blob: a9e5858bcac301343d8d6bb8ac5cec2e611a86a6 [file] [log] [blame]
/*
* Copyright 2008 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/openssl_adapter.h"
#include <errno.h>
#include <openssl/bio.h>
#include <openssl/err.h>
#include "absl/strings/string_view.h"
#ifdef OPENSSL_IS_BORINGSSL
#include <openssl/pool.h>
#endif
#include <openssl/rand.h>
#include <openssl/x509.h>
#include <string.h>
#include <time.h>
#include <memory>
// Use CRYPTO_BUFFER APIs if available and we have no dependency on X509
// objects.
#if defined(OPENSSL_IS_BORINGSSL) && \
defined(WEBRTC_EXCLUDE_BUILT_IN_SSL_ROOT_CERTS)
#define WEBRTC_USE_CRYPTO_BUFFER_CALLBACK
#endif
#include "absl/memory/memory.h"
#include "rtc_base/checks.h"
#include "rtc_base/location.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/openssl.h"
#ifdef OPENSSL_IS_BORINGSSL
#include "rtc_base/boringssl_identity.h"
#else
#include "rtc_base/openssl_identity.h"
#endif
#include "rtc_base/openssl_utility.h"
#include "rtc_base/strings/string_builder.h"
#include "rtc_base/thread.h"
//////////////////////////////////////////////////////////////////////
// SocketBIO
//////////////////////////////////////////////////////////////////////
static int socket_write(BIO* h, const char* buf, int num);
static int socket_read(BIO* h, char* buf, int size);
static int socket_puts(BIO* h, const char* str);
static long socket_ctrl(BIO* h, int cmd, long arg1, void* arg2); // NOLINT
static int socket_new(BIO* h);
static int socket_free(BIO* data);
static BIO_METHOD* BIO_socket_method() {
static BIO_METHOD* methods = [] {
BIO_METHOD* methods = BIO_meth_new(BIO_TYPE_BIO, "socket");
BIO_meth_set_write(methods, socket_write);
BIO_meth_set_read(methods, socket_read);
BIO_meth_set_puts(methods, socket_puts);
BIO_meth_set_ctrl(methods, socket_ctrl);
BIO_meth_set_create(methods, socket_new);
BIO_meth_set_destroy(methods, socket_free);
return methods;
}();
return methods;
}
static BIO* BIO_new_socket(rtc::Socket* socket) {
BIO* ret = BIO_new(BIO_socket_method());
if (ret == nullptr) {
return nullptr;
}
BIO_set_data(ret, socket);
return ret;
}
static int socket_new(BIO* b) {
BIO_set_shutdown(b, 0);
BIO_set_init(b, 1);
BIO_set_data(b, 0);
return 1;
}
static int socket_free(BIO* b) {
if (b == nullptr)
return 0;
return 1;
}
static int socket_read(BIO* b, char* out, int outl) {
if (!out)
return -1;
rtc::Socket* socket = static_cast<rtc::Socket*>(BIO_get_data(b));
BIO_clear_retry_flags(b);
int result = socket->Recv(out, outl, nullptr);
if (result > 0) {
return result;
} else if (socket->IsBlocking()) {
BIO_set_retry_read(b);
}
return -1;
}
static int socket_write(BIO* b, const char* in, int inl) {
if (!in)
return -1;
rtc::Socket* socket = static_cast<rtc::Socket*>(BIO_get_data(b));
BIO_clear_retry_flags(b);
int result = socket->Send(in, inl);
if (result > 0) {
return result;
} else if (socket->IsBlocking()) {
BIO_set_retry_write(b);
}
return -1;
}
static int socket_puts(BIO* b, const char* str) {
return socket_write(b, str, rtc::checked_cast<int>(strlen(str)));
}
static long socket_ctrl(BIO* b, int cmd, long num, void* ptr) { // NOLINT
switch (cmd) {
case BIO_CTRL_RESET:
return 0;
case BIO_CTRL_EOF: {
rtc::Socket* socket = static_cast<rtc::Socket*>(ptr);
// 1 means socket closed.
return (socket->GetState() == rtc::Socket::CS_CLOSED) ? 1 : 0;
}
case BIO_CTRL_WPENDING:
case BIO_CTRL_PENDING:
return 0;
case BIO_CTRL_FLUSH:
return 1;
default:
return 0;
}
}
static void LogSslError() {
// Walk down the error stack to find the SSL error.
uint32_t error_code;
const char* file;
int line;
do {
error_code = ERR_get_error_line(&file, &line);
if (ERR_GET_LIB(error_code) == ERR_LIB_SSL) {
RTC_LOG(LS_ERROR) << "ERR_LIB_SSL: " << error_code << ", " << file << ":"
<< line;
break;
}
} while (error_code != 0);
}
/////////////////////////////////////////////////////////////////////////////
// OpenSSLAdapter
/////////////////////////////////////////////////////////////////////////////
namespace rtc {
namespace webrtc_openssl_adapter_internal {
// Simple O(n^2) implementation is sufficient for current use case.
std::string StrJoin(const std::vector<std::string>& list, char delimiter) {
RTC_CHECK(!list.empty());
StringBuilder sb;
sb << list[0];
for (size_t i = 1; i < list.size(); i++) {
sb.AppendFormat("%c", delimiter);
sb << list[i];
}
return sb.Release();
}
} // namespace webrtc_openssl_adapter_internal
using webrtc_openssl_adapter_internal::StrJoin;
bool OpenSSLAdapter::InitializeSSL() {
if (!SSL_library_init())
return false;
#if !defined(ADDRESS_SANITIZER) || !defined(WEBRTC_MAC) || defined(WEBRTC_IOS)
// Loading the error strings crashes mac_asan. Omit this debugging aid there.
SSL_load_error_strings();
#endif
ERR_load_BIO_strings();
OpenSSL_add_all_algorithms();
RAND_poll();
return true;
}
bool OpenSSLAdapter::CleanupSSL() {
return true;
}
OpenSSLAdapter::OpenSSLAdapter(Socket* socket,
OpenSSLSessionCache* ssl_session_cache,
SSLCertificateVerifier* ssl_cert_verifier)
: SSLAdapter(socket),
ssl_session_cache_(ssl_session_cache),
ssl_cert_verifier_(ssl_cert_verifier),
state_(SSL_NONE),
role_(SSL_CLIENT),
ssl_read_needs_write_(false),
ssl_write_needs_read_(false),
ssl_(nullptr),
ssl_ctx_(nullptr),
ssl_mode_(SSL_MODE_TLS),
ignore_bad_cert_(false),
custom_cert_verifier_status_(false) {
// If a factory is used, take a reference on the factory's SSL_CTX.
// Otherwise, we'll create our own later.
// Either way, we'll release our reference via SSL_CTX_free() in Cleanup().
if (ssl_session_cache_ != nullptr) {
ssl_ctx_ = ssl_session_cache_->GetSSLContext();
RTC_DCHECK(ssl_ctx_);
// Note: if using OpenSSL, requires version 1.1.0 or later.
SSL_CTX_up_ref(ssl_ctx_);
}
}
OpenSSLAdapter::~OpenSSLAdapter() {
Cleanup();
}
void OpenSSLAdapter::SetIgnoreBadCert(bool ignore) {
ignore_bad_cert_ = ignore;
}
void OpenSSLAdapter::SetAlpnProtocols(const std::vector<std::string>& protos) {
alpn_protocols_ = protos;
}
void OpenSSLAdapter::SetEllipticCurves(const std::vector<std::string>& curves) {
elliptic_curves_ = curves;
}
void OpenSSLAdapter::SetMode(SSLMode mode) {
RTC_DCHECK(!ssl_ctx_);
RTC_DCHECK(state_ == SSL_NONE);
ssl_mode_ = mode;
}
void OpenSSLAdapter::SetCertVerifier(
SSLCertificateVerifier* ssl_cert_verifier) {
RTC_DCHECK(!ssl_ctx_);
ssl_cert_verifier_ = ssl_cert_verifier;
}
void OpenSSLAdapter::SetIdentity(std::unique_ptr<SSLIdentity> identity) {
RTC_DCHECK(!identity_);
#ifdef OPENSSL_IS_BORINGSSL
identity_ =
absl::WrapUnique(static_cast<BoringSSLIdentity*>(identity.release()));
#else
identity_ =
absl::WrapUnique(static_cast<OpenSSLIdentity*>(identity.release()));
#endif
}
void OpenSSLAdapter::SetRole(SSLRole role) {
role_ = role;
}
int OpenSSLAdapter::StartSSL(absl::string_view hostname) {
if (state_ != SSL_NONE)
return -1;
ssl_host_name_.assign(hostname.data(), hostname.size());
if (GetSocket()->GetState() != Socket::CS_CONNECTED) {
state_ = SSL_WAIT;
return 0;
}
state_ = SSL_CONNECTING;
if (int err = BeginSSL()) {
Error("BeginSSL", err, false);
return err;
}
return 0;
}
int OpenSSLAdapter::BeginSSL() {
RTC_LOG(LS_INFO) << "OpenSSLAdapter::BeginSSL: " << ssl_host_name_;
RTC_DCHECK(state_ == SSL_CONNECTING);
// Cleanup action to deal with on error cleanup a bit cleaner.
EarlyExitCatcher early_exit_catcher(*this);
// First set up the context. We should either have a factory, with its own
// pre-existing context, or be running standalone, in which case we will
// need to create one, and specify `false` to disable session caching.
if (ssl_session_cache_ == nullptr) {
RTC_DCHECK(!ssl_ctx_);
ssl_ctx_ = CreateContext(ssl_mode_, false);
}
if (!ssl_ctx_) {
return -1;
}
if (identity_ && !identity_->ConfigureIdentity(ssl_ctx_)) {
return -1;
}
std::unique_ptr<BIO, decltype(&::BIO_free)> bio{BIO_new_socket(GetSocket()),
::BIO_free};
if (!bio) {
return -1;
}
ssl_ = SSL_new(ssl_ctx_);
if (!ssl_) {
return -1;
}
SSL_set_app_data(ssl_, this);
// SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER allows different buffers to be passed
// into SSL_write when a record could only be partially transmitted (and thus
// requires another call to SSL_write to finish transmission). This allows us
// to copy the data into our own buffer when this occurs, since the original
// buffer can't safely be accessed after control exits Send.
// TODO(deadbeef): Do we want SSL_MODE_ENABLE_PARTIAL_WRITE? It doesn't
// appear Send handles partial writes properly, though maybe we never notice
// since we never send more than 16KB at once..
SSL_set_mode(ssl_, SSL_MODE_ENABLE_PARTIAL_WRITE |
SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER);
// Enable SNI, if a hostname is supplied.
if (!ssl_host_name_.empty()) {
SSL_set_tlsext_host_name(ssl_, ssl_host_name_.c_str());
// Enable session caching, if configured and a hostname is supplied.
if (ssl_session_cache_ != nullptr) {
SSL_SESSION* cached = ssl_session_cache_->LookupSession(ssl_host_name_);
if (cached) {
if (SSL_set_session(ssl_, cached) == 0) {
RTC_LOG(LS_WARNING) << "Failed to apply SSL session from cache";
return -1;
}
RTC_LOG(LS_INFO) << "Attempting to resume SSL session to "
<< ssl_host_name_;
}
}
}
#ifdef OPENSSL_IS_BORINGSSL
// Set a couple common TLS extensions; even though we don't use them yet.
SSL_enable_ocsp_stapling(ssl_);
SSL_enable_signed_cert_timestamps(ssl_);
#endif
if (!alpn_protocols_.empty()) {
std::string tls_alpn_string = TransformAlpnProtocols(alpn_protocols_);
if (!tls_alpn_string.empty()) {
SSL_set_alpn_protos(
ssl_, reinterpret_cast<const unsigned char*>(tls_alpn_string.data()),
rtc::dchecked_cast<unsigned>(tls_alpn_string.size()));
}
}
if (!elliptic_curves_.empty()) {
SSL_set1_curves_list(ssl_, StrJoin(elliptic_curves_, ':').c_str());
}
// Now that the initial config is done, transfer ownership of `bio` to the
// SSL object. If ContinueSSL() fails, the bio will be freed in Cleanup().
SSL_set_bio(ssl_, bio.get(), bio.get());
bio.release();
// Do the connect.
int err = ContinueSSL();
if (err != 0) {
return err;
}
early_exit_catcher.disable();
return 0;
}
int OpenSSLAdapter::ContinueSSL() {
RTC_DCHECK(state_ == SSL_CONNECTING);
// Clear the DTLS timer
Thread::Current()->Clear(this, MSG_TIMEOUT);
int code = (role_ == SSL_CLIENT) ? SSL_connect(ssl_) : SSL_accept(ssl_);
switch (SSL_get_error(ssl_, code)) {
case SSL_ERROR_NONE:
if (!SSLPostConnectionCheck(ssl_, ssl_host_name_)) {
RTC_LOG(LS_ERROR) << "TLS post connection check failed";
// make sure we close the socket
Cleanup();
// The connect failed so return -1 to shut down the socket
return -1;
}
state_ = SSL_CONNECTED;
AsyncSocketAdapter::OnConnectEvent(this);
// TODO(benwright): Refactor this code path.
// Don't let ourselves go away during the callbacks
// PRefPtr<OpenSSLAdapter> lock(this);
// RTC_LOG(LS_INFO) << " -- onStreamReadable";
// AsyncSocketAdapter::OnReadEvent(this);
// RTC_LOG(LS_INFO) << " -- onStreamWriteable";
// AsyncSocketAdapter::OnWriteEvent(this);
break;
case SSL_ERROR_WANT_READ:
RTC_LOG(LS_VERBOSE) << " -- error want read";
struct timeval timeout;
if (DTLSv1_get_timeout(ssl_, &timeout)) {
int delay = timeout.tv_sec * 1000 + timeout.tv_usec / 1000;
Thread::Current()->PostDelayed(RTC_FROM_HERE, delay, this, MSG_TIMEOUT,
0);
}
break;
case SSL_ERROR_WANT_WRITE:
break;
case SSL_ERROR_ZERO_RETURN:
default:
RTC_LOG(LS_WARNING) << "ContinueSSL -- error " << code;
return (code != 0) ? code : -1;
}
return 0;
}
void OpenSSLAdapter::Error(absl::string_view context, int err, bool signal) {
RTC_LOG(LS_WARNING) << "OpenSSLAdapter::Error(" << context << ", " << err
<< ")";
state_ = SSL_ERROR;
SetError(err);
if (signal) {
AsyncSocketAdapter::OnCloseEvent(this, err);
}
}
void OpenSSLAdapter::Cleanup() {
RTC_LOG(LS_INFO) << "OpenSSLAdapter::Cleanup";
state_ = SSL_NONE;
ssl_read_needs_write_ = false;
ssl_write_needs_read_ = false;
custom_cert_verifier_status_ = false;
pending_data_.Clear();
if (ssl_) {
SSL_free(ssl_);
ssl_ = nullptr;
}
if (ssl_ctx_) {
SSL_CTX_free(ssl_ctx_);
ssl_ctx_ = nullptr;
}
identity_.reset();
// Clear the DTLS timer
Thread::Current()->Clear(this, MSG_TIMEOUT);
}
int OpenSSLAdapter::DoSslWrite(const void* pv, size_t cb, int* error) {
// If we have pending data (that was previously only partially written by
// SSL_write), we shouldn't be attempting to write anything else.
RTC_DCHECK(pending_data_.empty() || pv == pending_data_.data());
RTC_DCHECK(error != nullptr);
ssl_write_needs_read_ = false;
int ret = SSL_write(ssl_, pv, checked_cast<int>(cb));
*error = SSL_get_error(ssl_, ret);
switch (*error) {
case SSL_ERROR_NONE:
// Success!
return ret;
case SSL_ERROR_WANT_READ:
RTC_LOG(LS_INFO) << " -- error want read";
ssl_write_needs_read_ = true;
SetError(EWOULDBLOCK);
break;
case SSL_ERROR_WANT_WRITE:
RTC_LOG(LS_INFO) << " -- error want write";
SetError(EWOULDBLOCK);
break;
case SSL_ERROR_ZERO_RETURN:
SetError(EWOULDBLOCK);
// do we need to signal closure?
break;
case SSL_ERROR_SSL:
LogSslError();
Error("SSL_write", ret ? ret : -1, false);
break;
default:
Error("SSL_write", ret ? ret : -1, false);
break;
}
return SOCKET_ERROR;
}
///////////////////////////////////////////////////////////////////////////////
// Socket Implementation
///////////////////////////////////////////////////////////////////////////////
int OpenSSLAdapter::Send(const void* pv, size_t cb) {
switch (state_) {
case SSL_NONE:
return AsyncSocketAdapter::Send(pv, cb);
case SSL_WAIT:
case SSL_CONNECTING:
SetError(ENOTCONN);
return SOCKET_ERROR;
case SSL_CONNECTED:
break;
case SSL_ERROR:
default:
return SOCKET_ERROR;
}
int ret;
int error;
if (!pending_data_.empty()) {
ret = DoSslWrite(pending_data_.data(), pending_data_.size(), &error);
if (ret != static_cast<int>(pending_data_.size())) {
// We couldn't finish sending the pending data, so we definitely can't
// send any more data. Return with an EWOULDBLOCK error.
SetError(EWOULDBLOCK);
return SOCKET_ERROR;
}
// We completed sending the data previously passed into SSL_write! Now
// we're allowed to send more data.
pending_data_.Clear();
}
// OpenSSL will return an error if we try to write zero bytes
if (cb == 0) {
return 0;
}
ret = DoSslWrite(pv, cb, &error);
// If SSL_write fails with SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE, this
// means the underlying socket is blocked on reading or (more typically)
// writing. When this happens, OpenSSL requires that the next call to
// SSL_write uses the same arguments (though, with
// SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER, the actual buffer pointer may be
// different).
//
// However, after Send exits, we will have lost access to data the user of
// this class is trying to send, and there's no guarantee that the user of
// this class will call Send with the same arguements when it fails. So, we
// buffer the data ourselves. When we know the underlying socket is writable
// again from OnWriteEvent (or if Send is called again before that happens),
// we'll retry sending this buffered data.
if (error == SSL_ERROR_WANT_READ || error == SSL_ERROR_WANT_WRITE) {
// Shouldn't be able to get to this point if we already have pending data.
RTC_DCHECK(pending_data_.empty());
RTC_LOG(LS_WARNING)
<< "SSL_write couldn't write to the underlying socket; buffering data.";
pending_data_.SetData(static_cast<const uint8_t*>(pv), cb);
// Since we're taking responsibility for sending this data, return its full
// size. The user of this class can consider it sent.
return rtc::dchecked_cast<int>(cb);
}
return ret;
}
int OpenSSLAdapter::SendTo(const void* pv,
size_t cb,
const SocketAddress& addr) {
if (GetSocket()->GetState() == Socket::CS_CONNECTED &&
addr == GetSocket()->GetRemoteAddress()) {
return Send(pv, cb);
}
SetError(ENOTCONN);
return SOCKET_ERROR;
}
int OpenSSLAdapter::Recv(void* pv, size_t cb, int64_t* timestamp) {
switch (state_) {
case SSL_NONE:
return AsyncSocketAdapter::Recv(pv, cb, timestamp);
case SSL_WAIT:
case SSL_CONNECTING:
SetError(ENOTCONN);
return SOCKET_ERROR;
case SSL_CONNECTED:
break;
case SSL_ERROR:
default:
return SOCKET_ERROR;
}
// Don't trust OpenSSL with zero byte reads
if (cb == 0) {
return 0;
}
ssl_read_needs_write_ = false;
int code = SSL_read(ssl_, pv, checked_cast<int>(cb));
int error = SSL_get_error(ssl_, code);
switch (error) {
case SSL_ERROR_NONE:
return code;
case SSL_ERROR_WANT_READ:
SetError(EWOULDBLOCK);
break;
case SSL_ERROR_WANT_WRITE:
ssl_read_needs_write_ = true;
SetError(EWOULDBLOCK);
break;
case SSL_ERROR_ZERO_RETURN:
SetError(EWOULDBLOCK);
// do we need to signal closure?
break;
case SSL_ERROR_SSL:
LogSslError();
Error("SSL_read", (code ? code : -1), false);
break;
default:
Error("SSL_read", (code ? code : -1), false);
break;
}
return SOCKET_ERROR;
}
int OpenSSLAdapter::RecvFrom(void* pv,
size_t cb,
SocketAddress* paddr,
int64_t* timestamp) {
if (GetSocket()->GetState() == Socket::CS_CONNECTED) {
int ret = Recv(pv, cb, timestamp);
*paddr = GetRemoteAddress();
return ret;
}
SetError(ENOTCONN);
return SOCKET_ERROR;
}
int OpenSSLAdapter::Close() {
Cleanup();
state_ = SSL_NONE;
return AsyncSocketAdapter::Close();
}
Socket::ConnState OpenSSLAdapter::GetState() const {
ConnState state = GetSocket()->GetState();
if ((state == CS_CONNECTED) &&
((state_ == SSL_WAIT) || (state_ == SSL_CONNECTING))) {
state = CS_CONNECTING;
}
return state;
}
bool OpenSSLAdapter::IsResumedSession() {
return (ssl_ && SSL_session_reused(ssl_) == 1);
}
void OpenSSLAdapter::OnMessage(Message* msg) {
if (MSG_TIMEOUT == msg->message_id) {
RTC_LOG(LS_INFO) << "DTLS timeout expired";
DTLSv1_handle_timeout(ssl_);
ContinueSSL();
}
}
void OpenSSLAdapter::OnConnectEvent(Socket* socket) {
RTC_LOG(LS_INFO) << "OpenSSLAdapter::OnConnectEvent";
if (state_ != SSL_WAIT) {
RTC_DCHECK(state_ == SSL_NONE);
AsyncSocketAdapter::OnConnectEvent(socket);
return;
}
state_ = SSL_CONNECTING;
if (int err = BeginSSL()) {
AsyncSocketAdapter::OnCloseEvent(socket, err);
}
}
void OpenSSLAdapter::OnReadEvent(Socket* socket) {
if (state_ == SSL_NONE) {
AsyncSocketAdapter::OnReadEvent(socket);
return;
}
if (state_ == SSL_CONNECTING) {
if (int err = ContinueSSL()) {
Error("ContinueSSL", err);
}
return;
}
if (state_ != SSL_CONNECTED) {
return;
}
// Don't let ourselves go away during the callbacks
// PRefPtr<OpenSSLAdapter> lock(this); // TODO(benwright): fix this
if (ssl_write_needs_read_) {
AsyncSocketAdapter::OnWriteEvent(socket);
}
AsyncSocketAdapter::OnReadEvent(socket);
}
void OpenSSLAdapter::OnWriteEvent(Socket* socket) {
if (state_ == SSL_NONE) {
AsyncSocketAdapter::OnWriteEvent(socket);
return;
}
if (state_ == SSL_CONNECTING) {
if (int err = ContinueSSL()) {
Error("ContinueSSL", err);
}
return;
}
if (state_ != SSL_CONNECTED) {
return;
}
// Don't let ourselves go away during the callbacks
// PRefPtr<OpenSSLAdapter> lock(this); // TODO(benwright): fix this
if (ssl_read_needs_write_) {
AsyncSocketAdapter::OnReadEvent(socket);
}
// If a previous SSL_write failed due to the underlying socket being blocked,
// this will attempt finishing the write operation.
if (!pending_data_.empty()) {
int error;
if (DoSslWrite(pending_data_.data(), pending_data_.size(), &error) ==
static_cast<int>(pending_data_.size())) {
pending_data_.Clear();
}
}
AsyncSocketAdapter::OnWriteEvent(socket);
}
void OpenSSLAdapter::OnCloseEvent(Socket* socket, int err) {
RTC_LOG(LS_INFO) << "OpenSSLAdapter::OnCloseEvent(" << err << ")";
AsyncSocketAdapter::OnCloseEvent(socket, err);
}
bool OpenSSLAdapter::SSLPostConnectionCheck(SSL* ssl, absl::string_view host) {
bool is_valid_cert_name =
openssl::VerifyPeerCertMatchesHost(ssl, host) &&
(SSL_get_verify_result(ssl) == X509_V_OK || custom_cert_verifier_status_);
if (!is_valid_cert_name && ignore_bad_cert_) {
RTC_DLOG(LS_WARNING) << "Other TLS post connection checks failed. "
"ignore_bad_cert_ set to true. Overriding name "
"verification failure!";
is_valid_cert_name = true;
}
return is_valid_cert_name;
}
#if !defined(NDEBUG)
// We only use this for tracing and so it is only needed in debug mode
void OpenSSLAdapter::SSLInfoCallback(const SSL* s, int where, int ret) {
const char* str = "undefined";
int w = where & ~SSL_ST_MASK;
if (w & SSL_ST_CONNECT) {
str = "SSL_connect";
} else if (w & SSL_ST_ACCEPT) {
str = "SSL_accept";
}
if (where & SSL_CB_LOOP) {
RTC_DLOG(LS_VERBOSE) << str << ":" << SSL_state_string_long(s);
} else if (where & SSL_CB_ALERT) {
str = (where & SSL_CB_READ) ? "read" : "write";
RTC_DLOG(LS_INFO) << "SSL3 alert " << str << ":"
<< SSL_alert_type_string_long(ret) << ":"
<< SSL_alert_desc_string_long(ret);
} else if (where & SSL_CB_EXIT) {
if (ret == 0) {
RTC_DLOG(LS_INFO) << str << ":failed in " << SSL_state_string_long(s);
} else if (ret < 0) {
RTC_DLOG(LS_INFO) << str << ":error in " << SSL_state_string_long(s);
}
}
}
#endif
#ifdef WEBRTC_USE_CRYPTO_BUFFER_CALLBACK
// static
enum ssl_verify_result_t OpenSSLAdapter::SSLVerifyCallback(SSL* ssl,
uint8_t* out_alert) {
// Get our stream pointer from the SSL context.
OpenSSLAdapter* stream =
reinterpret_cast<OpenSSLAdapter*>(SSL_get_app_data(ssl));
ssl_verify_result_t ret = stream->SSLVerifyInternal(ssl, out_alert);
// Should only be used for debugging and development.
if (ret != ssl_verify_ok && stream->ignore_bad_cert_) {
RTC_DLOG(LS_WARNING) << "Ignoring cert error while verifying cert chain";
return ssl_verify_ok;
}
return ret;
}
enum ssl_verify_result_t OpenSSLAdapter::SSLVerifyInternal(SSL* ssl,
uint8_t* out_alert) {
if (ssl_cert_verifier_ == nullptr) {
RTC_LOG(LS_WARNING) << "Built-in trusted root certificates disabled but no "
"SSL verify callback provided.";
return ssl_verify_invalid;
}
RTC_LOG(LS_INFO) << "Invoking SSL Verify Callback.";
const STACK_OF(CRYPTO_BUFFER)* chain = SSL_get0_peer_certificates(ssl);
if (sk_CRYPTO_BUFFER_num(chain) == 0) {
RTC_LOG(LS_ERROR) << "Peer certificate chain empty?";
return ssl_verify_invalid;
}
BoringSSLCertificate cert(bssl::UpRef(sk_CRYPTO_BUFFER_value(chain, 0)));
if (!ssl_cert_verifier_->Verify(cert)) {
RTC_LOG(LS_WARNING) << "Failed to verify certificate using custom callback";
return ssl_verify_invalid;
}
custom_cert_verifier_status_ = true;
RTC_LOG(LS_INFO) << "Validated certificate using custom callback";
return ssl_verify_ok;
}
#else // WEBRTC_USE_CRYPTO_BUFFER_CALLBACK
int OpenSSLAdapter::SSLVerifyCallback(int status, X509_STORE_CTX* store) {
// Get our stream pointer from the store
SSL* ssl = reinterpret_cast<SSL*>(
X509_STORE_CTX_get_ex_data(store, SSL_get_ex_data_X509_STORE_CTX_idx()));
OpenSSLAdapter* stream =
reinterpret_cast<OpenSSLAdapter*>(SSL_get_app_data(ssl));
// Update status with the custom verifier.
// Status is unchanged if verification fails.
status = stream->SSLVerifyInternal(status, ssl, store);
// Should only be used for debugging and development.
if (!status && stream->ignore_bad_cert_) {
RTC_DLOG(LS_WARNING) << "Ignoring cert error while verifying cert chain";
return 1;
}
return status;
}
int OpenSSLAdapter::SSLVerifyInternal(int previous_status,
SSL* ssl,
X509_STORE_CTX* store) {
#if !defined(NDEBUG)
if (!previous_status) {
char data[256];
X509* cert = X509_STORE_CTX_get_current_cert(store);
int depth = X509_STORE_CTX_get_error_depth(store);
int err = X509_STORE_CTX_get_error(store);
RTC_DLOG(LS_INFO) << "Error with certificate at depth: " << depth;
X509_NAME_oneline(X509_get_issuer_name(cert), data, sizeof(data));
RTC_DLOG(LS_INFO) << " issuer = " << data;
X509_NAME_oneline(X509_get_subject_name(cert), data, sizeof(data));
RTC_DLOG(LS_INFO) << " subject = " << data;
RTC_DLOG(LS_INFO) << " err = " << err << ":"
<< X509_verify_cert_error_string(err);
}
#endif
// `ssl_cert_verifier_` is used to override errors; if there is no error
// there is no reason to call it.
if (previous_status || ssl_cert_verifier_ == nullptr) {
return previous_status;
}
RTC_LOG(LS_INFO) << "Invoking SSL Verify Callback.";
#ifdef OPENSSL_IS_BORINGSSL
// Convert X509 to CRYPTO_BUFFER.
uint8_t* data = nullptr;
int length = i2d_X509(X509_STORE_CTX_get_current_cert(store), &data);
if (length < 0) {
RTC_LOG(LS_ERROR) << "Failed to encode X509.";
return previous_status;
}
bssl::UniquePtr<uint8_t> owned_data(data);
bssl::UniquePtr<CRYPTO_BUFFER> crypto_buffer(
CRYPTO_BUFFER_new(data, length, openssl::GetBufferPool()));
if (!crypto_buffer) {
RTC_LOG(LS_ERROR) << "Failed to allocate CRYPTO_BUFFER.";
return previous_status;
}
const BoringSSLCertificate cert(std::move(crypto_buffer));
#else
const OpenSSLCertificate cert(X509_STORE_CTX_get_current_cert(store));
#endif
if (!ssl_cert_verifier_->Verify(cert)) {
RTC_LOG(LS_INFO) << "Failed to verify certificate using custom callback";
return previous_status;
}
custom_cert_verifier_status_ = true;
RTC_LOG(LS_INFO) << "Validated certificate using custom callback";
return 1;
}
#endif // !defined(WEBRTC_USE_CRYPTO_BUFFER_CALLBACK)
int OpenSSLAdapter::NewSSLSessionCallback(SSL* ssl, SSL_SESSION* session) {
OpenSSLAdapter* stream =
reinterpret_cast<OpenSSLAdapter*>(SSL_get_app_data(ssl));
RTC_DCHECK(stream->ssl_session_cache_);
RTC_LOG(LS_INFO) << "Caching SSL session for " << stream->ssl_host_name_;
stream->ssl_session_cache_->AddSession(stream->ssl_host_name_, session);
return 1; // We've taken ownership of the session; OpenSSL shouldn't free it.
}
SSL_CTX* OpenSSLAdapter::CreateContext(SSLMode mode, bool enable_cache) {
#ifdef WEBRTC_USE_CRYPTO_BUFFER_CALLBACK
// If X509 objects aren't used, we can use these methods to avoid
// linking the sizable crypto/x509 code.
SSL_CTX* ctx = SSL_CTX_new(mode == SSL_MODE_DTLS ? DTLS_with_buffers_method()
: TLS_with_buffers_method());
#else
SSL_CTX* ctx =
SSL_CTX_new(mode == SSL_MODE_DTLS ? DTLS_method() : TLS_method());
#endif
if (ctx == nullptr) {
unsigned long error = ERR_get_error(); // NOLINT: type used by OpenSSL.
RTC_LOG(LS_WARNING) << "SSL_CTX creation failed: " << '"'
<< ERR_reason_error_string(error)
<< "\" "
"(error="
<< error << ')';
return nullptr;
}
#ifndef WEBRTC_EXCLUDE_BUILT_IN_SSL_ROOT_CERTS
if (!openssl::LoadBuiltinSSLRootCertificates(ctx)) {
RTC_LOG(LS_ERROR) << "SSL_CTX creation failed: Failed to load any trusted "
"ssl root certificates.";
SSL_CTX_free(ctx);
return nullptr;
}
#endif // WEBRTC_EXCLUDE_BUILT_IN_SSL_ROOT_CERTS
#if !defined(NDEBUG)
SSL_CTX_set_info_callback(ctx, SSLInfoCallback);
#endif
#ifdef OPENSSL_IS_BORINGSSL
SSL_CTX_set0_buffer_pool(ctx, openssl::GetBufferPool());
#endif
#ifdef WEBRTC_USE_CRYPTO_BUFFER_CALLBACK
SSL_CTX_set_custom_verify(ctx, SSL_VERIFY_PEER, SSLVerifyCallback);
#else
SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER, SSLVerifyCallback);
// Verify certificate chains up to a depth of 4. This is not
// needed for DTLS-SRTP which uses self-signed certificates
// (so the depth is 0) but is required to support TURN/TLS.
SSL_CTX_set_verify_depth(ctx, 4);
#endif
// Use defaults, but disable HMAC-SHA256 and HMAC-SHA384 ciphers
// (note that SHA256 and SHA384 only select legacy CBC ciphers).
// Additionally disable HMAC-SHA1 ciphers in ECDSA. These are the remaining
// CBC-mode ECDSA ciphers. Finally, disable 3DES.
SSL_CTX_set_cipher_list(
ctx, "ALL:!SHA256:!SHA384:!aPSK:!ECDSA+SHA1:!ADH:!LOW:!EXP:!MD5:!3DES");
if (mode == SSL_MODE_DTLS) {
SSL_CTX_set_read_ahead(ctx, 1);
}
if (enable_cache) {
SSL_CTX_set_session_cache_mode(ctx, SSL_SESS_CACHE_CLIENT);
SSL_CTX_sess_set_new_cb(ctx, &OpenSSLAdapter::NewSSLSessionCallback);
}
return ctx;
}
std::string TransformAlpnProtocols(
const std::vector<std::string>& alpn_protocols) {
// Transforms the alpn_protocols list to the format expected by
// Open/BoringSSL. This requires joining the protocols into a single string
// and prepending a character with the size of the protocol string before
// each protocol.
std::string transformed_alpn;
for (const std::string& proto : alpn_protocols) {
if (proto.size() == 0 || proto.size() > 0xFF) {
RTC_LOG(LS_ERROR) << "OpenSSLAdapter::Error("
"TransformAlpnProtocols received proto with size "
<< proto.size() << ")";
return "";
}
transformed_alpn += static_cast<char>(proto.size());
transformed_alpn += proto;
RTC_LOG(LS_VERBOSE) << "TransformAlpnProtocols: Adding proto: " << proto;
}
return transformed_alpn;
}
//////////////////////////////////////////////////////////////////////
// OpenSSLAdapterFactory
//////////////////////////////////////////////////////////////////////
OpenSSLAdapterFactory::OpenSSLAdapterFactory() = default;
OpenSSLAdapterFactory::~OpenSSLAdapterFactory() = default;
void OpenSSLAdapterFactory::SetMode(SSLMode mode) {
RTC_DCHECK(!ssl_session_cache_);
ssl_mode_ = mode;
}
void OpenSSLAdapterFactory::SetCertVerifier(
SSLCertificateVerifier* ssl_cert_verifier) {
RTC_DCHECK(!ssl_session_cache_);
ssl_cert_verifier_ = ssl_cert_verifier;
}
void OpenSSLAdapterFactory::SetIdentity(std::unique_ptr<SSLIdentity> identity) {
RTC_DCHECK(!ssl_session_cache_);
identity_ = std::move(identity);
}
void OpenSSLAdapterFactory::SetRole(SSLRole role) {
RTC_DCHECK(!ssl_session_cache_);
ssl_role_ = role;
}
void OpenSSLAdapterFactory::SetIgnoreBadCert(bool ignore) {
RTC_DCHECK(!ssl_session_cache_);
ignore_bad_cert_ = ignore;
}
OpenSSLAdapter* OpenSSLAdapterFactory::CreateAdapter(Socket* socket) {
if (ssl_session_cache_ == nullptr) {
SSL_CTX* ssl_ctx = OpenSSLAdapter::CreateContext(ssl_mode_, true);
if (ssl_ctx == nullptr) {
return nullptr;
}
// The OpenSSLSessionCache will upref the ssl_ctx.
ssl_session_cache_ =
std::make_unique<OpenSSLSessionCache>(ssl_mode_, ssl_ctx);
SSL_CTX_free(ssl_ctx);
}
OpenSSLAdapter* ssl_adapter =
new OpenSSLAdapter(socket, ssl_session_cache_.get(), ssl_cert_verifier_);
ssl_adapter->SetRole(ssl_role_);
ssl_adapter->SetIgnoreBadCert(ignore_bad_cert_);
if (identity_) {
ssl_adapter->SetIdentity(identity_->Clone());
}
return ssl_adapter;
}
OpenSSLAdapter::EarlyExitCatcher::EarlyExitCatcher(OpenSSLAdapter& adapter_ptr)
: adapter_ptr_(adapter_ptr) {}
void OpenSSLAdapter::EarlyExitCatcher::disable() {
disabled_ = true;
}
OpenSSLAdapter::EarlyExitCatcher::~EarlyExitCatcher() {
if (!disabled_) {
adapter_ptr_.Cleanup();
}
}
} // namespace rtc