blob: 2f6485340f0642d2a6e4e3c843fc6e54264a9815 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_AUDIO_PROCESSING_AEC3_ADAPTIVE_FIR_FILTER_H_
#define MODULES_AUDIO_PROCESSING_AEC3_ADAPTIVE_FIR_FILTER_H_
#include <stddef.h>
#include <array>
#include <vector>
#include "api/array_view.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/aec3/aec3_fft.h"
#include "modules/audio_processing/aec3/fft_data.h"
#include "modules/audio_processing/aec3/render_buffer.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/system/arch.h"
namespace webrtc {
namespace aec3 {
// Computes and stores the frequency response of the filter.
void ComputeFrequencyResponse(
size_t num_partitions,
const std::vector<std::vector<FftData>>& H,
std::vector<std::array<float, kFftLengthBy2Plus1>>* H2);
#if defined(WEBRTC_HAS_NEON)
void ComputeFrequencyResponse_Neon(
size_t num_partitions,
const std::vector<std::vector<FftData>>& H,
std::vector<std::array<float, kFftLengthBy2Plus1>>* H2);
#endif
#if defined(WEBRTC_ARCH_X86_FAMILY)
void ComputeFrequencyResponse_Sse2(
size_t num_partitions,
const std::vector<std::vector<FftData>>& H,
std::vector<std::array<float, kFftLengthBy2Plus1>>* H2);
#endif
// Adapts the filter partitions.
void AdaptPartitions(const RenderBuffer& render_buffer,
const FftData& G,
size_t num_partitions,
std::vector<std::vector<FftData>>* H);
#if defined(WEBRTC_HAS_NEON)
void AdaptPartitions_Neon(const RenderBuffer& render_buffer,
const FftData& G,
size_t num_partitions,
std::vector<std::vector<FftData>>* H);
#endif
#if defined(WEBRTC_ARCH_X86_FAMILY)
void AdaptPartitions_Sse2(const RenderBuffer& render_buffer,
const FftData& G,
size_t num_partitions,
std::vector<std::vector<FftData>>* H);
#endif
// Produces the filter output.
void ApplyFilter(const RenderBuffer& render_buffer,
size_t num_partitions,
const std::vector<std::vector<FftData>>& H,
FftData* S);
#if defined(WEBRTC_HAS_NEON)
void ApplyFilter_Neon(const RenderBuffer& render_buffer,
size_t num_partitions,
const std::vector<std::vector<FftData>>& H,
FftData* S);
#endif
#if defined(WEBRTC_ARCH_X86_FAMILY)
void ApplyFilter_Sse2(const RenderBuffer& render_buffer,
size_t num_partitions,
const std::vector<std::vector<FftData>>& H,
FftData* S);
#endif
} // namespace aec3
// Provides a frequency domain adaptive filter functionality.
class AdaptiveFirFilter {
public:
AdaptiveFirFilter(size_t max_size_partitions,
size_t initial_size_partitions,
size_t size_change_duration_blocks,
size_t num_render_channels,
Aec3Optimization optimization,
ApmDataDumper* data_dumper);
~AdaptiveFirFilter();
AdaptiveFirFilter(const AdaptiveFirFilter&) = delete;
AdaptiveFirFilter& operator=(const AdaptiveFirFilter&) = delete;
// Produces the output of the filter.
void Filter(const RenderBuffer& render_buffer, FftData* S) const;
// Adapts the filter and updates an externally stored impulse response
// estimate.
void Adapt(const RenderBuffer& render_buffer,
const FftData& G,
std::vector<float>* impulse_response);
// Adapts the filter.
void Adapt(const RenderBuffer& render_buffer, const FftData& G);
// Receives reports that known echo path changes have occured and adjusts
// the filter adaptation accordingly.
void HandleEchoPathChange();
// Returns the filter size.
size_t SizePartitions() const { return current_size_partitions_; }
// Sets the filter size.
void SetSizePartitions(size_t size, bool immediate_effect);
// Computes the frequency responses for the filter partitions.
void ComputeFrequencyResponse(
std::vector<std::array<float, kFftLengthBy2Plus1>>* H2) const;
// Returns the maximum number of partitions for the filter.
size_t max_filter_size_partitions() const { return max_size_partitions_; }
void DumpFilter(const char* name_frequency_domain) {
for (size_t p = 0; p < max_size_partitions_; ++p) {
data_dumper_->DumpRaw(name_frequency_domain, H_[p][0].re);
data_dumper_->DumpRaw(name_frequency_domain, H_[p][0].im);
}
}
// Scale the filter impulse response and spectrum by a factor.
void ScaleFilter(float factor);
// Set the filter coefficients.
void SetFilter(size_t num_partitions,
const std::vector<std::vector<FftData>>& H);
// Gets the filter coefficients.
const std::vector<std::vector<FftData>>& GetFilter() const { return H_; }
private:
// Adapts the filter and updates the filter size.
void AdaptAndUpdateSize(const RenderBuffer& render_buffer, const FftData& G);
// Constrain the filter partitions in a cyclic manner.
void Constrain();
// Constrains the filter in a cyclic manner and updates the corresponding
// values in the supplied impulse response.
void ConstrainAndUpdateImpulseResponse(std::vector<float>* impulse_response);
// Gradually Updates the current filter size towards the target size.
void UpdateSize();
ApmDataDumper* const data_dumper_;
const Aec3Fft fft_;
const Aec3Optimization optimization_;
const size_t num_render_channels_;
const size_t max_size_partitions_;
const int size_change_duration_blocks_;
float one_by_size_change_duration_blocks_;
size_t current_size_partitions_;
size_t target_size_partitions_;
size_t old_target_size_partitions_;
int size_change_counter_ = 0;
std::vector<std::vector<FftData>> H_;
size_t partition_to_constrain_ = 0;
};
} // namespace webrtc
#endif // MODULES_AUDIO_PROCESSING_AEC3_ADAPTIVE_FIR_FILTER_H_