blob: a78dd7fb08ed0a7074ec1719095c892ba9837927 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/congestion_controller/delay_based_bwe.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/modules/pacing/paced_sender.h"
#include "webrtc/system_wrappers/include/clock.h"
namespace webrtc {
class TestDelayBasedBwe : public ::testing::Test, public RemoteBitrateObserver {
public:
static constexpr int kArrivalTimeClockOffsetMs = 60000;
static constexpr int kNumProbes = 5;
TestDelayBasedBwe()
: bwe_(this), clock_(0), bitrate_updated_(false), latest_bitrate_(0) {}
uint32_t AbsSendTime(int64_t t, int64_t denom) {
return (((t << 18) + (denom >> 1)) / denom) & 0x00fffffful;
}
void IncomingPacket(uint32_t ssrc,
size_t payload_size,
int64_t arrival_time,
uint32_t rtp_timestamp,
uint32_t absolute_send_time,
int probe_cluster_id) {
RTPHeader header;
memset(&header, 0, sizeof(header));
header.ssrc = ssrc;
header.timestamp = rtp_timestamp;
header.extension.hasAbsoluteSendTime = true;
header.extension.absoluteSendTime = absolute_send_time;
bwe_.IncomingPacket(arrival_time + kArrivalTimeClockOffsetMs, payload_size,
header, probe_cluster_id);
}
void OnReceiveBitrateChanged(const std::vector<uint32_t>& ssrcs,
uint32_t bitrate) {
bitrate_updated_ = true;
latest_bitrate_ = bitrate;
}
bool bitrate_updated() {
bool res = bitrate_updated_;
bitrate_updated_ = false;
return res;
}
int latest_bitrate() { return latest_bitrate_; }
DelayBasedBwe bwe_;
SimulatedClock clock_;
private:
bool bitrate_updated_;
int latest_bitrate_;
};
TEST_F(TestDelayBasedBwe, ProbeDetection) {
int64_t now_ms = clock_.TimeInMilliseconds();
// First burst sent at 8 * 1000 / 10 = 800 kbps.
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(10);
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * now_ms, AbsSendTime(now_ms, 1000), 0);
}
EXPECT_TRUE(bitrate_updated());
// Second burst sent at 8 * 1000 / 5 = 1600 kbps.
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(5);
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * now_ms, AbsSendTime(now_ms, 1000), 1);
}
EXPECT_TRUE(bitrate_updated());
EXPECT_GT(latest_bitrate(), 1500000);
}
TEST_F(TestDelayBasedBwe, ProbeDetectionNonPacedPackets) {
int64_t now_ms = clock_.TimeInMilliseconds();
// First burst sent at 8 * 1000 / 10 = 800 kbps, but with every other packet
// not being paced which could mess things up.
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(5);
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * now_ms, AbsSendTime(now_ms, 1000), 0);
// Non-paced packet, arriving 5 ms after.
clock_.AdvanceTimeMilliseconds(5);
IncomingPacket(0, PacedSender::kMinProbePacketSize + 1, now_ms, 90 * now_ms,
AbsSendTime(now_ms, 1000), PacketInfo::kNotAProbe);
}
EXPECT_TRUE(bitrate_updated());
EXPECT_GT(latest_bitrate(), 800000);
}
// Packets will require 5 ms to be transmitted to the receiver, causing packets
// of the second probe to be dispersed.
TEST_F(TestDelayBasedBwe, ProbeDetectionTooHighBitrate) {
int64_t now_ms = clock_.TimeInMilliseconds();
int64_t send_time_ms = 0;
// First burst sent at 8 * 1000 / 10 = 800 kbps.
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(10);
now_ms = clock_.TimeInMilliseconds();
send_time_ms += 10;
IncomingPacket(0, 1000, now_ms, 90 * send_time_ms,
AbsSendTime(send_time_ms, 1000), 0);
}
// Second burst sent at 8 * 1000 / 5 = 1600 kbps, arriving at 8 * 1000 / 8 =
// 1000 kbps.
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(8);
now_ms = clock_.TimeInMilliseconds();
send_time_ms += 5;
IncomingPacket(0, 1000, now_ms, send_time_ms,
AbsSendTime(send_time_ms, 1000), 1);
}
EXPECT_TRUE(bitrate_updated());
EXPECT_NEAR(latest_bitrate(), 800000, 10000);
}
TEST_F(TestDelayBasedBwe, ProbeDetectionSlightlyFasterArrival) {
int64_t now_ms = clock_.TimeInMilliseconds();
// First burst sent at 8 * 1000 / 10 = 800 kbps.
// Arriving at 8 * 1000 / 5 = 1600 kbps.
int64_t send_time_ms = 0;
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(5);
send_time_ms += 10;
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * send_time_ms,
AbsSendTime(send_time_ms, 1000), 23);
}
EXPECT_TRUE(bitrate_updated());
EXPECT_GT(latest_bitrate(), 800000);
}
TEST_F(TestDelayBasedBwe, ProbeDetectionFasterArrival) {
int64_t now_ms = clock_.TimeInMilliseconds();
// First burst sent at 8 * 1000 / 10 = 800 kbps.
// Arriving at 8 * 1000 / 5 = 1600 kbps.
int64_t send_time_ms = 0;
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(1);
send_time_ms += 10;
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * send_time_ms,
AbsSendTime(send_time_ms, 1000), 0);
}
EXPECT_FALSE(bitrate_updated());
}
TEST_F(TestDelayBasedBwe, ProbeDetectionSlowerArrival) {
int64_t now_ms = clock_.TimeInMilliseconds();
// First burst sent at 8 * 1000 / 5 = 1600 kbps.
// Arriving at 8 * 1000 / 7 = 1142 kbps.
int64_t send_time_ms = 0;
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(7);
send_time_ms += 5;
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * send_time_ms,
AbsSendTime(send_time_ms, 1000), 1);
}
EXPECT_TRUE(bitrate_updated());
EXPECT_NEAR(latest_bitrate(), 1140000, 10000);
}
TEST_F(TestDelayBasedBwe, ProbeDetectionSlowerArrivalHighBitrate) {
int64_t now_ms = clock_.TimeInMilliseconds();
// Burst sent at 8 * 1000 / 1 = 8000 kbps.
// Arriving at 8 * 1000 / 2 = 4000 kbps.
int64_t send_time_ms = 0;
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(2);
send_time_ms += 1;
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * send_time_ms,
AbsSendTime(send_time_ms, 1000), 1);
}
EXPECT_TRUE(bitrate_updated());
EXPECT_NEAR(latest_bitrate(), 4000000u, 10000);
}
TEST_F(TestDelayBasedBwe, ProbingIgnoresSmallPackets) {
int64_t now_ms = clock_.TimeInMilliseconds();
// Probing with 200 bytes every 10 ms, should be ignored by the probe
// detection.
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(10);
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, PacedSender::kMinProbePacketSize, now_ms, 90 * now_ms,
AbsSendTime(now_ms, 1000), 1);
}
EXPECT_FALSE(bitrate_updated());
// Followed by a probe with 1000 bytes packets, should be detected as a
// probe.
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(10);
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * now_ms, AbsSendTime(now_ms, 1000), 1);
}
// Wait long enough so that we can call Process again.
clock_.AdvanceTimeMilliseconds(1000);
EXPECT_TRUE(bitrate_updated());
EXPECT_NEAR(latest_bitrate(), 800000u, 10000);
}
} // namespace webrtc