blob: 0a4b2157b5acc4b7e8c0500481d8dfd585487091 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Unit tests for PayloadSplitter class.
#include "webrtc/modules/audio_coding/neteq/payload_splitter.h"
#include <assert.h>
#include <memory>
#include <utility> // pair
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/modules/audio_coding/codecs/builtin_audio_decoder_factory.h"
#include "webrtc/modules/audio_coding/codecs/mock/mock_audio_decoder_factory.h"
#include "webrtc/modules/audio_coding/neteq/mock/mock_decoder_database.h"
#include "webrtc/modules/audio_coding/neteq/packet.h"
using ::testing::Return;
using ::testing::ReturnNull;
namespace webrtc {
static const int kRedPayloadType = 100;
static const size_t kPayloadLength = 10;
static const size_t kRedHeaderLength = 4; // 4 bytes RED header.
static const uint16_t kSequenceNumber = 0;
static const uint32_t kBaseTimestamp = 0x12345678;
// A possible Opus packet that contains FEC is the following.
// The frame is 20 ms in duration.
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |0|0|0|0|1|0|0|0|x|1|x|x|x|x|x|x|x| |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
// | Compressed frame 1 (N-2 bytes)... :
// : |
// | |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
void CreateOpusFecPayload(uint8_t* payload, size_t payload_length,
uint8_t payload_value) {
if (payload_length < 2) {
return;
}
payload[0] = 0x08;
payload[1] = 0x40;
memset(&payload[2], payload_value, payload_length - 2);
}
// RED headers (according to RFC 2198):
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |F| block PT | timestamp offset | block length |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
//
// Last RED header:
// 0 1 2 3 4 5 6 7
// +-+-+-+-+-+-+-+-+
// |0| Block PT |
// +-+-+-+-+-+-+-+-+
// Creates a RED packet, with |num_payloads| payloads, with payload types given
// by the values in array |payload_types| (which must be of length
// |num_payloads|). Each redundant payload is |timestamp_offset| samples
// "behind" the the previous payload.
Packet* CreateRedPayload(size_t num_payloads,
uint8_t* payload_types,
int timestamp_offset,
bool embed_opus_fec = false) {
Packet* packet = new Packet;
packet->header.payloadType = kRedPayloadType;
packet->header.timestamp = kBaseTimestamp;
packet->header.sequenceNumber = kSequenceNumber;
packet->payload.SetSize((kPayloadLength + 1) +
(num_payloads - 1) *
(kPayloadLength + kRedHeaderLength));
uint8_t* payload_ptr = packet->payload.data();
for (size_t i = 0; i < num_payloads; ++i) {
// Write the RED headers.
if (i == num_payloads - 1) {
// Special case for last payload.
*payload_ptr = payload_types[i] & 0x7F; // F = 0;
++payload_ptr;
break;
}
*payload_ptr = payload_types[i] & 0x7F;
// Not the last block; set F = 1.
*payload_ptr |= 0x80;
++payload_ptr;
int this_offset = (num_payloads - i - 1) * timestamp_offset;
*payload_ptr = this_offset >> 6;
++payload_ptr;
assert(kPayloadLength <= 1023); // Max length described by 10 bits.
*payload_ptr = ((this_offset & 0x3F) << 2) | (kPayloadLength >> 8);
++payload_ptr;
*payload_ptr = kPayloadLength & 0xFF;
++payload_ptr;
}
for (size_t i = 0; i < num_payloads; ++i) {
// Write |i| to all bytes in each payload.
if (embed_opus_fec) {
CreateOpusFecPayload(payload_ptr, kPayloadLength,
static_cast<uint8_t>(i));
} else {
memset(payload_ptr, static_cast<int>(i), kPayloadLength);
}
payload_ptr += kPayloadLength;
}
return packet;
}
// Create a packet with all payload bytes set to |payload_value|.
Packet* CreatePacket(uint8_t payload_type, size_t payload_length,
uint8_t payload_value, bool opus_fec = false) {
Packet* packet = new Packet;
packet->header.payloadType = payload_type;
packet->header.timestamp = kBaseTimestamp;
packet->header.sequenceNumber = kSequenceNumber;
packet->payload.SetSize(payload_length);
if (opus_fec) {
CreateOpusFecPayload(packet->payload.data(), packet->payload.size(),
payload_value);
} else {
memset(packet->payload.data(), payload_value, packet->payload.size());
}
return packet;
}
// Checks that |packet| has the attributes given in the remaining parameters.
void VerifyPacket(const Packet* packet,
size_t payload_length,
uint8_t payload_type,
uint16_t sequence_number,
uint32_t timestamp,
uint8_t payload_value,
bool primary = true) {
EXPECT_EQ(payload_length, packet->payload.size());
EXPECT_EQ(payload_type, packet->header.payloadType);
EXPECT_EQ(sequence_number, packet->header.sequenceNumber);
EXPECT_EQ(timestamp, packet->header.timestamp);
EXPECT_EQ(primary, packet->primary);
ASSERT_FALSE(packet->payload.empty());
for (size_t i = 0; i < packet->payload.size(); ++i) {
ASSERT_EQ(payload_value, packet->payload.data()[i]);
}
}
// Start of test definitions.
TEST(PayloadSplitter, CreateAndDestroy) {
PayloadSplitter* splitter = new PayloadSplitter;
delete splitter;
}
// Packet A is split into A1 and A2.
TEST(RedPayloadSplitter, OnePacketTwoPayloads) {
uint8_t payload_types[] = {0, 0};
const int kTimestampOffset = 160;
Packet* packet = CreateRedPayload(2, payload_types, kTimestampOffset);
PacketList packet_list;
packet_list.push_back(packet);
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitRed(&packet_list));
ASSERT_EQ(2u, packet_list.size());
// Check first packet. The first in list should always be the primary payload.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[1], kSequenceNumber,
kBaseTimestamp, 1, true);
delete packet;
packet_list.pop_front();
// Check second packet.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber,
kBaseTimestamp - kTimestampOffset, 0, false);
delete packet;
}
// Packets A and B are not split at all. Only the RED header in each packet is
// removed.
TEST(RedPayloadSplitter, TwoPacketsOnePayload) {
uint8_t payload_types[] = {0};
const int kTimestampOffset = 160;
// Create first packet, with a single RED payload.
Packet* packet = CreateRedPayload(1, payload_types, kTimestampOffset);
PacketList packet_list;
packet_list.push_back(packet);
// Create second packet, with a single RED payload.
packet = CreateRedPayload(1, payload_types, kTimestampOffset);
// Manually change timestamp and sequence number of second packet.
packet->header.timestamp += kTimestampOffset;
packet->header.sequenceNumber++;
packet_list.push_back(packet);
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitRed(&packet_list));
ASSERT_EQ(2u, packet_list.size());
// Check first packet.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber,
kBaseTimestamp, 0, true);
delete packet;
packet_list.pop_front();
// Check second packet.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber + 1,
kBaseTimestamp + kTimestampOffset, 0, true);
delete packet;
}
// Packets A and B are split into packets A1, A2, A3, B1, B2, B3, with
// attributes as follows:
//
// A1* A2 A3 B1* B2 B3
// Payload type 0 1 2 0 1 2
// Timestamp b b-o b-2o b+o b b-o
// Sequence number 0 0 0 1 1 1
//
// b = kBaseTimestamp, o = kTimestampOffset, * = primary.
TEST(RedPayloadSplitter, TwoPacketsThreePayloads) {
uint8_t payload_types[] = {2, 1, 0}; // Primary is the last one.
const int kTimestampOffset = 160;
// Create first packet, with 3 RED payloads.
Packet* packet = CreateRedPayload(3, payload_types, kTimestampOffset);
PacketList packet_list;
packet_list.push_back(packet);
// Create first packet, with 3 RED payloads.
packet = CreateRedPayload(3, payload_types, kTimestampOffset);
// Manually change timestamp and sequence number of second packet.
packet->header.timestamp += kTimestampOffset;
packet->header.sequenceNumber++;
packet_list.push_back(packet);
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitRed(&packet_list));
ASSERT_EQ(6u, packet_list.size());
// Check first packet, A1.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[2], kSequenceNumber,
kBaseTimestamp, 2, true);
delete packet;
packet_list.pop_front();
// Check second packet, A2.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[1], kSequenceNumber,
kBaseTimestamp - kTimestampOffset, 1, false);
delete packet;
packet_list.pop_front();
// Check third packet, A3.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber,
kBaseTimestamp - 2 * kTimestampOffset, 0, false);
delete packet;
packet_list.pop_front();
// Check fourth packet, B1.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[2], kSequenceNumber + 1,
kBaseTimestamp + kTimestampOffset, 2, true);
delete packet;
packet_list.pop_front();
// Check fifth packet, B2.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[1], kSequenceNumber + 1,
kBaseTimestamp, 1, false);
delete packet;
packet_list.pop_front();
// Check sixth packet, B3.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber + 1,
kBaseTimestamp - kTimestampOffset, 0, false);
delete packet;
}
// Creates a list with 4 packets with these payload types:
// 0 = CNGnb
// 1 = PCMu
// 2 = DTMF (AVT)
// 3 = iLBC
// We expect the method CheckRedPayloads to discard the iLBC packet, since it
// is a non-CNG, non-DTMF payload of another type than the first speech payload
// found in the list (which is PCMu).
TEST(RedPayloadSplitter, CheckRedPayloads) {
PacketList packet_list;
for (uint8_t i = 0; i <= 3; ++i) {
// Create packet with payload type |i|, payload length 10 bytes, all 0.
Packet* packet = CreatePacket(i, 10, 0);
packet_list.push_back(packet);
}
// Use a real DecoderDatabase object here instead of a mock, since it is
// easier to just register the payload types and let the actual implementation
// do its job.
DecoderDatabase decoder_database(
new rtc::RefCountedObject<MockAudioDecoderFactory>);
decoder_database.RegisterPayload(0, NetEqDecoder::kDecoderCNGnb, "cng-nb");
decoder_database.RegisterPayload(1, NetEqDecoder::kDecoderPCMu, "pcmu");
decoder_database.RegisterPayload(2, NetEqDecoder::kDecoderAVT, "avt");
decoder_database.RegisterPayload(3, NetEqDecoder::kDecoderILBC, "ilbc");
PayloadSplitter splitter;
splitter.CheckRedPayloads(&packet_list, decoder_database);
ASSERT_EQ(3u, packet_list.size()); // Should have dropped the last packet.
// Verify packets. The loop verifies that payload types 0, 1, and 2 are in the
// list.
for (int i = 0; i <= 2; ++i) {
Packet* packet = packet_list.front();
VerifyPacket(packet, 10, i, kSequenceNumber, kBaseTimestamp, 0, true);
delete packet;
packet_list.pop_front();
}
EXPECT_TRUE(packet_list.empty());
}
// Packet A is split into A1, A2 and A3. But the length parameter is off, so
// the last payloads should be discarded.
TEST(RedPayloadSplitter, WrongPayloadLength) {
uint8_t payload_types[] = {0, 0, 0};
const int kTimestampOffset = 160;
Packet* packet = CreateRedPayload(3, payload_types, kTimestampOffset);
// Manually tamper with the payload length of the packet.
// This is one byte too short for the second payload (out of three).
// We expect only the first payload to be returned.
packet->payload.SetSize(packet->payload.size() - (kPayloadLength + 1));
PacketList packet_list;
packet_list.push_back(packet);
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kRedLengthMismatch,
splitter.SplitRed(&packet_list));
ASSERT_EQ(1u, packet_list.size());
// Check first packet.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber,
kBaseTimestamp - 2 * kTimestampOffset, 0, false);
delete packet;
packet_list.pop_front();
}
TEST(FecPayloadSplitter, MixedPayload) {
PacketList packet_list;
DecoderDatabase decoder_database(CreateBuiltinAudioDecoderFactory());
decoder_database.RegisterPayload(0, NetEqDecoder::kDecoderOpus, "opus");
decoder_database.RegisterPayload(1, NetEqDecoder::kDecoderPCMu, "pcmu");
Packet* packet = CreatePacket(0, 10, 0xFF, true);
packet_list.push_back(packet);
packet = CreatePacket(0, 10, 0); // Non-FEC Opus payload.
packet_list.push_back(packet);
packet = CreatePacket(1, 10, 0); // Non-Opus payload.
packet_list.push_back(packet);
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kOK,
splitter.SplitFec(&packet_list, &decoder_database));
EXPECT_EQ(4u, packet_list.size());
// Check first packet.
packet = packet_list.front();
EXPECT_EQ(0, packet->header.payloadType);
EXPECT_EQ(kBaseTimestamp - 20 * 48, packet->header.timestamp);
EXPECT_EQ(10U, packet->payload.size());
EXPECT_FALSE(packet->primary);
delete packet;
packet_list.pop_front();
// Check second packet.
packet = packet_list.front();
EXPECT_EQ(0, packet->header.payloadType);
EXPECT_EQ(kBaseTimestamp, packet->header.timestamp);
EXPECT_EQ(10U, packet->payload.size());
EXPECT_TRUE(packet->primary);
delete packet;
packet_list.pop_front();
// Check third packet.
packet = packet_list.front();
VerifyPacket(packet, 10, 0, kSequenceNumber, kBaseTimestamp, 0, true);
delete packet;
packet_list.pop_front();
// Check fourth packet.
packet = packet_list.front();
VerifyPacket(packet, 10, 1, kSequenceNumber, kBaseTimestamp, 0, true);
delete packet;
}
TEST(FecPayloadSplitter, EmbedFecInRed) {
PacketList packet_list;
DecoderDatabase decoder_database(CreateBuiltinAudioDecoderFactory());
const int kTimestampOffset = 20 * 48; // 20 ms * 48 kHz.
uint8_t payload_types[] = {0, 0};
decoder_database.RegisterPayload(0, NetEqDecoder::kDecoderOpus, "opus");
Packet* packet = CreateRedPayload(2, payload_types, kTimestampOffset, true);
packet_list.push_back(packet);
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kOK,
splitter.SplitRed(&packet_list));
EXPECT_EQ(PayloadSplitter::kOK,
splitter.SplitFec(&packet_list, &decoder_database));
EXPECT_EQ(4u, packet_list.size());
// Check first packet. FEC packet copied from primary payload in RED.
packet = packet_list.front();
EXPECT_EQ(0, packet->header.payloadType);
EXPECT_EQ(kBaseTimestamp - kTimestampOffset, packet->header.timestamp);
EXPECT_EQ(kPayloadLength, packet->payload.size());
EXPECT_FALSE(packet->primary);
EXPECT_EQ(packet->payload[3], 1);
delete packet;
packet_list.pop_front();
// Check second packet. Normal packet copied from primary payload in RED.
packet = packet_list.front();
EXPECT_EQ(0, packet->header.payloadType);
EXPECT_EQ(kBaseTimestamp, packet->header.timestamp);
EXPECT_EQ(kPayloadLength, packet->payload.size());
EXPECT_TRUE(packet->primary);
EXPECT_EQ(packet->payload[3], 1);
delete packet;
packet_list.pop_front();
// Check third packet. FEC packet copied from secondary payload in RED.
packet = packet_list.front();
EXPECT_EQ(0, packet->header.payloadType);
EXPECT_EQ(kBaseTimestamp - 2 * kTimestampOffset, packet->header.timestamp);
EXPECT_EQ(kPayloadLength, packet->payload.size());
EXPECT_FALSE(packet->primary);
EXPECT_EQ(packet->payload[3], 0);
delete packet;
packet_list.pop_front();
// Check fourth packet. Normal packet copied from primary payload in RED.
packet = packet_list.front();
EXPECT_EQ(0, packet->header.payloadType);
EXPECT_EQ(kBaseTimestamp - kTimestampOffset, packet->header.timestamp);
EXPECT_EQ(kPayloadLength, packet->payload.size());
EXPECT_TRUE(packet->primary);
EXPECT_EQ(packet->payload[3], 0);
delete packet;
packet_list.pop_front();
}
} // namespace webrtc