blob: ec5fc8b3b61c8a12a86075e915f98a265457bce9 [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the resampling by two functions.
* The description header can be found in signal_processing_library.h
*
*/
#if defined(MIPS32_LE)
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
// allpass filter coefficients.
static const uint16_t kResampleAllpass1[3] = {3284, 24441, 49528};
static const uint16_t kResampleAllpass2[3] = {12199, 37471, 60255};
// Multiply a 32-bit value with a 16-bit value and accumulate to another input:
#define MUL_ACCUM_1(a, b, c) WEBRTC_SPL_SCALEDIFF32(a, b, c)
#define MUL_ACCUM_2(a, b, c) WEBRTC_SPL_SCALEDIFF32(a, b, c)
// decimator
void WebRtcSpl_DownsampleBy2(const int16_t* in,
size_t len,
int16_t* out,
int32_t* filtState) {
int32_t out32;
size_t i, len1;
register int32_t state0 = filtState[0];
register int32_t state1 = filtState[1];
register int32_t state2 = filtState[2];
register int32_t state3 = filtState[3];
register int32_t state4 = filtState[4];
register int32_t state5 = filtState[5];
register int32_t state6 = filtState[6];
register int32_t state7 = filtState[7];
#if defined(MIPS_DSP_R2_LE)
int32_t k1Res0, k1Res1, k1Res2, k2Res0, k2Res1, k2Res2;
k1Res0= 3284;
k1Res1= 24441;
k1Res2= 49528;
k2Res0= 12199;
k2Res1= 37471;
k2Res2= 60255;
len1 = (len >> 1);
const int32_t* inw = (int32_t*)in;
int32_t tmp11, tmp12, tmp21, tmp22;
int32_t in322, in321;
int32_t diff1, diff2;
for (i = len1; i > 0; i--) {
__asm__ volatile (
"lh %[in321], 0(%[inw]) \n\t"
"lh %[in322], 2(%[inw]) \n\t"
"sll %[in321], %[in321], 10 \n\t"
"sll %[in322], %[in322], 10 \n\t"
"addiu %[inw], %[inw], 4 \n\t"
"subu %[diff1], %[in321], %[state1] \n\t"
"subu %[diff2], %[in322], %[state5] \n\t"
: [in322] "=&r" (in322), [in321] "=&r" (in321),
[diff1] "=&r" (diff1), [diff2] "=r" (diff2), [inw] "+r" (inw)
: [state1] "r" (state1), [state5] "r" (state5)
: "memory"
);
__asm__ volatile (
"mult $ac0, %[diff1], %[k2Res0] \n\t"
"mult $ac1, %[diff2], %[k1Res0] \n\t"
"extr.w %[tmp11], $ac0, 16 \n\t"
"extr.w %[tmp12], $ac1, 16 \n\t"
"addu %[tmp11], %[state0], %[tmp11] \n\t"
"addu %[tmp12], %[state4], %[tmp12] \n\t"
"addiu %[state0], %[in321], 0 \n\t"
"addiu %[state4], %[in322], 0 \n\t"
"subu %[diff1], %[tmp11], %[state2] \n\t"
"subu %[diff2], %[tmp12], %[state6] \n\t"
"mult $ac0, %[diff1], %[k2Res1] \n\t"
"mult $ac1, %[diff2], %[k1Res1] \n\t"
"extr.w %[tmp21], $ac0, 16 \n\t"
"extr.w %[tmp22], $ac1, 16 \n\t"
"addu %[tmp21], %[state1], %[tmp21] \n\t"
"addu %[tmp22], %[state5], %[tmp22] \n\t"
"addiu %[state1], %[tmp11], 0 \n\t"
"addiu %[state5], %[tmp12], 0 \n\t"
: [tmp22] "=r" (tmp22), [tmp21] "=&r" (tmp21),
[tmp11] "=&r" (tmp11), [state0] "+r" (state0),
[state1] "+r" (state1),
[state2] "+r" (state2),
[state4] "+r" (state4), [tmp12] "=&r" (tmp12),
[state6] "+r" (state6), [state5] "+r" (state5)
: [k1Res1] "r" (k1Res1), [k2Res1] "r" (k2Res1), [k2Res0] "r" (k2Res0),
[diff2] "r" (diff2), [diff1] "r" (diff1), [in322] "r" (in322),
[in321] "r" (in321), [k1Res0] "r" (k1Res0)
: "hi", "lo", "$ac1hi", "$ac1lo"
);
// upper allpass filter
__asm__ volatile (
"subu %[diff1], %[tmp21], %[state3] \n\t"
"subu %[diff2], %[tmp22], %[state7] \n\t"
"mult $ac0, %[diff1], %[k2Res2] \n\t"
"mult $ac1, %[diff2], %[k1Res2] \n\t"
"extr.w %[state3], $ac0, 16 \n\t"
"extr.w %[state7], $ac1, 16 \n\t"
"addu %[state3], %[state2], %[state3] \n\t"
"addu %[state7], %[state6], %[state7] \n\t"
"addiu %[state2], %[tmp21], 0 \n\t"
"addiu %[state6], %[tmp22], 0 \n\t"
// add two allpass outputs, divide by two and round
"addu %[out32], %[state3], %[state7] \n\t"
"addiu %[out32], %[out32], 1024 \n\t"
"sra %[out32], %[out32], 11 \n\t"
: [state3] "+r" (state3), [state6] "+r" (state6),
[state2] "+r" (state2), [diff2] "=&r" (diff2),
[out32] "=r" (out32), [diff1] "=&r" (diff1), [state7] "+r" (state7)
: [tmp22] "r" (tmp22), [tmp21] "r" (tmp21),
[k1Res2] "r" (k1Res2), [k2Res2] "r" (k2Res2)
: "hi", "lo", "$ac1hi", "$ac1lo"
);
// limit amplitude to prevent wrap-around, and write to output array
*out++ = WebRtcSpl_SatW32ToW16(out32);
}
#else // #if defined(MIPS_DSP_R2_LE)
int32_t tmp1, tmp2, diff;
int32_t in32;
len1 = (len >> 1)/4;
for (i = len1; i > 0; i--) {
// lower allpass filter
in32 = (int32_t)(*in++) << 10;
diff = in32 - state1;
tmp1 = MUL_ACCUM_1(kResampleAllpass2[0], diff, state0);
state0 = in32;
diff = tmp1 - state2;
tmp2 = MUL_ACCUM_2(kResampleAllpass2[1], diff, state1);
state1 = tmp1;
diff = tmp2 - state3;
state3 = MUL_ACCUM_2(kResampleAllpass2[2], diff, state2);
state2 = tmp2;
// upper allpass filter
in32 = (int32_t)(*in++) << 10;
diff = in32 - state5;
tmp1 = MUL_ACCUM_1(kResampleAllpass1[0], diff, state4);
state4 = in32;
diff = tmp1 - state6;
tmp2 = MUL_ACCUM_1(kResampleAllpass1[1], diff, state5);
state5 = tmp1;
diff = tmp2 - state7;
state7 = MUL_ACCUM_2(kResampleAllpass1[2], diff, state6);
state6 = tmp2;
// add two allpass outputs, divide by two and round
out32 = (state3 + state7 + 1024) >> 11;
// limit amplitude to prevent wrap-around, and write to output array
*out++ = WebRtcSpl_SatW32ToW16(out32);
// lower allpass filter
in32 = (int32_t)(*in++) << 10;
diff = in32 - state1;
tmp1 = MUL_ACCUM_1(kResampleAllpass2[0], diff, state0);
state0 = in32;
diff = tmp1 - state2;
tmp2 = MUL_ACCUM_2(kResampleAllpass2[1], diff, state1);
state1 = tmp1;
diff = tmp2 - state3;
state3 = MUL_ACCUM_2(kResampleAllpass2[2], diff, state2);
state2 = tmp2;
// upper allpass filter
in32 = (int32_t)(*in++) << 10;
diff = in32 - state5;
tmp1 = MUL_ACCUM_1(kResampleAllpass1[0], diff, state4);
state4 = in32;
diff = tmp1 - state6;
tmp2 = MUL_ACCUM_1(kResampleAllpass1[1], diff, state5);
state5 = tmp1;
diff = tmp2 - state7;
state7 = MUL_ACCUM_2(kResampleAllpass1[2], diff, state6);
state6 = tmp2;
// add two allpass outputs, divide by two and round
out32 = (state3 + state7 + 1024) >> 11;
// limit amplitude to prevent wrap-around, and write to output array
*out++ = WebRtcSpl_SatW32ToW16(out32);
// lower allpass filter
in32 = (int32_t)(*in++) << 10;
diff = in32 - state1;
tmp1 = MUL_ACCUM_1(kResampleAllpass2[0], diff, state0);
state0 = in32;
diff = tmp1 - state2;
tmp2 = MUL_ACCUM_2(kResampleAllpass2[1], diff, state1);
state1 = tmp1;
diff = tmp2 - state3;
state3 = MUL_ACCUM_2(kResampleAllpass2[2], diff, state2);
state2 = tmp2;
// upper allpass filter
in32 = (int32_t)(*in++) << 10;
diff = in32 - state5;
tmp1 = MUL_ACCUM_1(kResampleAllpass1[0], diff, state4);
state4 = in32;
diff = tmp1 - state6;
tmp2 = MUL_ACCUM_1(kResampleAllpass1[1], diff, state5);
state5 = tmp1;
diff = tmp2 - state7;
state7 = MUL_ACCUM_2(kResampleAllpass1[2], diff, state6);
state6 = tmp2;
// add two allpass outputs, divide by two and round
out32 = (state3 + state7 + 1024) >> 11;
// limit amplitude to prevent wrap-around, and write to output array
*out++ = WebRtcSpl_SatW32ToW16(out32);
// lower allpass filter
in32 = (int32_t)(*in++) << 10;
diff = in32 - state1;
tmp1 = MUL_ACCUM_1(kResampleAllpass2[0], diff, state0);
state0 = in32;
diff = tmp1 - state2;
tmp2 = MUL_ACCUM_2(kResampleAllpass2[1], diff, state1);
state1 = tmp1;
diff = tmp2 - state3;
state3 = MUL_ACCUM_2(kResampleAllpass2[2], diff, state2);
state2 = tmp2;
// upper allpass filter
in32 = (int32_t)(*in++) << 10;
diff = in32 - state5;
tmp1 = MUL_ACCUM_1(kResampleAllpass1[0], diff, state4);
state4 = in32;
diff = tmp1 - state6;
tmp2 = MUL_ACCUM_1(kResampleAllpass1[1], diff, state5);
state5 = tmp1;
diff = tmp2 - state7;
state7 = MUL_ACCUM_2(kResampleAllpass1[2], diff, state6);
state6 = tmp2;
// add two allpass outputs, divide by two and round
out32 = (state3 + state7 + 1024) >> 11;
// limit amplitude to prevent wrap-around, and write to output array
*out++ = WebRtcSpl_SatW32ToW16(out32);
}
#endif // #if defined(MIPS_DSP_R2_LE)
__asm__ volatile (
"sw %[state0], 0(%[filtState]) \n\t"
"sw %[state1], 4(%[filtState]) \n\t"
"sw %[state2], 8(%[filtState]) \n\t"
"sw %[state3], 12(%[filtState]) \n\t"
"sw %[state4], 16(%[filtState]) \n\t"
"sw %[state5], 20(%[filtState]) \n\t"
"sw %[state6], 24(%[filtState]) \n\t"
"sw %[state7], 28(%[filtState]) \n\t"
:
: [state0] "r" (state0), [state1] "r" (state1), [state2] "r" (state2),
[state3] "r" (state3), [state4] "r" (state4), [state5] "r" (state5),
[state6] "r" (state6), [state7] "r" (state7), [filtState] "r" (filtState)
: "memory"
);
}
#endif // #if defined(MIPS32_LE)