blob: 02d8afa49648b2adb627cc6a944f183be1ebd0c8 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/video_coding/jitter_buffer.h"
#include <assert.h>
#include <algorithm>
#include <limits>
#include <utility>
#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/trace_event.h"
#include "webrtc/modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "webrtc/modules/video_coding/include/video_coding.h"
#include "webrtc/modules/video_coding/frame_buffer.h"
#include "webrtc/modules/video_coding/inter_frame_delay.h"
#include "webrtc/modules/video_coding/internal_defines.h"
#include "webrtc/modules/video_coding/jitter_buffer_common.h"
#include "webrtc/modules/video_coding/jitter_estimator.h"
#include "webrtc/modules/video_coding/packet.h"
#include "webrtc/system_wrappers/include/clock.h"
#include "webrtc/system_wrappers/include/critical_section_wrapper.h"
#include "webrtc/system_wrappers/include/event_wrapper.h"
#include "webrtc/system_wrappers/include/field_trial.h"
#include "webrtc/system_wrappers/include/metrics.h"
namespace webrtc {
// Interval for updating SS data.
static const uint32_t kSsCleanupIntervalSec = 60;
// Use this rtt if no value has been reported.
static const int64_t kDefaultRtt = 200;
// Request a keyframe if no continuous frame has been received for this
// number of milliseconds and NACKs are disabled.
static const int64_t kMaxDiscontinuousFramesTime = 1000;
typedef std::pair<uint32_t, VCMFrameBuffer*> FrameListPair;
bool IsKeyFrame(FrameListPair pair) {
return pair.second->FrameType() == kVideoFrameKey;
}
bool HasNonEmptyState(FrameListPair pair) {
return pair.second->GetState() != kStateEmpty;
}
void FrameList::InsertFrame(VCMFrameBuffer* frame) {
insert(rbegin().base(), FrameListPair(frame->TimeStamp(), frame));
}
VCMFrameBuffer* FrameList::PopFrame(uint32_t timestamp) {
FrameList::iterator it = find(timestamp);
if (it == end())
return NULL;
VCMFrameBuffer* frame = it->second;
erase(it);
return frame;
}
VCMFrameBuffer* FrameList::Front() const {
return begin()->second;
}
VCMFrameBuffer* FrameList::Back() const {
return rbegin()->second;
}
int FrameList::RecycleFramesUntilKeyFrame(FrameList::iterator* key_frame_it,
UnorderedFrameList* free_frames) {
int drop_count = 0;
FrameList::iterator it = begin();
while (!empty()) {
// Throw at least one frame.
it->second->Reset();
free_frames->push_back(it->second);
erase(it++);
++drop_count;
if (it != end() && it->second->FrameType() == kVideoFrameKey) {
*key_frame_it = it;
return drop_count;
}
}
*key_frame_it = end();
return drop_count;
}
void FrameList::CleanUpOldOrEmptyFrames(VCMDecodingState* decoding_state,
UnorderedFrameList* free_frames) {
while (!empty()) {
VCMFrameBuffer* oldest_frame = Front();
bool remove_frame = false;
if (oldest_frame->GetState() == kStateEmpty && size() > 1) {
// This frame is empty, try to update the last decoded state and drop it
// if successful.
remove_frame = decoding_state->UpdateEmptyFrame(oldest_frame);
} else {
remove_frame = decoding_state->IsOldFrame(oldest_frame);
}
if (!remove_frame) {
break;
}
free_frames->push_back(oldest_frame);
TRACE_EVENT_INSTANT1("webrtc", "JB::OldOrEmptyFrameDropped", "timestamp",
oldest_frame->TimeStamp());
erase(begin());
}
}
void FrameList::Reset(UnorderedFrameList* free_frames) {
while (!empty()) {
begin()->second->Reset();
free_frames->push_back(begin()->second);
erase(begin());
}
}
bool Vp9SsMap::Insert(const VCMPacket& packet) {
if (!packet.video_header.codecHeader.VP9.ss_data_available)
return false;
ss_map_[packet.timestamp] = packet.video_header.codecHeader.VP9.gof;
return true;
}
void Vp9SsMap::Reset() {
ss_map_.clear();
}
bool Vp9SsMap::Find(uint32_t timestamp, SsMap::iterator* it_out) {
bool found = false;
for (SsMap::iterator it = ss_map_.begin(); it != ss_map_.end(); ++it) {
if (it->first == timestamp || IsNewerTimestamp(timestamp, it->first)) {
*it_out = it;
found = true;
}
}
return found;
}
void Vp9SsMap::RemoveOld(uint32_t timestamp) {
if (!TimeForCleanup(timestamp))
return;
SsMap::iterator it;
if (!Find(timestamp, &it))
return;
ss_map_.erase(ss_map_.begin(), it);
AdvanceFront(timestamp);
}
bool Vp9SsMap::TimeForCleanup(uint32_t timestamp) const {
if (ss_map_.empty() || !IsNewerTimestamp(timestamp, ss_map_.begin()->first))
return false;
uint32_t diff = timestamp - ss_map_.begin()->first;
return diff / kVideoPayloadTypeFrequency >= kSsCleanupIntervalSec;
}
void Vp9SsMap::AdvanceFront(uint32_t timestamp) {
RTC_DCHECK(!ss_map_.empty());
GofInfoVP9 gof = ss_map_.begin()->second;
ss_map_.erase(ss_map_.begin());
ss_map_[timestamp] = gof;
}
// TODO(asapersson): Update according to updates in RTP payload profile.
bool Vp9SsMap::UpdatePacket(VCMPacket* packet) {
uint8_t gof_idx = packet->video_header.codecHeader.VP9.gof_idx;
if (gof_idx == kNoGofIdx)
return false; // No update needed.
SsMap::iterator it;
if (!Find(packet->timestamp, &it))
return false; // Corresponding SS not yet received.
if (gof_idx >= it->second.num_frames_in_gof)
return false; // Assume corresponding SS not yet received.
RTPVideoHeaderVP9* vp9 = &packet->video_header.codecHeader.VP9;
vp9->temporal_idx = it->second.temporal_idx[gof_idx];
vp9->temporal_up_switch = it->second.temporal_up_switch[gof_idx];
// TODO(asapersson): Set vp9.ref_picture_id[i] and add usage.
vp9->num_ref_pics = it->second.num_ref_pics[gof_idx];
for (uint8_t i = 0; i < it->second.num_ref_pics[gof_idx]; ++i) {
vp9->pid_diff[i] = it->second.pid_diff[gof_idx][i];
}
return true;
}
void Vp9SsMap::UpdateFrames(FrameList* frames) {
for (const auto& frame_it : *frames) {
uint8_t gof_idx =
frame_it.second->CodecSpecific()->codecSpecific.VP9.gof_idx;
if (gof_idx == kNoGofIdx) {
continue;
}
SsMap::iterator ss_it;
if (Find(frame_it.second->TimeStamp(), &ss_it)) {
if (gof_idx >= ss_it->second.num_frames_in_gof) {
continue; // Assume corresponding SS not yet received.
}
frame_it.second->SetGofInfo(ss_it->second, gof_idx);
}
}
}
VCMJitterBuffer::VCMJitterBuffer(Clock* clock,
std::unique_ptr<EventWrapper> event,
NackSender* nack_sender,
KeyFrameRequestSender* keyframe_request_sender)
: clock_(clock),
running_(false),
crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
frame_event_(std::move(event)),
max_number_of_frames_(kStartNumberOfFrames),
free_frames_(),
decodable_frames_(),
incomplete_frames_(),
last_decoded_state_(),
first_packet_since_reset_(true),
stats_callback_(nullptr),
incoming_frame_rate_(0),
incoming_frame_count_(0),
time_last_incoming_frame_count_(0),
incoming_bit_count_(0),
incoming_bit_rate_(0),
num_consecutive_old_packets_(0),
num_packets_(0),
num_duplicated_packets_(0),
num_discarded_packets_(0),
time_first_packet_ms_(0),
jitter_estimate_(clock),
inter_frame_delay_(clock_->TimeInMilliseconds()),
rtt_ms_(kDefaultRtt),
nack_mode_(kNoNack),
low_rtt_nack_threshold_ms_(-1),
high_rtt_nack_threshold_ms_(-1),
missing_sequence_numbers_(SequenceNumberLessThan()),
latest_received_sequence_number_(0),
max_nack_list_size_(0),
max_packet_age_to_nack_(0),
max_incomplete_time_ms_(0),
decode_error_mode_(kNoErrors),
average_packets_per_frame_(0.0f),
frame_counter_(0) {
for (int i = 0; i < kStartNumberOfFrames; i++)
free_frames_.push_back(new VCMFrameBuffer());
}
VCMJitterBuffer::~VCMJitterBuffer() {
Stop();
for (UnorderedFrameList::iterator it = free_frames_.begin();
it != free_frames_.end(); ++it) {
delete *it;
}
for (FrameList::iterator it = incomplete_frames_.begin();
it != incomplete_frames_.end(); ++it) {
delete it->second;
}
for (FrameList::iterator it = decodable_frames_.begin();
it != decodable_frames_.end(); ++it) {
delete it->second;
}
delete crit_sect_;
}
void VCMJitterBuffer::UpdateHistograms() {
if (num_packets_ <= 0 || !running_) {
return;
}
int64_t elapsed_sec =
(clock_->TimeInMilliseconds() - time_first_packet_ms_) / 1000;
if (elapsed_sec < metrics::kMinRunTimeInSeconds) {
return;
}
RTC_LOGGED_HISTOGRAM_PERCENTAGE("WebRTC.Video.DiscardedPacketsInPercent",
num_discarded_packets_ * 100 / num_packets_);
RTC_LOGGED_HISTOGRAM_PERCENTAGE("WebRTC.Video.DuplicatedPacketsInPercent",
num_duplicated_packets_ * 100 / num_packets_);
int total_frames =
receive_statistics_.key_frames + receive_statistics_.delta_frames;
if (total_frames > 0) {
RTC_LOGGED_HISTOGRAM_COUNTS_100(
"WebRTC.Video.CompleteFramesReceivedPerSecond",
static_cast<int>((total_frames / elapsed_sec) + 0.5f));
RTC_LOGGED_HISTOGRAM_COUNTS_1000(
"WebRTC.Video.KeyFramesReceivedInPermille",
static_cast<int>(
(receive_statistics_.key_frames * 1000.0f / total_frames) + 0.5f));
}
}
void VCMJitterBuffer::Start() {
CriticalSectionScoped cs(crit_sect_);
running_ = true;
incoming_frame_count_ = 0;
incoming_frame_rate_ = 0;
incoming_bit_count_ = 0;
incoming_bit_rate_ = 0;
time_last_incoming_frame_count_ = clock_->TimeInMilliseconds();
receive_statistics_ = FrameCounts();
num_consecutive_old_packets_ = 0;
num_packets_ = 0;
num_duplicated_packets_ = 0;
num_discarded_packets_ = 0;
time_first_packet_ms_ = 0;
// Start in a non-signaled state.
waiting_for_completion_.frame_size = 0;
waiting_for_completion_.timestamp = 0;
waiting_for_completion_.latest_packet_time = -1;
first_packet_since_reset_ = true;
rtt_ms_ = kDefaultRtt;
last_decoded_state_.Reset();
decodable_frames_.Reset(&free_frames_);
incomplete_frames_.Reset(&free_frames_);
}
void VCMJitterBuffer::Stop() {
CriticalSectionScoped cs(crit_sect_);
UpdateHistograms();
running_ = false;
last_decoded_state_.Reset();
// Make sure we wake up any threads waiting on these events.
frame_event_->Set();
}
bool VCMJitterBuffer::Running() const {
CriticalSectionScoped cs(crit_sect_);
return running_;
}
void VCMJitterBuffer::Flush() {
CriticalSectionScoped cs(crit_sect_);
decodable_frames_.Reset(&free_frames_);
incomplete_frames_.Reset(&free_frames_);
last_decoded_state_.Reset(); // TODO(mikhal): sync reset.
num_consecutive_old_packets_ = 0;
// Also reset the jitter and delay estimates
jitter_estimate_.Reset();
inter_frame_delay_.Reset(clock_->TimeInMilliseconds());
waiting_for_completion_.frame_size = 0;
waiting_for_completion_.timestamp = 0;
waiting_for_completion_.latest_packet_time = -1;
first_packet_since_reset_ = true;
missing_sequence_numbers_.clear();
}
// Get received key and delta frames
FrameCounts VCMJitterBuffer::FrameStatistics() const {
CriticalSectionScoped cs(crit_sect_);
return receive_statistics_;
}
int VCMJitterBuffer::num_packets() const {
CriticalSectionScoped cs(crit_sect_);
return num_packets_;
}
int VCMJitterBuffer::num_duplicated_packets() const {
CriticalSectionScoped cs(crit_sect_);
return num_duplicated_packets_;
}
int VCMJitterBuffer::num_discarded_packets() const {
CriticalSectionScoped cs(crit_sect_);
return num_discarded_packets_;
}
// Calculate framerate and bitrate.
void VCMJitterBuffer::IncomingRateStatistics(unsigned int* framerate,
unsigned int* bitrate) {
assert(framerate);
assert(bitrate);
CriticalSectionScoped cs(crit_sect_);
const int64_t now = clock_->TimeInMilliseconds();
int64_t diff = now - time_last_incoming_frame_count_;
if (diff < 1000 && incoming_frame_rate_ > 0 && incoming_bit_rate_ > 0) {
// Make sure we report something even though less than
// 1 second has passed since last update.
*framerate = incoming_frame_rate_;
*bitrate = incoming_bit_rate_;
} else if (incoming_frame_count_ != 0) {
// We have received frame(s) since last call to this function
// Prepare calculations
if (diff <= 0) {
diff = 1;
}
// we add 0.5f for rounding
float rate = 0.5f + ((incoming_frame_count_ * 1000.0f) / diff);
if (rate < 1.0f) {
rate = 1.0f;
}
// Calculate frame rate
// Let r be rate.
// r(0) = 1000*framecount/delta_time.
// (I.e. frames per second since last calculation.)
// frame_rate = r(0)/2 + r(-1)/2
// (I.e. fr/s average this and the previous calculation.)
*framerate = (incoming_frame_rate_ + static_cast<unsigned int>(rate)) / 2;
incoming_frame_rate_ = static_cast<unsigned int>(rate);
// Calculate bit rate
if (incoming_bit_count_ == 0) {
*bitrate = 0;
} else {
*bitrate =
10 * ((100 * incoming_bit_count_) / static_cast<unsigned int>(diff));
}
incoming_bit_rate_ = *bitrate;
// Reset count
incoming_frame_count_ = 0;
incoming_bit_count_ = 0;
time_last_incoming_frame_count_ = now;
} else {
// No frames since last call
time_last_incoming_frame_count_ = clock_->TimeInMilliseconds();
*framerate = 0;
*bitrate = 0;
incoming_frame_rate_ = 0;
incoming_bit_rate_ = 0;
}
}
// Returns immediately or a |max_wait_time_ms| ms event hang waiting for a
// complete frame, |max_wait_time_ms| decided by caller.
VCMEncodedFrame* VCMJitterBuffer::NextCompleteFrame(uint32_t max_wait_time_ms) {
crit_sect_->Enter();
if (!running_) {
crit_sect_->Leave();
return nullptr;
}
CleanUpOldOrEmptyFrames();
if (decodable_frames_.empty() ||
decodable_frames_.Front()->GetState() != kStateComplete) {
const int64_t end_wait_time_ms =
clock_->TimeInMilliseconds() + max_wait_time_ms;
int64_t wait_time_ms = max_wait_time_ms;
while (wait_time_ms > 0) {
crit_sect_->Leave();
const EventTypeWrapper ret =
frame_event_->Wait(static_cast<uint32_t>(wait_time_ms));
crit_sect_->Enter();
if (ret == kEventSignaled) {
// Are we shutting down the jitter buffer?
if (!running_) {
crit_sect_->Leave();
return nullptr;
}
// Finding oldest frame ready for decoder.
CleanUpOldOrEmptyFrames();
if (decodable_frames_.empty() ||
decodable_frames_.Front()->GetState() != kStateComplete) {
wait_time_ms = end_wait_time_ms - clock_->TimeInMilliseconds();
} else {
break;
}
} else {
break;
}
}
}
if (decodable_frames_.empty() ||
decodable_frames_.Front()->GetState() != kStateComplete) {
crit_sect_->Leave();
return nullptr;
}
VCMEncodedFrame* encoded_frame = decodable_frames_.Front();
crit_sect_->Leave();
return encoded_frame;
}
bool VCMJitterBuffer::NextMaybeIncompleteTimestamp(uint32_t* timestamp) {
CriticalSectionScoped cs(crit_sect_);
if (!running_) {
return false;
}
if (decode_error_mode_ == kNoErrors) {
// No point to continue, as we are not decoding with errors.
return false;
}
CleanUpOldOrEmptyFrames();
VCMFrameBuffer* oldest_frame;
if (decodable_frames_.empty()) {
if (nack_mode_ != kNoNack || incomplete_frames_.size() <= 1) {
return false;
}
oldest_frame = incomplete_frames_.Front();
// Frame will only be removed from buffer if it is complete (or decodable).
if (oldest_frame->GetState() < kStateComplete) {
return false;
}
} else {
oldest_frame = decodable_frames_.Front();
// If we have exactly one frame in the buffer, release it only if it is
// complete. We know decodable_frames_ is not empty due to the previous
// check.
if (decodable_frames_.size() == 1 && incomplete_frames_.empty() &&
oldest_frame->GetState() != kStateComplete) {
return false;
}
}
*timestamp = oldest_frame->TimeStamp();
return true;
}
VCMEncodedFrame* VCMJitterBuffer::ExtractAndSetDecode(uint32_t timestamp) {
CriticalSectionScoped cs(crit_sect_);
if (!running_) {
return NULL;
}
// Extract the frame with the desired timestamp.
VCMFrameBuffer* frame = decodable_frames_.PopFrame(timestamp);
bool continuous = true;
if (!frame) {
frame = incomplete_frames_.PopFrame(timestamp);
if (frame)
continuous = last_decoded_state_.ContinuousFrame(frame);
else
return NULL;
}
TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", timestamp, "Extract");
// Frame pulled out from jitter buffer, update the jitter estimate.
const bool retransmitted = (frame->GetNackCount() > 0);
if (retransmitted) {
if (WaitForRetransmissions())
jitter_estimate_.FrameNacked();
} else if (frame->Length() > 0) {
// Ignore retransmitted and empty frames.
if (waiting_for_completion_.latest_packet_time >= 0) {
UpdateJitterEstimate(waiting_for_completion_, true);
}
if (frame->GetState() == kStateComplete) {
UpdateJitterEstimate(*frame, false);
} else {
// Wait for this one to get complete.
waiting_for_completion_.frame_size = frame->Length();
waiting_for_completion_.latest_packet_time = frame->LatestPacketTimeMs();
waiting_for_completion_.timestamp = frame->TimeStamp();
}
}
// The state must be changed to decoding before cleaning up zero sized
// frames to avoid empty frames being cleaned up and then given to the
// decoder. Propagates the missing_frame bit.
frame->PrepareForDecode(continuous);
// We have a frame - update the last decoded state and nack list.
last_decoded_state_.SetState(frame);
DropPacketsFromNackList(last_decoded_state_.sequence_num());
if ((*frame).IsSessionComplete())
UpdateAveragePacketsPerFrame(frame->NumPackets());
return frame;
}
// Release frame when done with decoding. Should never be used to release
// frames from within the jitter buffer.
void VCMJitterBuffer::ReleaseFrame(VCMEncodedFrame* frame) {
RTC_CHECK(frame != nullptr);
CriticalSectionScoped cs(crit_sect_);
VCMFrameBuffer* frame_buffer = static_cast<VCMFrameBuffer*>(frame);
RecycleFrameBuffer(frame_buffer);
}
// Gets frame to use for this timestamp. If no match, get empty frame.
VCMFrameBufferEnum VCMJitterBuffer::GetFrame(const VCMPacket& packet,
VCMFrameBuffer** frame,
FrameList** frame_list) {
*frame = incomplete_frames_.PopFrame(packet.timestamp);
if (*frame != NULL) {
*frame_list = &incomplete_frames_;
return kNoError;
}
*frame = decodable_frames_.PopFrame(packet.timestamp);
if (*frame != NULL) {
*frame_list = &decodable_frames_;
return kNoError;
}
*frame_list = NULL;
// No match, return empty frame.
*frame = GetEmptyFrame();
if (*frame == NULL) {
// No free frame! Try to reclaim some...
LOG(LS_WARNING) << "Unable to get empty frame; Recycling.";
bool found_key_frame = RecycleFramesUntilKeyFrame();
*frame = GetEmptyFrame();
RTC_CHECK(*frame);
if (!found_key_frame) {
RecycleFrameBuffer(*frame);
return kFlushIndicator;
}
}
(*frame)->Reset();
return kNoError;
}
int64_t VCMJitterBuffer::LastPacketTime(const VCMEncodedFrame* frame,
bool* retransmitted) const {
assert(retransmitted);
CriticalSectionScoped cs(crit_sect_);
const VCMFrameBuffer* frame_buffer =
static_cast<const VCMFrameBuffer*>(frame);
*retransmitted = (frame_buffer->GetNackCount() > 0);
return frame_buffer->LatestPacketTimeMs();
}
VCMFrameBufferEnum VCMJitterBuffer::InsertPacket(const VCMPacket& packet,
bool* retransmitted) {
CriticalSectionScoped cs(crit_sect_);
++num_packets_;
if (num_packets_ == 1) {
time_first_packet_ms_ = clock_->TimeInMilliseconds();
}
// Does this packet belong to an old frame?
if (last_decoded_state_.IsOldPacket(&packet)) {
// Account only for media packets.
if (packet.sizeBytes > 0) {
num_discarded_packets_++;
num_consecutive_old_packets_++;
if (stats_callback_ != NULL)
stats_callback_->OnDiscardedPacketsUpdated(num_discarded_packets_);
}
// Update last decoded sequence number if the packet arrived late and
// belongs to a frame with a timestamp equal to the last decoded
// timestamp.
last_decoded_state_.UpdateOldPacket(&packet);
DropPacketsFromNackList(last_decoded_state_.sequence_num());
// Also see if this old packet made more incomplete frames continuous.
FindAndInsertContinuousFramesWithState(last_decoded_state_);
if (num_consecutive_old_packets_ > kMaxConsecutiveOldPackets) {
LOG(LS_WARNING)
<< num_consecutive_old_packets_
<< " consecutive old packets received. Flushing the jitter buffer.";
Flush();
return kFlushIndicator;
}
return kOldPacket;
}
num_consecutive_old_packets_ = 0;
VCMFrameBuffer* frame;
FrameList* frame_list;
const VCMFrameBufferEnum error = GetFrame(packet, &frame, &frame_list);
if (error != kNoError)
return error;
int64_t now_ms = clock_->TimeInMilliseconds();
// We are keeping track of the first and latest seq numbers, and
// the number of wraps to be able to calculate how many packets we expect.
if (first_packet_since_reset_) {
// Now it's time to start estimating jitter
// reset the delay estimate.
inter_frame_delay_.Reset(now_ms);
}
// Empty packets may bias the jitter estimate (lacking size component),
// therefore don't let empty packet trigger the following updates:
if (packet.frameType != kEmptyFrame) {
if (waiting_for_completion_.timestamp == packet.timestamp) {
// This can get bad if we have a lot of duplicate packets,
// we will then count some packet multiple times.
waiting_for_completion_.frame_size += packet.sizeBytes;
waiting_for_completion_.latest_packet_time = now_ms;
} else if (waiting_for_completion_.latest_packet_time >= 0 &&
waiting_for_completion_.latest_packet_time + 2000 <= now_ms) {
// A packet should never be more than two seconds late
UpdateJitterEstimate(waiting_for_completion_, true);
waiting_for_completion_.latest_packet_time = -1;
waiting_for_completion_.frame_size = 0;
waiting_for_completion_.timestamp = 0;
}
}
VCMFrameBufferStateEnum previous_state = frame->GetState();
// Insert packet.
FrameData frame_data;
frame_data.rtt_ms = rtt_ms_;
frame_data.rolling_average_packets_per_frame = average_packets_per_frame_;
VCMFrameBufferEnum buffer_state =
frame->InsertPacket(packet, now_ms, decode_error_mode_, frame_data);
if (previous_state != kStateComplete) {
TRACE_EVENT_ASYNC_BEGIN1("webrtc", "Video", frame->TimeStamp(), "timestamp",
frame->TimeStamp());
}
if (buffer_state > 0) {
incoming_bit_count_ += packet.sizeBytes << 3;
if (first_packet_since_reset_) {
latest_received_sequence_number_ = packet.seqNum;
first_packet_since_reset_ = false;
} else {
if (IsPacketRetransmitted(packet)) {
frame->IncrementNackCount();
}
if (!UpdateNackList(packet.seqNum) &&
packet.frameType != kVideoFrameKey) {
buffer_state = kFlushIndicator;
}
latest_received_sequence_number_ =
LatestSequenceNumber(latest_received_sequence_number_, packet.seqNum);
}
}
// Is the frame already in the decodable list?
bool continuous = IsContinuous(*frame);
switch (buffer_state) {
case kGeneralError:
case kTimeStampError:
case kSizeError: {
RecycleFrameBuffer(frame);
break;
}
case kCompleteSession: {
if (previous_state != kStateDecodable &&
previous_state != kStateComplete) {
CountFrame(*frame);
if (continuous) {
// Signal that we have a complete session.
frame_event_->Set();
}
}
FALLTHROUGH();
}
// Note: There is no break here - continuing to kDecodableSession.
case kDecodableSession: {
*retransmitted = (frame->GetNackCount() > 0);
if (continuous) {
decodable_frames_.InsertFrame(frame);
FindAndInsertContinuousFrames(*frame);
} else {
incomplete_frames_.InsertFrame(frame);
// If NACKs are enabled, keyframes are triggered by |GetNackList|.
if (nack_mode_ == kNoNack &&
NonContinuousOrIncompleteDuration() >
90 * kMaxDiscontinuousFramesTime) {
return kFlushIndicator;
}
}
break;
}
case kIncomplete: {
if (frame->GetState() == kStateEmpty &&
last_decoded_state_.UpdateEmptyFrame(frame)) {
RecycleFrameBuffer(frame);
return kNoError;
} else {
incomplete_frames_.InsertFrame(frame);
// If NACKs are enabled, keyframes are triggered by |GetNackList|.
if (nack_mode_ == kNoNack &&
NonContinuousOrIncompleteDuration() >
90 * kMaxDiscontinuousFramesTime) {
return kFlushIndicator;
}
}
break;
}
case kNoError:
case kOutOfBoundsPacket:
case kDuplicatePacket: {
// Put back the frame where it came from.
if (frame_list != NULL) {
frame_list->InsertFrame(frame);
} else {
RecycleFrameBuffer(frame);
}
++num_duplicated_packets_;
break;
}
case kFlushIndicator:
RecycleFrameBuffer(frame);
return kFlushIndicator;
default:
assert(false);
}
return buffer_state;
}
bool VCMJitterBuffer::IsContinuousInState(
const VCMFrameBuffer& frame,
const VCMDecodingState& decoding_state) const {
// Is this frame (complete or decodable) and continuous?
// kStateDecodable will never be set when decode_error_mode_ is false
// as SessionInfo determines this state based on the error mode (and frame
// completeness).
return (frame.GetState() == kStateComplete ||
frame.GetState() == kStateDecodable) &&
decoding_state.ContinuousFrame(&frame);
}
bool VCMJitterBuffer::IsContinuous(const VCMFrameBuffer& frame) const {
if (IsContinuousInState(frame, last_decoded_state_)) {
return true;
}
VCMDecodingState decoding_state;
decoding_state.CopyFrom(last_decoded_state_);
for (FrameList::const_iterator it = decodable_frames_.begin();
it != decodable_frames_.end(); ++it) {
VCMFrameBuffer* decodable_frame = it->second;
if (IsNewerTimestamp(decodable_frame->TimeStamp(), frame.TimeStamp())) {
break;
}
decoding_state.SetState(decodable_frame);
if (IsContinuousInState(frame, decoding_state)) {
return true;
}
}
return false;
}
void VCMJitterBuffer::FindAndInsertContinuousFrames(
const VCMFrameBuffer& new_frame) {
VCMDecodingState decoding_state;
decoding_state.CopyFrom(last_decoded_state_);
decoding_state.SetState(&new_frame);
FindAndInsertContinuousFramesWithState(decoding_state);
}
void VCMJitterBuffer::FindAndInsertContinuousFramesWithState(
const VCMDecodingState& original_decoded_state) {
// Copy original_decoded_state so we can move the state forward with each
// decodable frame we find.
VCMDecodingState decoding_state;
decoding_state.CopyFrom(original_decoded_state);
// When temporal layers are available, we search for a complete or decodable
// frame until we hit one of the following:
// 1. Continuous base or sync layer.
// 2. The end of the list was reached.
for (FrameList::iterator it = incomplete_frames_.begin();
it != incomplete_frames_.end();) {
VCMFrameBuffer* frame = it->second;
if (IsNewerTimestamp(original_decoded_state.time_stamp(),
frame->TimeStamp())) {
++it;
continue;
}
if (IsContinuousInState(*frame, decoding_state)) {
decodable_frames_.InsertFrame(frame);
incomplete_frames_.erase(it++);
decoding_state.SetState(frame);
} else if (frame->TemporalId() <= 0) {
break;
} else {
++it;
}
}
}
uint32_t VCMJitterBuffer::EstimatedJitterMs() {
CriticalSectionScoped cs(crit_sect_);
// Compute RTT multiplier for estimation.
// low_rtt_nackThresholdMs_ == -1 means no FEC.
double rtt_mult = 1.0f;
if (low_rtt_nack_threshold_ms_ >= 0 &&
rtt_ms_ >= low_rtt_nack_threshold_ms_) {
// For RTTs above low_rtt_nack_threshold_ms_ we don't apply extra delay
// when waiting for retransmissions.
rtt_mult = 0.0f;
}
return jitter_estimate_.GetJitterEstimate(rtt_mult);
}
void VCMJitterBuffer::UpdateRtt(int64_t rtt_ms) {
CriticalSectionScoped cs(crit_sect_);
rtt_ms_ = rtt_ms;
jitter_estimate_.UpdateRtt(rtt_ms);
if (!WaitForRetransmissions())
jitter_estimate_.ResetNackCount();
}
void VCMJitterBuffer::SetNackMode(VCMNackMode mode,
int64_t low_rtt_nack_threshold_ms,
int64_t high_rtt_nack_threshold_ms) {
CriticalSectionScoped cs(crit_sect_);
nack_mode_ = mode;
if (mode == kNoNack) {
missing_sequence_numbers_.clear();
}
assert(low_rtt_nack_threshold_ms >= -1 && high_rtt_nack_threshold_ms >= -1);
assert(high_rtt_nack_threshold_ms == -1 ||
low_rtt_nack_threshold_ms <= high_rtt_nack_threshold_ms);
assert(low_rtt_nack_threshold_ms > -1 || high_rtt_nack_threshold_ms == -1);
low_rtt_nack_threshold_ms_ = low_rtt_nack_threshold_ms;
high_rtt_nack_threshold_ms_ = high_rtt_nack_threshold_ms;
// Don't set a high start rtt if high_rtt_nack_threshold_ms_ is used, to not
// disable NACK in |kNack| mode.
if (rtt_ms_ == kDefaultRtt && high_rtt_nack_threshold_ms_ != -1) {
rtt_ms_ = 0;
}
if (!WaitForRetransmissions()) {
jitter_estimate_.ResetNackCount();
}
}
void VCMJitterBuffer::SetNackSettings(size_t max_nack_list_size,
int max_packet_age_to_nack,
int max_incomplete_time_ms) {
CriticalSectionScoped cs(crit_sect_);
assert(max_packet_age_to_nack >= 0);
assert(max_incomplete_time_ms_ >= 0);
max_nack_list_size_ = max_nack_list_size;
max_packet_age_to_nack_ = max_packet_age_to_nack;
max_incomplete_time_ms_ = max_incomplete_time_ms;
}
VCMNackMode VCMJitterBuffer::nack_mode() const {
CriticalSectionScoped cs(crit_sect_);
return nack_mode_;
}
int VCMJitterBuffer::NonContinuousOrIncompleteDuration() {
if (incomplete_frames_.empty()) {
return 0;
}
uint32_t start_timestamp = incomplete_frames_.Front()->TimeStamp();
if (!decodable_frames_.empty()) {
start_timestamp = decodable_frames_.Back()->TimeStamp();
}
return incomplete_frames_.Back()->TimeStamp() - start_timestamp;
}
uint16_t VCMJitterBuffer::EstimatedLowSequenceNumber(
const VCMFrameBuffer& frame) const {
assert(frame.GetLowSeqNum() >= 0);
if (frame.HaveFirstPacket())
return frame.GetLowSeqNum();
// This estimate is not accurate if more than one packet with lower sequence
// number is lost.
return frame.GetLowSeqNum() - 1;
}
std::vector<uint16_t> VCMJitterBuffer::GetNackList(bool* request_key_frame) {
CriticalSectionScoped cs(crit_sect_);
*request_key_frame = false;
if (nack_mode_ == kNoNack) {
return std::vector<uint16_t>();
}
if (last_decoded_state_.in_initial_state()) {
VCMFrameBuffer* next_frame = NextFrame();
const bool first_frame_is_key = next_frame &&
next_frame->FrameType() == kVideoFrameKey &&
next_frame->HaveFirstPacket();
if (!first_frame_is_key) {
bool have_non_empty_frame =
decodable_frames_.end() != find_if(decodable_frames_.begin(),
decodable_frames_.end(),
HasNonEmptyState);
if (!have_non_empty_frame) {
have_non_empty_frame =
incomplete_frames_.end() != find_if(incomplete_frames_.begin(),
incomplete_frames_.end(),
HasNonEmptyState);
}
bool found_key_frame = RecycleFramesUntilKeyFrame();
if (!found_key_frame) {
*request_key_frame = have_non_empty_frame;
return std::vector<uint16_t>();
}
}
}
if (TooLargeNackList()) {
*request_key_frame = !HandleTooLargeNackList();
}
if (max_incomplete_time_ms_ > 0) {
int non_continuous_incomplete_duration =
NonContinuousOrIncompleteDuration();
if (non_continuous_incomplete_duration > 90 * max_incomplete_time_ms_) {
LOG_F(LS_WARNING) << "Too long non-decodable duration: "
<< non_continuous_incomplete_duration << " > "
<< 90 * max_incomplete_time_ms_;
FrameList::reverse_iterator rit = find_if(
incomplete_frames_.rbegin(), incomplete_frames_.rend(), IsKeyFrame);
if (rit == incomplete_frames_.rend()) {
// Request a key frame if we don't have one already.
*request_key_frame = true;
return std::vector<uint16_t>();
} else {
// Skip to the last key frame. If it's incomplete we will start
// NACKing it.
// Note that the estimated low sequence number is correct for VP8
// streams because only the first packet of a key frame is marked.
last_decoded_state_.Reset();
DropPacketsFromNackList(EstimatedLowSequenceNumber(*rit->second));
}
}
}
std::vector<uint16_t> nack_list(missing_sequence_numbers_.begin(),
missing_sequence_numbers_.end());
return nack_list;
}
void VCMJitterBuffer::SetDecodeErrorMode(VCMDecodeErrorMode error_mode) {
CriticalSectionScoped cs(crit_sect_);
decode_error_mode_ = error_mode;
}
VCMFrameBuffer* VCMJitterBuffer::NextFrame() const {
if (!decodable_frames_.empty())
return decodable_frames_.Front();
if (!incomplete_frames_.empty())
return incomplete_frames_.Front();
return NULL;
}
bool VCMJitterBuffer::UpdateNackList(uint16_t sequence_number) {
if (nack_mode_ == kNoNack) {
return true;
}
// Make sure we don't add packets which are already too old to be decoded.
if (!last_decoded_state_.in_initial_state()) {
latest_received_sequence_number_ = LatestSequenceNumber(
latest_received_sequence_number_, last_decoded_state_.sequence_num());
}
if (IsNewerSequenceNumber(sequence_number,
latest_received_sequence_number_)) {
// Push any missing sequence numbers to the NACK list.
for (uint16_t i = latest_received_sequence_number_ + 1;
IsNewerSequenceNumber(sequence_number, i); ++i) {
missing_sequence_numbers_.insert(missing_sequence_numbers_.end(), i);
TRACE_EVENT_INSTANT1(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"), "AddNack",
"seqnum", i);
}
if (TooLargeNackList() && !HandleTooLargeNackList()) {
LOG(LS_WARNING) << "Requesting key frame due to too large NACK list.";
return false;
}
if (MissingTooOldPacket(sequence_number) &&
!HandleTooOldPackets(sequence_number)) {
LOG(LS_WARNING) << "Requesting key frame due to missing too old packets";
return false;
}
} else {
missing_sequence_numbers_.erase(sequence_number);
TRACE_EVENT_INSTANT1(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"), "RemoveNack",
"seqnum", sequence_number);
}
return true;
}
bool VCMJitterBuffer::TooLargeNackList() const {
return missing_sequence_numbers_.size() > max_nack_list_size_;
}
bool VCMJitterBuffer::HandleTooLargeNackList() {
// Recycle frames until the NACK list is small enough. It is likely cheaper to
// request a key frame than to retransmit this many missing packets.
LOG_F(LS_WARNING) << "NACK list has grown too large: "
<< missing_sequence_numbers_.size() << " > "
<< max_nack_list_size_;
bool key_frame_found = false;
while (TooLargeNackList()) {
key_frame_found = RecycleFramesUntilKeyFrame();
}
return key_frame_found;
}
bool VCMJitterBuffer::MissingTooOldPacket(
uint16_t latest_sequence_number) const {
if (missing_sequence_numbers_.empty()) {
return false;
}
const uint16_t age_of_oldest_missing_packet =
latest_sequence_number - *missing_sequence_numbers_.begin();
// Recycle frames if the NACK list contains too old sequence numbers as
// the packets may have already been dropped by the sender.
return age_of_oldest_missing_packet > max_packet_age_to_nack_;
}
bool VCMJitterBuffer::HandleTooOldPackets(uint16_t latest_sequence_number) {
bool key_frame_found = false;
const uint16_t age_of_oldest_missing_packet =
latest_sequence_number - *missing_sequence_numbers_.begin();
LOG_F(LS_WARNING) << "NACK list contains too old sequence numbers: "
<< age_of_oldest_missing_packet << " > "
<< max_packet_age_to_nack_;
while (MissingTooOldPacket(latest_sequence_number)) {
key_frame_found = RecycleFramesUntilKeyFrame();
}
return key_frame_found;
}
void VCMJitterBuffer::DropPacketsFromNackList(
uint16_t last_decoded_sequence_number) {
// Erase all sequence numbers from the NACK list which we won't need any
// longer.
missing_sequence_numbers_.erase(
missing_sequence_numbers_.begin(),
missing_sequence_numbers_.upper_bound(last_decoded_sequence_number));
}
void VCMJitterBuffer::RegisterStatsCallback(
VCMReceiveStatisticsCallback* callback) {
CriticalSectionScoped cs(crit_sect_);
stats_callback_ = callback;
}
VCMFrameBuffer* VCMJitterBuffer::GetEmptyFrame() {
if (free_frames_.empty()) {
if (!TryToIncreaseJitterBufferSize()) {
return NULL;
}
}
VCMFrameBuffer* frame = free_frames_.front();
free_frames_.pop_front();
return frame;
}
bool VCMJitterBuffer::TryToIncreaseJitterBufferSize() {
if (max_number_of_frames_ >= kMaxNumberOfFrames)
return false;
free_frames_.push_back(new VCMFrameBuffer());
++max_number_of_frames_;
TRACE_COUNTER1("webrtc", "JBMaxFrames", max_number_of_frames_);
return true;
}
// Recycle oldest frames up to a key frame, used if jitter buffer is completely
// full.
bool VCMJitterBuffer::RecycleFramesUntilKeyFrame() {
// First release incomplete frames, and only release decodable frames if there
// are no incomplete ones.
FrameList::iterator key_frame_it;
bool key_frame_found = false;
int dropped_frames = 0;
dropped_frames += incomplete_frames_.RecycleFramesUntilKeyFrame(
&key_frame_it, &free_frames_);
key_frame_found = key_frame_it != incomplete_frames_.end();
if (dropped_frames == 0) {
dropped_frames += decodable_frames_.RecycleFramesUntilKeyFrame(
&key_frame_it, &free_frames_);
key_frame_found = key_frame_it != decodable_frames_.end();
}
TRACE_EVENT_INSTANT0("webrtc", "JB::RecycleFramesUntilKeyFrame");
if (key_frame_found) {
LOG(LS_INFO) << "Found key frame while dropping frames.";
// Reset last decoded state to make sure the next frame decoded is a key
// frame, and start NACKing from here.
last_decoded_state_.Reset();
DropPacketsFromNackList(EstimatedLowSequenceNumber(*key_frame_it->second));
} else if (decodable_frames_.empty()) {
// All frames dropped. Reset the decoding state and clear missing sequence
// numbers as we're starting fresh.
last_decoded_state_.Reset();
missing_sequence_numbers_.clear();
}
return key_frame_found;
}
// Must be called under the critical section |crit_sect_|.
void VCMJitterBuffer::CountFrame(const VCMFrameBuffer& frame) {
incoming_frame_count_++;
if (frame.FrameType() == kVideoFrameKey) {
TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", frame.TimeStamp(),
"KeyComplete");
} else {
TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", frame.TimeStamp(),
"DeltaComplete");
}
// Update receive statistics. We count all layers, thus when you use layers
// adding all key and delta frames might differ from frame count.
if (frame.IsSessionComplete()) {
if (frame.FrameType() == kVideoFrameKey) {
++receive_statistics_.key_frames;
if (receive_statistics_.key_frames == 1) {
LOG(LS_INFO) << "Received first complete key frame";
}
} else {
++receive_statistics_.delta_frames;
}
if (stats_callback_ != NULL)
stats_callback_->OnFrameCountsUpdated(receive_statistics_);
}
}
void VCMJitterBuffer::UpdateAveragePacketsPerFrame(int current_number_packets) {
if (frame_counter_ > kFastConvergeThreshold) {
average_packets_per_frame_ =
average_packets_per_frame_ * (1 - kNormalConvergeMultiplier) +
current_number_packets * kNormalConvergeMultiplier;
} else if (frame_counter_ > 0) {
average_packets_per_frame_ =
average_packets_per_frame_ * (1 - kFastConvergeMultiplier) +
current_number_packets * kFastConvergeMultiplier;
frame_counter_++;
} else {
average_packets_per_frame_ = current_number_packets;
frame_counter_++;
}
}
// Must be called under the critical section |crit_sect_|.
void VCMJitterBuffer::CleanUpOldOrEmptyFrames() {
decodable_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
&free_frames_);
incomplete_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
&free_frames_);
if (!last_decoded_state_.in_initial_state()) {
DropPacketsFromNackList(last_decoded_state_.sequence_num());
}
}
// Must be called from within |crit_sect_|.
bool VCMJitterBuffer::IsPacketRetransmitted(const VCMPacket& packet) const {
return missing_sequence_numbers_.find(packet.seqNum) !=
missing_sequence_numbers_.end();
}
// Must be called under the critical section |crit_sect_|. Should never be
// called with retransmitted frames, they must be filtered out before this
// function is called.
void VCMJitterBuffer::UpdateJitterEstimate(const VCMJitterSample& sample,
bool incomplete_frame) {
if (sample.latest_packet_time == -1) {
return;
}
UpdateJitterEstimate(sample.latest_packet_time, sample.timestamp,
sample.frame_size, incomplete_frame);
}
// Must be called under the critical section crit_sect_. Should never be
// called with retransmitted frames, they must be filtered out before this
// function is called.
void VCMJitterBuffer::UpdateJitterEstimate(const VCMFrameBuffer& frame,
bool incomplete_frame) {
if (frame.LatestPacketTimeMs() == -1) {
return;
}
// No retransmitted frames should be a part of the jitter
// estimate.
UpdateJitterEstimate(frame.LatestPacketTimeMs(), frame.TimeStamp(),
frame.Length(), incomplete_frame);
}
// Must be called under the critical section |crit_sect_|. Should never be
// called with retransmitted frames, they must be filtered out before this
// function is called.
void VCMJitterBuffer::UpdateJitterEstimate(int64_t latest_packet_time_ms,
uint32_t timestamp,
unsigned int frame_size,
bool incomplete_frame) {
if (latest_packet_time_ms == -1) {
return;
}
int64_t frame_delay;
bool not_reordered = inter_frame_delay_.CalculateDelay(
timestamp, &frame_delay, latest_packet_time_ms);
// Filter out frames which have been reordered in time by the network
if (not_reordered) {
// Update the jitter estimate with the new samples
jitter_estimate_.UpdateEstimate(frame_delay, frame_size, incomplete_frame);
}
}
bool VCMJitterBuffer::WaitForRetransmissions() {
if (nack_mode_ == kNoNack) {
// NACK disabled -> don't wait for retransmissions.
return false;
}
// Evaluate if the RTT is higher than |high_rtt_nack_threshold_ms_|, and in
// that case we don't wait for retransmissions.
if (high_rtt_nack_threshold_ms_ >= 0 &&
rtt_ms_ >= high_rtt_nack_threshold_ms_) {
return false;
}
return true;
}
void VCMJitterBuffer::RecycleFrameBuffer(VCMFrameBuffer* frame) {
frame->Reset();
free_frames_.push_back(frame);
}
} // namespace webrtc