timer.OnEncoderInit(codec, false);
// Any non-zero bitrate needed to be set before the first frame.
VideoBitrateAllocation bitrate_allocation;
bitrate_allocation.SetBitrate(0, 0, 500000);
encode_timer.OnSetRates(bitrate_allocation, 30);
image.SetTimestamp(static_cast<uint32_t>(kTimestampMs * 90));
VideoFrame frame = VideoFrame::Builder()
.set_timestamp_ms(kTimestampMs)
.set_timestamp_rtp(kTimestampMs * 90)
.set_rotation(kVideoRotation_180)
.set_video_frame_buffer(kFrameBuffer)
.build();
encode_timer.OnEncodeStarted(frame);
encode_timer.FillTimingInfo(0, &image);
EXPECT_EQ(VideoContentType::SCREENSHARE, image.content_type_);
}
TEST(FrameEncodeMetadataWriterTest, CopiesColorSpace) {
EncodedImage image;
const int64_t kTimestampMs = 123456;
FakeEncodedImageCallback sink;
FrameEncodeMetadataWriter encode_timer(&sink);
encode_timer.OnEncoderInit(VideoCodec(), false);
// Any non-zero bitrate needed to be set before the first frame.
VideoBitrateAllocation bitrate_allocation;
bitrate_allocation.SetBitrate(0, 0, 500000);
encode_timer.OnSetRates(bitrate_allocation, 30);
webrtc::ColorSpace color_space =
CreateTestColorSpace(/*with_hdr_metadata=*/true);
image.SetTimestamp(static_cast<uint32_t>(kTimestampMs * 90));
VideoFrame frame = VideoFrame::Builder()
.set_timestamp_ms(kTimestampMs)
.set_timestamp_rtp(kTimestampMs * 90)
.set_color_space(color_space)
.set_video_frame_buffer(kFrameBuffer)
.build();
encode_timer.OnEncodeStarted(frame);
encode_timer.FillTimingInfo(0, &image);
ASSERT_NE(image.ColorSpace(), nullptr);
EXPECT_EQ(color_space, *image.ColorSpace());
}
TEST(FrameEncodeMetadataWriterTest, CopiesPacketInfos) {
EncodedImage image;
const int64_t kTimestampMs = 123456;
FakeEncodedImageCallback sink;
FrameEncodeMetadataWriter encode_timer(&sink);
encode_timer.OnEncoderInit(VideoCodec(), false);
// Any non-zero bitrate needed to be set before the first frame.
VideoBitrateAllocation bitrate_allocation;
bitrate_allocation.SetBitrate(0, 0, 500000);
encode_timer.OnSetRates(bitrate_allocation, 30);
RtpPacketInfos packet_infos = CreatePacketInfos(3);
image.SetTimestamp(static_cast<uint32_t>(kTimestampMs * 90));
VideoFrame frame = VideoFrame::Builder()
.set_timestamp_ms(kTimestampMs)
.set_timestamp_rtp(kTimestampMs * 90)
.set_packet_infos(packet_infos)
.set_video_frame_buffer(kFrameBuffer)
.build();
encode_timer.OnEncodeStarted(frame);
encode_timer.FillTimingInfo(0, &image);
EXPECT_EQ(image.PacketInfos().size(), 3U);
}
TEST(FrameEncodeMetadataWriterTest, DoesNotRewriteBitstreamWithoutCodecInfo) {
uint8_t buffer[] = {1, 2, 3};
EncodedImage image(buffer, sizeof(buffer), sizeof(buffer));
const RTPFragmentationHeader fragmentation;
FakeEncodedImageCallback sink;
FrameEncodeMetadataWriter encode_metadata_writer(&sink);
EXPECT_EQ(
encode_metadata_writer.UpdateBitstream(nullptr, &fragmentation, &image),
nullptr);
EXPECT_EQ(image.data(), buffer);
EXPECT_EQ(image.size(), sizeof(buffer));
}
TEST(FrameEncodeMetadataWriterTest, DoesNotRewriteVp8Bitstream) {
uint8_t buffer[] = {1, 2, 3};
EncodedImage image(buffer, sizeof(buffer), sizeof(buffer));
CodecSpecificInfo codec_specific_info;
codec_specific_info.codecType = kVideoCodecVP8;
const RTPFragmentationHeader fragmentation;
FakeEncodedImageCallback sink;
FrameEncodeMetadataWriter encode_metadata_writer(&sink);
EXPECT_EQ(encode_metadata_writer.UpdateBitstream(&codec_specific_info,
&fragmentation, &image),
nullptr);
EXPECT_EQ(image.data(), buffer);
EXPECT_EQ(image.size(), sizeof(buffer));
}
TEST(FrameEncodeMetadataWriterTest,
DoesNotRewriteH264BitstreamWithoutFragmentation) {
uint8_t buffer[] = {1, 2, 3};
EncodedImage image(buffer, sizeof(buffer), sizeof(buffer));
CodecSpecificInfo codec_specific_info;
codec_specific_info.codecType = kVideoCodecH264;
FakeEncodedImageCallback sink;
FrameEncodeMetadataWriter encode_metadata_writer(&sink);
EXPECT_EQ(encode_metadata_writer.UpdateBitstream(&codec_specific_info,
nullptr, &image),
nullptr);
EXPECT_EQ(image.data(), buffer);
EXPECT_EQ(image.size(), sizeof(buffer));
}
TEST(FrameEncodeMetadataWriterTest, RewritesH264BitstreamWithNonOptimalSps) {
uint8_t original_sps[] = {0, 0, 0, 1, H264::NaluType::kSps,
0x00, 0x00, 0x03, 0x03, 0xF4,
0x05, 0x03, 0xC7, 0xC0};
const uint8_t kRewrittenSps[] = {0, 0, 0, 1, H264::NaluType::kSps,
0x00, 0x00, 0x03, 0x03, 0xF4,
0x05, 0x03, 0xC7, 0xE0, 0x1B,
0x41, 0x10, 0x8D, 0x00};
EncodedImage image(original_sps, sizeof(original_sps), sizeof(original_sps));
image._frameType = VideoFrameType::kVideoFrameKey;
CodecSpecificInfo codec_specific_info;
codec_specific_info.codecType = kVideoCodecH264;
RTPFragmentationHeader fragmentation;
fragmentation.VerifyAndAllocateFragmentationHeader(1);
fragmentation.fragmentationOffset[0] = 4;
fragmentation.fragmentationLength[0] = sizeof(original_sps) - 4;
FakeEncodedImageCallback sink;
FrameEncodeMetadataWriter encode_metadata_writer(&sink);
std::unique_ptr<RTPFragmentationHeader> modified_fragmentation =
encode_metadata_writer.UpdateBitstream(&codec_specific_info,
&fragmentation, &image);
ASSERT_NE(modified_fragmentation, nullptr);
EXPECT_THAT(std::vector<uint8_t>(image.data(), image.data() + image.size()),
testing::ElementsAreArray(kRewrittenSps));
ASSERT_THAT(modified_fragmentation->fragmentationVectorSize, 1U);
EXPECT_EQ(modified_fragmentation->fragmentationOffset[0], 4U);
EXPECT_EQ(modified_fragmentation->fragmentationLength[0],
sizeof(kRewrittenSps) - 4);
}
} // namespace test
} // namespace webrtc