blob: 10b9cc19e4b490dff4d9a2180cb4793ecfa47460 [file] [log] [blame]
/*
* Copyright 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
package org.webrtc;
import android.graphics.Matrix;
import android.opengl.GLES20;
import android.opengl.GLException;
import android.support.annotation.Nullable;
import java.nio.ByteBuffer;
import org.webrtc.VideoFrame.I420Buffer;
import org.webrtc.VideoFrame.TextureBuffer;
/**
* Class for converting OES textures to a YUV ByteBuffer. It can be constructed on any thread, but
* should only be operated from a single thread with an active EGL context.
*/
public final class YuvConverter {
private static final String TAG = "YuvConverter";
private static final String FRAGMENT_SHADER =
// Difference in texture coordinate corresponding to one
// sub-pixel in the x direction.
"uniform vec2 xUnit;\n"
// Color conversion coefficients, including constant term
+ "uniform vec4 coeffs;\n"
+ "\n"
+ "void main() {\n"
// Since the alpha read from the texture is always 1, this could
// be written as a mat4 x vec4 multiply. However, that seems to
// give a worse framerate, possibly because the additional
// multiplies by 1.0 consume resources. TODO(nisse): Could also
// try to do it as a vec3 x mat3x4, followed by an add in of a
// constant vector.
+ " gl_FragColor.r = coeffs.a + dot(coeffs.rgb,\n"
+ " sample(tc - 1.5 * xUnit).rgb);\n"
+ " gl_FragColor.g = coeffs.a + dot(coeffs.rgb,\n"
+ " sample(tc - 0.5 * xUnit).rgb);\n"
+ " gl_FragColor.b = coeffs.a + dot(coeffs.rgb,\n"
+ " sample(tc + 0.5 * xUnit).rgb);\n"
+ " gl_FragColor.a = coeffs.a + dot(coeffs.rgb,\n"
+ " sample(tc + 1.5 * xUnit).rgb);\n"
+ "}\n";
private static class ShaderCallbacks implements GlGenericDrawer.ShaderCallbacks {
// Y'UV444 to RGB888, see https://en.wikipedia.org/wiki/YUV#Y%E2%80%B2UV444_to_RGB888_conversion
// We use the ITU-R BT.601 coefficients for Y, U and V.
// The values in Wikipedia are inaccurate, the accurate values derived from the spec are:
// Y = 0.299 * R + 0.587 * G + 0.114 * B
// U = -0.168736 * R - 0.331264 * G + 0.5 * B + 0.5
// V = 0.5 * R - 0.418688 * G - 0.0813124 * B + 0.5
// To map the Y-values to range [16-235] and U- and V-values to range [16-240], the matrix has
// been multiplied with matrix:
// {{219 / 255, 0, 0, 16 / 255},
// {0, 224 / 255, 0, 16 / 255},
// {0, 0, 224 / 255, 16 / 255},
// {0, 0, 0, 1}}
private static final float[] yCoeffs =
new float[] {0.256788f, 0.504129f, 0.0979059f, 0.0627451f};
private static final float[] uCoeffs =
new float[] {-0.148223f, -0.290993f, 0.439216f, 0.501961f};
private static final float[] vCoeffs =
new float[] {0.439216f, -0.367788f, -0.0714274f, 0.501961f};
private int xUnitLoc;
private int coeffsLoc;
private float[] coeffs;
private float stepSize;
public void setPlaneY() {
coeffs = yCoeffs;
stepSize = 1.0f;
}
public void setPlaneU() {
coeffs = uCoeffs;
stepSize = 2.0f;
}
public void setPlaneV() {
coeffs = vCoeffs;
stepSize = 2.0f;
}
@Override
public void onNewShader(GlShader shader) {
xUnitLoc = shader.getUniformLocation("xUnit");
coeffsLoc = shader.getUniformLocation("coeffs");
}
@Override
public void onPrepareShader(GlShader shader, float[] texMatrix, int frameWidth, int frameHeight,
int viewportWidth, int viewportHeight) {
GLES20.glUniform4fv(coeffsLoc, /* count= */ 1, coeffs, /* offset= */ 0);
// Matrix * (1;0;0;0) / (width / stepSize). Note that OpenGL uses column major order.
GLES20.glUniform2f(
xUnitLoc, stepSize * texMatrix[0] / frameWidth, stepSize * texMatrix[1] / frameWidth);
}
}
private final ThreadUtils.ThreadChecker threadChecker = new ThreadUtils.ThreadChecker();
private final GlTextureFrameBuffer i420TextureFrameBuffer =
new GlTextureFrameBuffer(GLES20.GL_RGBA);
private final ShaderCallbacks shaderCallbacks = new ShaderCallbacks();
private final GlGenericDrawer drawer = new GlGenericDrawer(FRAGMENT_SHADER, shaderCallbacks);
private final VideoFrameDrawer videoFrameDrawer;
/**
* This class should be constructed on a thread that has an active EGL context.
*/
public YuvConverter() {
this(new VideoFrameDrawer());
}
public YuvConverter(VideoFrameDrawer videoFrameDrawer) {
this.videoFrameDrawer = videoFrameDrawer;
threadChecker.detachThread();
}
/** Converts the texture buffer to I420. */
@Nullable
public I420Buffer convert(TextureBuffer inputTextureBuffer) {
try {
return convertInternal(inputTextureBuffer);
} catch (GLException e) {
Logging.w(TAG, "Failed to convert TextureBuffer", e);
}
return null;
}
private I420Buffer convertInternal(TextureBuffer inputTextureBuffer) {
TextureBuffer preparedBuffer = (TextureBuffer) videoFrameDrawer.prepareBufferForViewportSize(
inputTextureBuffer, inputTextureBuffer.getWidth(), inputTextureBuffer.getHeight());
// We draw into a buffer laid out like
//
// +---------+
// | |
// | Y |
// | |
// | |
// +----+----+
// | U | V |
// | | |
// +----+----+
//
// In memory, we use the same stride for all of Y, U and V. The
// U data starts at offset `height` * `stride` from the Y data,
// and the V data starts at at offset |stride/2| from the U
// data, with rows of U and V data alternating.
//
// Now, it would have made sense to allocate a pixel buffer with
// a single byte per pixel (EGL10.EGL_COLOR_BUFFER_TYPE,
// EGL10.EGL_LUMINANCE_BUFFER,), but that seems to be
// unsupported by devices. So do the following hack: Allocate an
// RGBA buffer, of width `stride`/4. To render each of these
// large pixels, sample the texture at 4 different x coordinates
// and store the results in the four components.
//
// Since the V data needs to start on a boundary of such a
// larger pixel, it is not sufficient that `stride` is even, it
// has to be a multiple of 8 pixels.
final int frameWidth = preparedBuffer.getWidth();
final int frameHeight = preparedBuffer.getHeight();
final int stride = ((frameWidth + 7) / 8) * 8;
final int uvHeight = (frameHeight + 1) / 2;
// Total height of the combined memory layout.
final int totalHeight = frameHeight + uvHeight;
final ByteBuffer i420ByteBuffer = JniCommon.nativeAllocateByteBuffer(stride * totalHeight);
// Viewport width is divided by four since we are squeezing in four color bytes in each RGBA
// pixel.
final int viewportWidth = stride / 4;
// Produce a frame buffer starting at top-left corner, not bottom-left.
final Matrix renderMatrix = new Matrix();
renderMatrix.preTranslate(0.5f, 0.5f);
renderMatrix.preScale(1f, -1f);
renderMatrix.preTranslate(-0.5f, -0.5f);
i420TextureFrameBuffer.setSize(viewportWidth, totalHeight);
// Bind our framebuffer.
GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, i420TextureFrameBuffer.getFrameBufferId());
GlUtil.checkNoGLES2Error("glBindFramebuffer");
// Draw Y.
shaderCallbacks.setPlaneY();
VideoFrameDrawer.drawTexture(drawer, preparedBuffer, renderMatrix, frameWidth, frameHeight,
/* viewportX= */ 0, /* viewportY= */ 0, viewportWidth,
/* viewportHeight= */ frameHeight);
// Draw U.
shaderCallbacks.setPlaneU();
VideoFrameDrawer.drawTexture(drawer, preparedBuffer, renderMatrix, frameWidth, frameHeight,
/* viewportX= */ 0, /* viewportY= */ frameHeight, viewportWidth / 2,
/* viewportHeight= */ uvHeight);
// Draw V.
shaderCallbacks.setPlaneV();
VideoFrameDrawer.drawTexture(drawer, preparedBuffer, renderMatrix, frameWidth, frameHeight,
/* viewportX= */ viewportWidth / 2, /* viewportY= */ frameHeight, viewportWidth / 2,
/* viewportHeight= */ uvHeight);
GLES20.glReadPixels(0, 0, i420TextureFrameBuffer.getWidth(), i420TextureFrameBuffer.getHeight(),
GLES20.GL_RGBA, GLES20.GL_UNSIGNED_BYTE, i420ByteBuffer);
GlUtil.checkNoGLES2Error("YuvConverter.convert");
// Restore normal framebuffer.
GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, 0);
// Prepare Y, U, and V ByteBuffer slices.
final int yPos = 0;
final int uPos = yPos + stride * frameHeight;
// Rows of U and V alternate in the buffer, so V data starts after the first row of U.
final int vPos = uPos + stride / 2;
i420ByteBuffer.position(yPos);
i420ByteBuffer.limit(yPos + stride * frameHeight);
final ByteBuffer dataY = i420ByteBuffer.slice();
i420ByteBuffer.position(uPos);
// The last row does not have padding.
final int uvSize = stride * (uvHeight - 1) + stride / 2;
i420ByteBuffer.limit(uPos + uvSize);
final ByteBuffer dataU = i420ByteBuffer.slice();
i420ByteBuffer.position(vPos);
i420ByteBuffer.limit(vPos + uvSize);
final ByteBuffer dataV = i420ByteBuffer.slice();
preparedBuffer.release();
return JavaI420Buffer.wrap(frameWidth, frameHeight, dataY, stride, dataU, stride, dataV, stride,
() -> { JniCommon.nativeFreeByteBuffer(i420ByteBuffer); });
}
public void release() {
threadChecker.checkIsOnValidThread();
drawer.release();
i420TextureFrameBuffer.release();
videoFrameDrawer.release();
// Allow this class to be reused.
threadChecker.detachThread();
}
}