blob: f40fade83024e4c7fb435a8cb9e299d2f2984756 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/render_signal_analyzer.h"
#include <math.h>
#include <array>
#include <cmath>
#include <vector>
#include "api/array_view.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/aec3/aec3_fft.h"
#include "modules/audio_processing/aec3/fft_data.h"
#include "modules/audio_processing/aec3/render_delay_buffer.h"
#include "modules/audio_processing/test/echo_canceller_test_tools.h"
#include "rtc_base/random.h"
#include "rtc_base/strings/string_builder.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
constexpr float kPi = 3.141592f;
void ProduceSinusoidInNoise(int sample_rate_hz,
size_t sinusoid_channel,
float sinusoidal_frequency_hz,
Random* random_generator,
size_t* sample_counter,
std::vector<std::vector<std::vector<float>>>* x) {
// Fill x with low-amplitude noise.
for (auto& band : *x) {
for (auto& channel : band) {
RandomizeSampleVector(random_generator, channel,
/*amplitude=*/500.f);
}
}
// Produce a sinusoid of the specified frequency in the specified channel.
for (size_t k = *sample_counter, j = 0; k < (*sample_counter + kBlockSize);
++k, ++j) {
(*x)[0][sinusoid_channel][j] +=
32000.f *
std::sin(2.f * kPi * sinusoidal_frequency_hz * k / sample_rate_hz);
}
*sample_counter = *sample_counter + kBlockSize;
}
void RunNarrowBandDetectionTest(size_t num_channels) {
RenderSignalAnalyzer analyzer(EchoCanceller3Config{});
Random random_generator(42U);
constexpr int kSampleRateHz = 48000;
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
std::vector<std::vector<std::vector<float>>> x(
kNumBands, std::vector<std::vector<float>>(
num_channels, std::vector<float>(kBlockSize, 0.f)));
std::array<float, kBlockSize> x_old;
Aec3Fft fft;
EchoCanceller3Config config;
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, kSampleRateHz, num_channels));
std::array<float, kFftLengthBy2Plus1> mask;
x_old.fill(0.f);
constexpr int kSinusFrequencyBin = 32;
auto generate_sinusoid_test = [&](bool known_delay) {
size_t sample_counter = 0;
for (size_t k = 0; k < 100; ++k) {
ProduceSinusoidInNoise(16000, num_channels - 1,
16000 / 2 * kSinusFrequencyBin / kFftLengthBy2,
&random_generator, &sample_counter, &x);
render_delay_buffer->Insert(x);
if (k == 0) {
render_delay_buffer->Reset();
}
render_delay_buffer->PrepareCaptureProcessing();
analyzer.Update(*render_delay_buffer->GetRenderBuffer(),
known_delay ? absl::optional<size_t>(0) : absl::nullopt);
}
};
generate_sinusoid_test(true);
mask.fill(1.f);
analyzer.MaskRegionsAroundNarrowBands(&mask);
for (int k = 0; k < static_cast<int>(mask.size()); ++k) {
EXPECT_EQ(abs(k - kSinusFrequencyBin) <= 2 ? 0.f : 1.f, mask[k]);
}
EXPECT_TRUE(analyzer.PoorSignalExcitation());
EXPECT_TRUE(static_cast<bool>(analyzer.NarrowPeakBand()));
EXPECT_EQ(*analyzer.NarrowPeakBand(), 32);
// Verify that no bands are detected as narrow when the delay is unknown.
generate_sinusoid_test(false);
mask.fill(1.f);
analyzer.MaskRegionsAroundNarrowBands(&mask);
std::for_each(mask.begin(), mask.end(), [](float a) { EXPECT_EQ(1.f, a); });
EXPECT_FALSE(analyzer.PoorSignalExcitation());
}
std::string ProduceDebugText(size_t num_channels) {
rtc::StringBuilder ss;
ss << "number of channels: " << num_channels;
return ss.Release();
}
} // namespace
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies that the check for non-null output parameter works.
TEST(RenderSignalAnalyzer, NullMaskOutput) {
RenderSignalAnalyzer analyzer(EchoCanceller3Config{});
EXPECT_DEATH(analyzer.MaskRegionsAroundNarrowBands(nullptr), "");
}
#endif
// Verify that no narrow bands are detected in a Gaussian noise signal.
TEST(RenderSignalAnalyzer, NoFalseDetectionOfNarrowBands) {
for (auto num_channels : {1, 2, 8}) {
SCOPED_TRACE(ProduceDebugText(num_channels));
RenderSignalAnalyzer analyzer(EchoCanceller3Config{});
Random random_generator(42U);
std::vector<std::vector<std::vector<float>>> x(
3, std::vector<std::vector<float>>(
num_channels, std::vector<float>(kBlockSize, 0.f)));
std::array<float, kBlockSize> x_old;
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(EchoCanceller3Config(), 48000, num_channels));
std::array<float, kFftLengthBy2Plus1> mask;
x_old.fill(0.f);
for (size_t k = 0; k < 100; ++k) {
for (auto& band : x) {
for (auto& channel : band) {
RandomizeSampleVector(&random_generator, channel);
}
}
render_delay_buffer->Insert(x);
if (k == 0) {
render_delay_buffer->Reset();
}
render_delay_buffer->PrepareCaptureProcessing();
analyzer.Update(*render_delay_buffer->GetRenderBuffer(),
absl::optional<size_t>(0));
}
mask.fill(1.f);
analyzer.MaskRegionsAroundNarrowBands(&mask);
EXPECT_TRUE(std::all_of(mask.begin(), mask.end(),
[](float a) { return a == 1.f; }));
EXPECT_FALSE(analyzer.PoorSignalExcitation());
EXPECT_FALSE(static_cast<bool>(analyzer.NarrowPeakBand()));
}
}
// Verify that a sinusoid signal is detected as narrow bands.
TEST(RenderSignalAnalyzer, NarrowBandDetection) {
for (auto num_channels : {1, 2, 8}) {
SCOPED_TRACE(ProduceDebugText(num_channels));
RunNarrowBandDetectionTest(num_channels);
}
}
} // namespace webrtc