blob: 44572cb1284bd3f99face8a5011566f4dae5c254 [file] [log] [blame]
/*
* Copyright 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
package org.webrtc;
import android.media.MediaCodec;
import android.media.MediaCodecInfo;
import android.media.MediaCodecInfo.CodecCapabilities;
import android.media.MediaCodecList;
import android.media.MediaFormat;
import android.os.Build;
import android.os.SystemClock;
import android.view.Surface;
import java.nio.ByteBuffer;
import java.util.Arrays;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
import java.util.Set;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
// Java-side of peerconnection_jni.cc:MediaCodecVideoDecoder.
// This class is an implementation detail of the Java PeerConnection API.
@SuppressWarnings("deprecation")
public class MediaCodecVideoDecoder {
// This class is constructed, operated, and destroyed by its C++ incarnation,
// so the class and its methods have non-public visibility. The API this
// class exposes aims to mimic the webrtc::VideoDecoder API as closely as
// possibly to minimize the amount of translation work necessary.
private static final String TAG = "MediaCodecVideoDecoder";
private static final long MAX_DECODE_TIME_MS = 200;
// Tracks webrtc::VideoCodecType.
public enum VideoCodecType { VIDEO_CODEC_VP8, VIDEO_CODEC_VP9, VIDEO_CODEC_H264 }
// Timeout for input buffer dequeue.
private static final int DEQUEUE_INPUT_TIMEOUT = 500000;
// Timeout for codec releasing.
private static final int MEDIA_CODEC_RELEASE_TIMEOUT_MS = 5000;
// Max number of output buffers queued before starting to drop decoded frames.
private static final int MAX_QUEUED_OUTPUTBUFFERS = 3;
// Active running decoder instance. Set in initDecode() (called from native code)
// and reset to null in release() call.
private static MediaCodecVideoDecoder runningInstance = null;
private static MediaCodecVideoDecoderErrorCallback errorCallback = null;
private static int codecErrors = 0;
// List of disabled codec types - can be set from application.
private static Set<String> hwDecoderDisabledTypes = new HashSet<String>();
private Thread mediaCodecThread;
private MediaCodec mediaCodec;
private ByteBuffer[] inputBuffers;
private ByteBuffer[] outputBuffers;
private static final String VP8_MIME_TYPE = "video/x-vnd.on2.vp8";
private static final String VP9_MIME_TYPE = "video/x-vnd.on2.vp9";
private static final String H264_MIME_TYPE = "video/avc";
// List of supported HW VP8 decoders.
private static final String[] supportedVp8HwCodecPrefixes = {
"OMX.qcom.", "OMX.Nvidia.", "OMX.Exynos.", "OMX.Intel."};
// List of supported HW VP9 decoders.
private static final String[] supportedVp9HwCodecPrefixes = {"OMX.qcom.", "OMX.Exynos."};
// List of supported HW H.264 decoders.
private static final String[] supportedH264HwCodecPrefixes = {
"OMX.qcom.", "OMX.Intel.", "OMX.Exynos."};
// NV12 color format supported by QCOM codec, but not declared in MediaCodec -
// see /hardware/qcom/media/mm-core/inc/OMX_QCOMExtns.h
private static final int COLOR_QCOM_FORMATYVU420PackedSemiPlanar32m4ka = 0x7FA30C01;
private static final int COLOR_QCOM_FORMATYVU420PackedSemiPlanar16m4ka = 0x7FA30C02;
private static final int COLOR_QCOM_FORMATYVU420PackedSemiPlanar64x32Tile2m8ka = 0x7FA30C03;
private static final int COLOR_QCOM_FORMATYUV420PackedSemiPlanar32m = 0x7FA30C04;
// Allowable color formats supported by codec - in order of preference.
private static final List<Integer> supportedColorList = Arrays.asList(
CodecCapabilities.COLOR_FormatYUV420Planar, CodecCapabilities.COLOR_FormatYUV420SemiPlanar,
CodecCapabilities.COLOR_QCOM_FormatYUV420SemiPlanar,
COLOR_QCOM_FORMATYVU420PackedSemiPlanar32m4ka, COLOR_QCOM_FORMATYVU420PackedSemiPlanar16m4ka,
COLOR_QCOM_FORMATYVU420PackedSemiPlanar64x32Tile2m8ka,
COLOR_QCOM_FORMATYUV420PackedSemiPlanar32m);
private int colorFormat;
private int width;
private int height;
private int stride;
private int sliceHeight;
private boolean hasDecodedFirstFrame;
private final Queue<TimeStamps> decodeStartTimeMs = new LinkedList<TimeStamps>();
private boolean useSurface;
// The below variables are only used when decoding to a Surface.
private TextureListener textureListener;
private int droppedFrames;
private Surface surface = null;
private final Queue<DecodedOutputBuffer> dequeuedSurfaceOutputBuffers =
new LinkedList<DecodedOutputBuffer>();
// MediaCodec error handler - invoked when critical error happens which may prevent
// further use of media codec API. Now it means that one of media codec instances
// is hanging and can no longer be used in the next call.
public static interface MediaCodecVideoDecoderErrorCallback {
void onMediaCodecVideoDecoderCriticalError(int codecErrors);
}
public static void setErrorCallback(MediaCodecVideoDecoderErrorCallback errorCallback) {
Logging.d(TAG, "Set error callback");
MediaCodecVideoDecoder.errorCallback = errorCallback;
}
// Functions to disable HW decoding - can be called from applications for platforms
// which have known HW decoding problems.
public static void disableVp8HwCodec() {
Logging.w(TAG, "VP8 decoding is disabled by application.");
hwDecoderDisabledTypes.add(VP8_MIME_TYPE);
}
public static void disableVp9HwCodec() {
Logging.w(TAG, "VP9 decoding is disabled by application.");
hwDecoderDisabledTypes.add(VP9_MIME_TYPE);
}
public static void disableH264HwCodec() {
Logging.w(TAG, "H.264 decoding is disabled by application.");
hwDecoderDisabledTypes.add(H264_MIME_TYPE);
}
// Functions to query if HW decoding is supported.
public static boolean isVp8HwSupported() {
return !hwDecoderDisabledTypes.contains(VP8_MIME_TYPE)
&& (findDecoder(VP8_MIME_TYPE, supportedVp8HwCodecPrefixes) != null);
}
public static boolean isVp9HwSupported() {
return !hwDecoderDisabledTypes.contains(VP9_MIME_TYPE)
&& (findDecoder(VP9_MIME_TYPE, supportedVp9HwCodecPrefixes) != null);
}
public static boolean isH264HwSupported() {
return !hwDecoderDisabledTypes.contains(H264_MIME_TYPE)
&& (findDecoder(H264_MIME_TYPE, supportedH264HwCodecPrefixes) != null);
}
public static void printStackTrace() {
if (runningInstance != null && runningInstance.mediaCodecThread != null) {
StackTraceElement[] mediaCodecStackTraces = runningInstance.mediaCodecThread.getStackTrace();
if (mediaCodecStackTraces.length > 0) {
Logging.d(TAG, "MediaCodecVideoDecoder stacks trace:");
for (StackTraceElement stackTrace : mediaCodecStackTraces) {
Logging.d(TAG, stackTrace.toString());
}
}
}
}
// Helper struct for findDecoder() below.
private static class DecoderProperties {
public DecoderProperties(String codecName, int colorFormat) {
this.codecName = codecName;
this.colorFormat = colorFormat;
}
public final String codecName; // OpenMax component name for VP8 codec.
public final int colorFormat; // Color format supported by codec.
}
private static DecoderProperties findDecoder(String mime, String[] supportedCodecPrefixes) {
if (Build.VERSION.SDK_INT < Build.VERSION_CODES.KITKAT) {
return null; // MediaCodec.setParameters is missing.
}
Logging.d(TAG, "Trying to find HW decoder for mime " + mime);
for (int i = 0; i < MediaCodecList.getCodecCount(); ++i) {
MediaCodecInfo info = null;
try {
info = MediaCodecList.getCodecInfoAt(i);
} catch (IllegalArgumentException e) {
Logging.e(TAG, "Cannot retrieve decoder codec info", e);
}
if (info == null || info.isEncoder()) {
continue;
}
String name = null;
for (String mimeType : info.getSupportedTypes()) {
if (mimeType.equals(mime)) {
name = info.getName();
break;
}
}
if (name == null) {
continue; // No HW support in this codec; try the next one.
}
Logging.d(TAG, "Found candidate decoder " + name);
// Check if this is supported decoder.
boolean supportedCodec = false;
for (String codecPrefix : supportedCodecPrefixes) {
if (name.startsWith(codecPrefix)) {
supportedCodec = true;
break;
}
}
if (!supportedCodec) {
continue;
}
// Check if codec supports either yuv420 or nv12.
CodecCapabilities capabilities;
try {
capabilities = info.getCapabilitiesForType(mime);
} catch (IllegalArgumentException e) {
Logging.e(TAG, "Cannot retrieve decoder capabilities", e);
continue;
}
for (int colorFormat : capabilities.colorFormats) {
Logging.v(TAG, " Color: 0x" + Integer.toHexString(colorFormat));
}
for (int supportedColorFormat : supportedColorList) {
for (int codecColorFormat : capabilities.colorFormats) {
if (codecColorFormat == supportedColorFormat) {
// Found supported HW decoder.
Logging.d(TAG, "Found target decoder " + name + ". Color: 0x"
+ Integer.toHexString(codecColorFormat));
return new DecoderProperties(name, codecColorFormat);
}
}
}
}
Logging.d(TAG, "No HW decoder found for mime " + mime);
return null; // No HW decoder.
}
private void checkOnMediaCodecThread() throws IllegalStateException {
if (mediaCodecThread.getId() != Thread.currentThread().getId()) {
throw new IllegalStateException("MediaCodecVideoDecoder previously operated on "
+ mediaCodecThread + " but is now called on " + Thread.currentThread());
}
}
// Pass null in |surfaceTextureHelper| to configure the codec for ByteBuffer output.
private boolean initDecode(
VideoCodecType type, int width, int height, SurfaceTextureHelper surfaceTextureHelper) {
if (mediaCodecThread != null) {
throw new RuntimeException("initDecode: Forgot to release()?");
}
String mime = null;
useSurface = (surfaceTextureHelper != null);
String[] supportedCodecPrefixes = null;
if (type == VideoCodecType.VIDEO_CODEC_VP8) {
mime = VP8_MIME_TYPE;
supportedCodecPrefixes = supportedVp8HwCodecPrefixes;
} else if (type == VideoCodecType.VIDEO_CODEC_VP9) {
mime = VP9_MIME_TYPE;
supportedCodecPrefixes = supportedVp9HwCodecPrefixes;
} else if (type == VideoCodecType.VIDEO_CODEC_H264) {
mime = H264_MIME_TYPE;
supportedCodecPrefixes = supportedH264HwCodecPrefixes;
} else {
throw new RuntimeException("initDecode: Non-supported codec " + type);
}
DecoderProperties properties = findDecoder(mime, supportedCodecPrefixes);
if (properties == null) {
throw new RuntimeException("Cannot find HW decoder for " + type);
}
Logging.d(TAG, "Java initDecode: " + type + " : " + width + " x " + height + ". Color: 0x"
+ Integer.toHexString(properties.colorFormat) + ". Use Surface: " + useSurface);
runningInstance = this; // Decoder is now running and can be queried for stack traces.
mediaCodecThread = Thread.currentThread();
try {
this.width = width;
this.height = height;
stride = width;
sliceHeight = height;
if (useSurface) {
textureListener = new TextureListener(surfaceTextureHelper);
surface = new Surface(surfaceTextureHelper.getSurfaceTexture());
}
MediaFormat format = MediaFormat.createVideoFormat(mime, width, height);
if (!useSurface) {
format.setInteger(MediaFormat.KEY_COLOR_FORMAT, properties.colorFormat);
}
Logging.d(TAG, " Format: " + format);
mediaCodec = MediaCodecVideoEncoder.createByCodecName(properties.codecName);
if (mediaCodec == null) {
Logging.e(TAG, "Can not create media decoder");
return false;
}
mediaCodec.configure(format, surface, null, 0);
mediaCodec.start();
colorFormat = properties.colorFormat;
outputBuffers = mediaCodec.getOutputBuffers();
inputBuffers = mediaCodec.getInputBuffers();
decodeStartTimeMs.clear();
hasDecodedFirstFrame = false;
dequeuedSurfaceOutputBuffers.clear();
droppedFrames = 0;
Logging.d(TAG,
"Input buffers: " + inputBuffers.length + ". Output buffers: " + outputBuffers.length);
return true;
} catch (IllegalStateException e) {
Logging.e(TAG, "initDecode failed", e);
return false;
}
}
// Resets the decoder so it can start decoding frames with new resolution.
// Flushes MediaCodec and clears decoder output buffers.
private void reset(int width, int height) {
if (mediaCodecThread == null || mediaCodec == null) {
throw new RuntimeException("Incorrect reset call for non-initialized decoder.");
}
Logging.d(TAG, "Java reset: " + width + " x " + height);
mediaCodec.flush();
this.width = width;
this.height = height;
decodeStartTimeMs.clear();
dequeuedSurfaceOutputBuffers.clear();
hasDecodedFirstFrame = false;
droppedFrames = 0;
}
private void release() {
Logging.d(TAG, "Java releaseDecoder. Total number of dropped frames: " + droppedFrames);
checkOnMediaCodecThread();
// Run Mediacodec stop() and release() on separate thread since sometime
// Mediacodec.stop() may hang.
final CountDownLatch releaseDone = new CountDownLatch(1);
Runnable runMediaCodecRelease = new Runnable() {
@Override
public void run() {
try {
Logging.d(TAG, "Java releaseDecoder on release thread");
mediaCodec.stop();
mediaCodec.release();
Logging.d(TAG, "Java releaseDecoder on release thread done");
} catch (Exception e) {
Logging.e(TAG, "Media decoder release failed", e);
}
releaseDone.countDown();
}
};
new Thread(runMediaCodecRelease).start();
if (!ThreadUtils.awaitUninterruptibly(releaseDone, MEDIA_CODEC_RELEASE_TIMEOUT_MS)) {
Logging.e(TAG, "Media decoder release timeout");
codecErrors++;
if (errorCallback != null) {
Logging.e(TAG, "Invoke codec error callback. Errors: " + codecErrors);
errorCallback.onMediaCodecVideoDecoderCriticalError(codecErrors);
}
}
mediaCodec = null;
mediaCodecThread = null;
runningInstance = null;
if (useSurface) {
surface.release();
surface = null;
textureListener.release();
}
Logging.d(TAG, "Java releaseDecoder done");
}
// Dequeue an input buffer and return its index, -1 if no input buffer is
// available, or -2 if the codec is no longer operative.
private int dequeueInputBuffer() {
checkOnMediaCodecThread();
try {
return mediaCodec.dequeueInputBuffer(DEQUEUE_INPUT_TIMEOUT);
} catch (IllegalStateException e) {
Logging.e(TAG, "dequeueIntputBuffer failed", e);
return -2;
}
}
private boolean queueInputBuffer(int inputBufferIndex, int size, long presentationTimeStamUs,
long timeStampMs, long ntpTimeStamp) {
checkOnMediaCodecThread();
try {
inputBuffers[inputBufferIndex].position(0);
inputBuffers[inputBufferIndex].limit(size);
decodeStartTimeMs.add(
new TimeStamps(SystemClock.elapsedRealtime(), timeStampMs, ntpTimeStamp));
mediaCodec.queueInputBuffer(inputBufferIndex, 0, size, presentationTimeStamUs, 0);
return true;
} catch (IllegalStateException e) {
Logging.e(TAG, "decode failed", e);
return false;
}
}
private static class TimeStamps {
public TimeStamps(long decodeStartTimeMs, long timeStampMs, long ntpTimeStampMs) {
this.decodeStartTimeMs = decodeStartTimeMs;
this.timeStampMs = timeStampMs;
this.ntpTimeStampMs = ntpTimeStampMs;
}
// Time when this frame was queued for decoding.
private final long decodeStartTimeMs;
// Only used for bookkeeping in Java. Stores C++ inputImage._timeStamp value for input frame.
private final long timeStampMs;
// Only used for bookkeeping in Java. Stores C++ inputImage.ntp_time_ms_ value for input frame.
private final long ntpTimeStampMs;
}
// Helper struct for dequeueOutputBuffer() below.
private static class DecodedOutputBuffer {
public DecodedOutputBuffer(int index, int offset, int size, long presentationTimeStampMs,
long timeStampMs, long ntpTimeStampMs, long decodeTime, long endDecodeTime) {
this.index = index;
this.offset = offset;
this.size = size;
this.presentationTimeStampMs = presentationTimeStampMs;
this.timeStampMs = timeStampMs;
this.ntpTimeStampMs = ntpTimeStampMs;
this.decodeTimeMs = decodeTime;
this.endDecodeTimeMs = endDecodeTime;
}
private final int index;
private final int offset;
private final int size;
// Presentation timestamp returned in dequeueOutputBuffer call.
private final long presentationTimeStampMs;
// C++ inputImage._timeStamp value for output frame.
private final long timeStampMs;
// C++ inputImage.ntp_time_ms_ value for output frame.
private final long ntpTimeStampMs;
// Number of ms it took to decode this frame.
private final long decodeTimeMs;
// System time when this frame decoding finished.
private final long endDecodeTimeMs;
}
// Helper struct for dequeueTextureBuffer() below.
private static class DecodedTextureBuffer {
private final int textureID;
private final float[] transformMatrix;
// Presentation timestamp returned in dequeueOutputBuffer call.
private final long presentationTimeStampMs;
// C++ inputImage._timeStamp value for output frame.
private final long timeStampMs;
// C++ inputImage.ntp_time_ms_ value for output frame.
private final long ntpTimeStampMs;
// Number of ms it took to decode this frame.
private final long decodeTimeMs;
// Interval from when the frame finished decoding until this buffer has been created.
// Since there is only one texture, this interval depend on the time from when
// a frame is decoded and provided to C++ and until that frame is returned to the MediaCodec
// so that the texture can be updated with the next decoded frame.
private final long frameDelayMs;
// A DecodedTextureBuffer with zero |textureID| has special meaning and represents a frame
// that was dropped.
public DecodedTextureBuffer(int textureID, float[] transformMatrix,
long presentationTimeStampMs, long timeStampMs, long ntpTimeStampMs, long decodeTimeMs,
long frameDelay) {
this.textureID = textureID;
this.transformMatrix = transformMatrix;
this.presentationTimeStampMs = presentationTimeStampMs;
this.timeStampMs = timeStampMs;
this.ntpTimeStampMs = ntpTimeStampMs;
this.decodeTimeMs = decodeTimeMs;
this.frameDelayMs = frameDelay;
}
}
// Poll based texture listener.
private static class TextureListener
implements SurfaceTextureHelper.OnTextureFrameAvailableListener {
private final SurfaceTextureHelper surfaceTextureHelper;
// |newFrameLock| is used to synchronize arrival of new frames with wait()/notifyAll().
private final Object newFrameLock = new Object();
// |bufferToRender| is non-null when waiting for transition between addBufferToRender() to
// onTextureFrameAvailable().
private DecodedOutputBuffer bufferToRender;
private DecodedTextureBuffer renderedBuffer;
public TextureListener(SurfaceTextureHelper surfaceTextureHelper) {
this.surfaceTextureHelper = surfaceTextureHelper;
surfaceTextureHelper.startListening(this);
}
public void addBufferToRender(DecodedOutputBuffer buffer) {
if (bufferToRender != null) {
Logging.e(TAG, "Unexpected addBufferToRender() called while waiting for a texture.");
throw new IllegalStateException("Waiting for a texture.");
}
bufferToRender = buffer;
}
public boolean isWaitingForTexture() {
synchronized (newFrameLock) {
return bufferToRender != null;
}
}
// Callback from |surfaceTextureHelper|. May be called on an arbitrary thread.
@Override
public void onTextureFrameAvailable(
int oesTextureId, float[] transformMatrix, long timestampNs) {
synchronized (newFrameLock) {
if (renderedBuffer != null) {
Logging.e(
TAG, "Unexpected onTextureFrameAvailable() called while already holding a texture.");
throw new IllegalStateException("Already holding a texture.");
}
// |timestampNs| is always zero on some Android versions.
renderedBuffer = new DecodedTextureBuffer(oesTextureId, transformMatrix,
bufferToRender.presentationTimeStampMs, bufferToRender.timeStampMs,
bufferToRender.ntpTimeStampMs, bufferToRender.decodeTimeMs,
SystemClock.elapsedRealtime() - bufferToRender.endDecodeTimeMs);
bufferToRender = null;
newFrameLock.notifyAll();
}
}
// Dequeues and returns a DecodedTextureBuffer if available, or null otherwise.
public DecodedTextureBuffer dequeueTextureBuffer(int timeoutMs) {
synchronized (newFrameLock) {
if (renderedBuffer == null && timeoutMs > 0 && isWaitingForTexture()) {
try {
newFrameLock.wait(timeoutMs);
} catch (InterruptedException e) {
// Restore the interrupted status by reinterrupting the thread.
Thread.currentThread().interrupt();
}
}
DecodedTextureBuffer returnedBuffer = renderedBuffer;
renderedBuffer = null;
return returnedBuffer;
}
}
public void release() {
// SurfaceTextureHelper.stopListening() will block until any onTextureFrameAvailable() in
// progress is done. Therefore, the call must be outside any synchronized
// statement that is also used in the onTextureFrameAvailable() above to avoid deadlocks.
surfaceTextureHelper.stopListening();
synchronized (newFrameLock) {
if (renderedBuffer != null) {
surfaceTextureHelper.returnTextureFrame();
renderedBuffer = null;
}
}
}
}
// Returns null if no decoded buffer is available, and otherwise a DecodedByteBuffer.
// Throws IllegalStateException if call is made on the wrong thread, if color format changes to an
// unsupported format, or if |mediaCodec| is not in the Executing state. Throws CodecException
// upon codec error.
private DecodedOutputBuffer dequeueOutputBuffer(int dequeueTimeoutMs) {
checkOnMediaCodecThread();
if (decodeStartTimeMs.isEmpty()) {
return null;
}
// Drain the decoder until receiving a decoded buffer or hitting
// MediaCodec.INFO_TRY_AGAIN_LATER.
final MediaCodec.BufferInfo info = new MediaCodec.BufferInfo();
while (true) {
final int result =
mediaCodec.dequeueOutputBuffer(info, TimeUnit.MILLISECONDS.toMicros(dequeueTimeoutMs));
switch (result) {
case MediaCodec.INFO_OUTPUT_BUFFERS_CHANGED:
outputBuffers = mediaCodec.getOutputBuffers();
Logging.d(TAG, "Decoder output buffers changed: " + outputBuffers.length);
if (hasDecodedFirstFrame) {
throw new RuntimeException("Unexpected output buffer change event.");
}
break;
case MediaCodec.INFO_OUTPUT_FORMAT_CHANGED:
MediaFormat format = mediaCodec.getOutputFormat();
Logging.d(TAG, "Decoder format changed: " + format.toString());
int new_width = format.getInteger(MediaFormat.KEY_WIDTH);
int new_height = format.getInteger(MediaFormat.KEY_HEIGHT);
if (hasDecodedFirstFrame && (new_width != width || new_height != height)) {
throw new RuntimeException("Unexpected size change. Configured " + width + "*" + height
+ ". New " + new_width + "*" + new_height);
}
width = format.getInteger(MediaFormat.KEY_WIDTH);
height = format.getInteger(MediaFormat.KEY_HEIGHT);
if (!useSurface && format.containsKey(MediaFormat.KEY_COLOR_FORMAT)) {
colorFormat = format.getInteger(MediaFormat.KEY_COLOR_FORMAT);
Logging.d(TAG, "Color: 0x" + Integer.toHexString(colorFormat));
if (!supportedColorList.contains(colorFormat)) {
throw new IllegalStateException("Non supported color format: " + colorFormat);
}
}
if (format.containsKey("stride")) {
stride = format.getInteger("stride");
}
if (format.containsKey("slice-height")) {
sliceHeight = format.getInteger("slice-height");
}
Logging.d(TAG, "Frame stride and slice height: " + stride + " x " + sliceHeight);
stride = Math.max(width, stride);
sliceHeight = Math.max(height, sliceHeight);
break;
case MediaCodec.INFO_TRY_AGAIN_LATER:
return null;
default:
hasDecodedFirstFrame = true;
TimeStamps timeStamps = decodeStartTimeMs.remove();
long decodeTimeMs = SystemClock.elapsedRealtime() - timeStamps.decodeStartTimeMs;
if (decodeTimeMs > MAX_DECODE_TIME_MS) {
Logging.e(TAG, "Very high decode time: " + decodeTimeMs + "ms"
+ ". Q size: " + decodeStartTimeMs.size()
+ ". Might be caused by resuming H264 decoding after a pause.");
decodeTimeMs = MAX_DECODE_TIME_MS;
}
return new DecodedOutputBuffer(result, info.offset, info.size,
TimeUnit.MICROSECONDS.toMillis(info.presentationTimeUs), timeStamps.timeStampMs,
timeStamps.ntpTimeStampMs, decodeTimeMs, SystemClock.elapsedRealtime());
}
}
}
// Returns null if no decoded buffer is available, and otherwise a DecodedTextureBuffer.
// Throws IllegalStateException if call is made on the wrong thread, if color format changes to an
// unsupported format, or if |mediaCodec| is not in the Executing state. Throws CodecException
// upon codec error. If |dequeueTimeoutMs| > 0, the oldest decoded frame will be dropped if
// a frame can't be returned.
private DecodedTextureBuffer dequeueTextureBuffer(int dequeueTimeoutMs) {
checkOnMediaCodecThread();
if (!useSurface) {
throw new IllegalStateException("dequeueTexture() called for byte buffer decoding.");
}
DecodedOutputBuffer outputBuffer = dequeueOutputBuffer(dequeueTimeoutMs);
if (outputBuffer != null) {
dequeuedSurfaceOutputBuffers.add(outputBuffer);
}
MaybeRenderDecodedTextureBuffer();
// Check if there is texture ready now by waiting max |dequeueTimeoutMs|.
DecodedTextureBuffer renderedBuffer = textureListener.dequeueTextureBuffer(dequeueTimeoutMs);
if (renderedBuffer != null) {
MaybeRenderDecodedTextureBuffer();
return renderedBuffer;
}
if ((dequeuedSurfaceOutputBuffers.size()
>= Math.min(MAX_QUEUED_OUTPUTBUFFERS, outputBuffers.length)
|| (dequeueTimeoutMs > 0 && !dequeuedSurfaceOutputBuffers.isEmpty()))) {
++droppedFrames;
// Drop the oldest frame still in dequeuedSurfaceOutputBuffers.
// The oldest frame is owned by |textureListener| and can't be dropped since
// mediaCodec.releaseOutputBuffer has already been called.
final DecodedOutputBuffer droppedFrame = dequeuedSurfaceOutputBuffers.remove();
if (dequeueTimeoutMs > 0) {
// TODO(perkj): Re-add the below log when VideoRenderGUI has been removed or fixed to
// return the one and only texture even if it does not render.
Logging.w(TAG, "Draining decoder. Dropping frame with TS: "
+ droppedFrame.presentationTimeStampMs + ". Total number of dropped frames: "
+ droppedFrames);
} else {
Logging.w(TAG, "Too many output buffers " + dequeuedSurfaceOutputBuffers.size()
+ ". Dropping frame with TS: " + droppedFrame.presentationTimeStampMs
+ ". Total number of dropped frames: " + droppedFrames);
}
mediaCodec.releaseOutputBuffer(droppedFrame.index, false /* render */);
return new DecodedTextureBuffer(0, null, droppedFrame.presentationTimeStampMs,
droppedFrame.timeStampMs, droppedFrame.ntpTimeStampMs, droppedFrame.decodeTimeMs,
SystemClock.elapsedRealtime() - droppedFrame.endDecodeTimeMs);
}
return null;
}
private void MaybeRenderDecodedTextureBuffer() {
if (dequeuedSurfaceOutputBuffers.isEmpty() || textureListener.isWaitingForTexture()) {
return;
}
// Get the first frame in the queue and render to the decoder output surface.
final DecodedOutputBuffer buffer = dequeuedSurfaceOutputBuffers.remove();
textureListener.addBufferToRender(buffer);
mediaCodec.releaseOutputBuffer(buffer.index, true /* render */);
}
// Release a dequeued output byte buffer back to the codec for re-use. Should only be called for
// non-surface decoding.
// Throws IllegalStateException if the call is made on the wrong thread, if codec is configured
// for surface decoding, or if |mediaCodec| is not in the Executing state. Throws
// MediaCodec.CodecException upon codec error.
private void returnDecodedOutputBuffer(int index)
throws IllegalStateException, MediaCodec.CodecException {
checkOnMediaCodecThread();
if (useSurface) {
throw new IllegalStateException("returnDecodedOutputBuffer() called for surface decoding.");
}
mediaCodec.releaseOutputBuffer(index, false /* render */);
}
}