blob: 8e110aa9cc36464be1cfb9b828ca52ed7b5a47cb [file] [log] [blame]
/*
* Copyright 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <algorithm>
#include <iterator>
#include <map>
#include <memory>
#include <ostream> // no-presubmit-check TODO(webrtc:8982)
#include <string>
#include <utility>
#include <vector>
#include "absl/algorithm/container.h"
#include "absl/strings/match.h"
#include "absl/strings/string_view.h"
#include "api/audio/audio_mixer.h"
#include "api/audio_codecs/builtin_audio_decoder_factory.h"
#include "api/audio_codecs/builtin_audio_encoder_factory.h"
#include "api/audio_codecs/opus_audio_decoder_factory.h"
#include "api/audio_codecs/opus_audio_encoder_factory.h"
#include "api/create_peerconnection_factory.h"
#include "api/jsep.h"
#include "api/media_types.h"
#include "api/peer_connection_interface.h"
#include "api/rtc_error.h"
#include "api/rtp_parameters.h"
#include "api/rtp_sender_interface.h"
#include "api/rtp_transceiver_direction.h"
#include "api/rtp_transceiver_interface.h"
#include "api/scoped_refptr.h"
#include "api/stats/rtcstats_objects.h"
#include "api/uma_metrics.h"
#include "api/video/video_codec_constants.h"
#include "api/video_codecs/video_decoder_factory_template.h"
#include "api/video_codecs/video_decoder_factory_template_dav1d_adapter.h"
#include "api/video_codecs/video_decoder_factory_template_libvpx_vp8_adapter.h"
#include "api/video_codecs/video_decoder_factory_template_libvpx_vp9_adapter.h"
#include "api/video_codecs/video_decoder_factory_template_open_h264_adapter.h"
#include "api/video_codecs/video_encoder_factory_template.h"
#include "api/video_codecs/video_encoder_factory_template_libaom_av1_adapter.h"
#include "api/video_codecs/video_encoder_factory_template_libvpx_vp8_adapter.h"
#include "api/video_codecs/video_encoder_factory_template_libvpx_vp9_adapter.h"
#include "api/video_codecs/video_encoder_factory_template_open_h264_adapter.h"
#include "media/base/media_constants.h"
#include "media/base/rid_description.h"
#include "media/base/stream_params.h"
#include "modules/audio_device/include/audio_device.h"
#include "modules/audio_processing/include/audio_processing.h"
#include "pc/channel_interface.h"
#include "pc/peer_connection_wrapper.h"
#include "pc/sdp_utils.h"
#include "pc/session_description.h"
#include "pc/simulcast_description.h"
#include "pc/test/fake_audio_capture_module.h"
#include "pc/test/mock_peer_connection_observers.h"
#include "pc/test/peer_connection_test_wrapper.h"
#include "rtc_base/checks.h"
#include "rtc_base/gunit.h"
#include "rtc_base/physical_socket_server.h"
#include "rtc_base/strings/string_builder.h"
#include "rtc_base/thread.h"
#include "rtc_base/unique_id_generator.h"
#include "system_wrappers/include/metrics.h"
#include "test/field_trial.h"
#include "test/gmock.h"
#include "test/gtest.h"
using ::testing::Contains;
using ::testing::Each;
using ::testing::ElementsAre;
using ::testing::ElementsAreArray;
using ::testing::Eq;
using ::testing::Field;
using ::testing::IsEmpty;
using ::testing::Le;
using ::testing::Ne;
using ::testing::Optional;
using ::testing::Pair;
using ::testing::Property;
using ::testing::SizeIs;
using ::testing::StartsWith;
using ::testing::StrCaseEq;
using ::testing::StrEq;
using cricket::MediaContentDescription;
using cricket::RidDescription;
using cricket::SimulcastDescription;
using cricket::SimulcastLayer;
using cricket::StreamParams;
namespace cricket {
std::ostream& operator<<( // no-presubmit-check TODO(webrtc:8982)
std::ostream& os, // no-presubmit-check TODO(webrtc:8982)
const SimulcastLayer& layer) {
if (layer.is_paused) {
os << "~";
}
return os << layer.rid;
}
} // namespace cricket
namespace {
std::vector<SimulcastLayer> CreateLayers(const std::vector<std::string>& rids,
const std::vector<bool>& active) {
RTC_DCHECK_EQ(rids.size(), active.size());
std::vector<SimulcastLayer> result;
absl::c_transform(rids, active, std::back_inserter(result),
[](const std::string& rid, bool is_active) {
return SimulcastLayer(rid, !is_active);
});
return result;
}
std::vector<SimulcastLayer> CreateLayers(const std::vector<std::string>& rids,
bool active) {
return CreateLayers(rids, std::vector<bool>(rids.size(), active));
}
#if RTC_METRICS_ENABLED
std::vector<SimulcastLayer> CreateLayers(int num_layers, bool active) {
rtc::UniqueStringGenerator rid_generator;
std::vector<std::string> rids;
for (int i = 0; i < num_layers; ++i) {
rids.push_back(rid_generator.GenerateString());
}
return CreateLayers(rids, active);
}
#endif
// RTX, RED and FEC are reliability mechanisms used in combinations with other
// codecs, but are not themselves a specific codec. Typically you don't want to
// filter these out of the list of codec preferences.
bool IsReliabilityMechanism(const webrtc::RtpCodecCapability& codec) {
return absl::EqualsIgnoreCase(codec.name, cricket::kRtxCodecName) ||
absl::EqualsIgnoreCase(codec.name, cricket::kRedCodecName) ||
absl::EqualsIgnoreCase(codec.name, cricket::kUlpfecCodecName);
}
std::string GetCurrentCodecMimeType(
rtc::scoped_refptr<const webrtc::RTCStatsReport> report,
const webrtc::RTCOutboundRtpStreamStats& outbound_rtp) {
return outbound_rtp.codec_id.is_defined()
? *report->GetAs<webrtc::RTCCodecStats>(*outbound_rtp.codec_id)
->mime_type
: "";
}
struct RidAndResolution {
std::string rid;
uint32_t width;
uint32_t height;
};
const webrtc::RTCOutboundRtpStreamStats* FindOutboundRtpByRid(
const std::vector<const webrtc::RTCOutboundRtpStreamStats*>& outbound_rtps,
const absl::string_view& rid) {
for (const auto* outbound_rtp : outbound_rtps) {
if (outbound_rtp->rid.is_defined() && *outbound_rtp->rid == rid) {
return outbound_rtp;
}
}
return nullptr;
}
} // namespace
namespace webrtc {
constexpr TimeDelta kDefaultTimeout = TimeDelta::Seconds(5);
constexpr TimeDelta kLongTimeoutForRampingUp = TimeDelta::Seconds(30);
class PeerConnectionSimulcastTests : public ::testing::Test {
public:
PeerConnectionSimulcastTests()
: pc_factory_(CreatePeerConnectionFactory(
rtc::Thread::Current(),
rtc::Thread::Current(),
rtc::Thread::Current(),
FakeAudioCaptureModule::Create(),
CreateBuiltinAudioEncoderFactory(),
CreateBuiltinAudioDecoderFactory(),
std::make_unique<
VideoEncoderFactoryTemplate<LibvpxVp8EncoderTemplateAdapter,
LibvpxVp9EncoderTemplateAdapter,
OpenH264EncoderTemplateAdapter,
LibaomAv1EncoderTemplateAdapter>>(),
std::make_unique<
VideoDecoderFactoryTemplate<LibvpxVp8DecoderTemplateAdapter,
LibvpxVp9DecoderTemplateAdapter,
OpenH264DecoderTemplateAdapter,
Dav1dDecoderTemplateAdapter>>(),
nullptr,
nullptr)) {}
rtc::scoped_refptr<PeerConnectionInterface> CreatePeerConnection(
MockPeerConnectionObserver* observer) {
PeerConnectionInterface::RTCConfiguration config;
config.sdp_semantics = SdpSemantics::kUnifiedPlan;
PeerConnectionDependencies pcd(observer);
auto result =
pc_factory_->CreatePeerConnectionOrError(config, std::move(pcd));
EXPECT_TRUE(result.ok());
observer->SetPeerConnectionInterface(result.value().get());
return result.MoveValue();
}
std::unique_ptr<PeerConnectionWrapper> CreatePeerConnectionWrapper() {
auto observer = std::make_unique<MockPeerConnectionObserver>();
auto pc = CreatePeerConnection(observer.get());
return std::make_unique<PeerConnectionWrapper>(pc_factory_, pc,
std::move(observer));
}
void ExchangeOfferAnswer(PeerConnectionWrapper* local,
PeerConnectionWrapper* remote,
const std::vector<SimulcastLayer>& answer_layers) {
auto offer = local->CreateOfferAndSetAsLocal();
// Remove simulcast as the second peer connection won't support it.
RemoveSimulcast(offer.get());
std::string err;
EXPECT_TRUE(remote->SetRemoteDescription(std::move(offer), &err)) << err;
auto answer = remote->CreateAnswerAndSetAsLocal();
// Setup the answer to look like a server response.
auto mcd_answer = answer->description()->contents()[0].media_description();
auto& receive_layers = mcd_answer->simulcast_description().receive_layers();
for (const SimulcastLayer& layer : answer_layers) {
receive_layers.AddLayer(layer);
}
EXPECT_TRUE(local->SetRemoteDescription(std::move(answer), &err)) << err;
}
RtpTransceiverInit CreateTransceiverInit(
const std::vector<SimulcastLayer>& layers) {
RtpTransceiverInit init;
for (const SimulcastLayer& layer : layers) {
RtpEncodingParameters encoding;
encoding.rid = layer.rid;
encoding.active = !layer.is_paused;
init.send_encodings.push_back(encoding);
}
return init;
}
rtc::scoped_refptr<RtpTransceiverInterface> AddTransceiver(
PeerConnectionWrapper* pc,
const std::vector<SimulcastLayer>& layers,
cricket::MediaType media_type = cricket::MEDIA_TYPE_VIDEO) {
auto init = CreateTransceiverInit(layers);
return pc->AddTransceiver(media_type, init);
}
SimulcastDescription RemoveSimulcast(SessionDescriptionInterface* sd) {
auto mcd = sd->description()->contents()[0].media_description();
auto result = mcd->simulcast_description();
mcd->set_simulcast_description(SimulcastDescription());
return result;
}
void AddRequestToReceiveSimulcast(const std::vector<SimulcastLayer>& layers,
SessionDescriptionInterface* sd) {
auto mcd = sd->description()->contents()[0].media_description();
SimulcastDescription simulcast;
auto& receive_layers = simulcast.receive_layers();
for (const SimulcastLayer& layer : layers) {
receive_layers.AddLayer(layer);
}
mcd->set_simulcast_description(simulcast);
}
void ValidateTransceiverParameters(
rtc::scoped_refptr<RtpTransceiverInterface> transceiver,
const std::vector<SimulcastLayer>& layers) {
auto parameters = transceiver->sender()->GetParameters();
std::vector<SimulcastLayer> result_layers;
absl::c_transform(parameters.encodings, std::back_inserter(result_layers),
[](const RtpEncodingParameters& encoding) {
return SimulcastLayer(encoding.rid, !encoding.active);
});
EXPECT_THAT(result_layers, ElementsAreArray(layers));
}
private:
rtc::scoped_refptr<PeerConnectionFactoryInterface> pc_factory_;
};
#if RTC_METRICS_ENABLED
// This class is used to test the metrics emitted for simulcast.
class PeerConnectionSimulcastMetricsTests
: public PeerConnectionSimulcastTests,
public ::testing::WithParamInterface<int> {
protected:
PeerConnectionSimulcastMetricsTests() { webrtc::metrics::Reset(); }
std::map<int, int> LocalDescriptionSamples() {
return metrics::Samples(
"WebRTC.PeerConnection.Simulcast.ApplyLocalDescription");
}
std::map<int, int> RemoteDescriptionSamples() {
return metrics::Samples(
"WebRTC.PeerConnection.Simulcast.ApplyRemoteDescription");
}
};
#endif
// Validates that RIDs are supported arguments when adding a transceiver.
TEST_F(PeerConnectionSimulcastTests, CanCreateTransceiverWithRid) {
auto pc = CreatePeerConnectionWrapper();
auto layers = CreateLayers({"f"}, true);
auto transceiver = AddTransceiver(pc.get(), layers);
ASSERT_TRUE(transceiver);
auto parameters = transceiver->sender()->GetParameters();
// Single RID should be removed.
EXPECT_THAT(parameters.encodings,
ElementsAre(Field("rid", &RtpEncodingParameters::rid, Eq(""))));
}
TEST_F(PeerConnectionSimulcastTests, CanCreateTransceiverWithSimulcast) {
auto pc = CreatePeerConnectionWrapper();
auto layers = CreateLayers({"f", "h", "q"}, true);
auto transceiver = AddTransceiver(pc.get(), layers);
ASSERT_TRUE(transceiver);
ValidateTransceiverParameters(transceiver, layers);
}
TEST_F(PeerConnectionSimulcastTests, RidsAreAutogeneratedIfNotProvided) {
auto pc = CreatePeerConnectionWrapper();
auto init = CreateTransceiverInit(CreateLayers({"f", "h", "q"}, true));
for (RtpEncodingParameters& parameters : init.send_encodings) {
parameters.rid = "";
}
auto transceiver = pc->AddTransceiver(cricket::MEDIA_TYPE_VIDEO, init);
auto parameters = transceiver->sender()->GetParameters();
ASSERT_EQ(3u, parameters.encodings.size());
EXPECT_THAT(parameters.encodings,
Each(Field("rid", &RtpEncodingParameters::rid, Ne(""))));
}
// Validates that an error is returned when there is a mix of supplied and not
// supplied RIDs in a call to AddTransceiver.
TEST_F(PeerConnectionSimulcastTests, MustSupplyAllOrNoRidsInSimulcast) {
auto pc_wrapper = CreatePeerConnectionWrapper();
auto pc = pc_wrapper->pc();
// Cannot create a layer with empty RID. Remove the RID after init is created.
auto layers = CreateLayers({"f", "h", "remove"}, true);
auto init = CreateTransceiverInit(layers);
init.send_encodings[2].rid = "";
auto error = pc->AddTransceiver(cricket::MEDIA_TYPE_VIDEO, init);
EXPECT_EQ(RTCErrorType::INVALID_PARAMETER, error.error().type());
}
// Validates that an error is returned when illegal RIDs are supplied.
TEST_F(PeerConnectionSimulcastTests, ChecksForIllegalRidValues) {
auto pc_wrapper = CreatePeerConnectionWrapper();
auto pc = pc_wrapper->pc();
auto layers = CreateLayers({"f", "h", "~q"}, true);
auto init = CreateTransceiverInit(layers);
auto error = pc->AddTransceiver(cricket::MEDIA_TYPE_VIDEO, init);
EXPECT_EQ(RTCErrorType::INVALID_PARAMETER, error.error().type());
}
// Validates that a single RID is removed from the encoding layer.
TEST_F(PeerConnectionSimulcastTests, SingleRidIsRemovedFromSessionDescription) {
auto pc = CreatePeerConnectionWrapper();
auto transceiver = AddTransceiver(pc.get(), CreateLayers({"1"}, true));
auto offer = pc->CreateOfferAndSetAsLocal();
ASSERT_TRUE(offer);
auto contents = offer->description()->contents();
ASSERT_EQ(1u, contents.size());
EXPECT_THAT(contents[0].media_description()->streams(),
ElementsAre(Property(&StreamParams::has_rids, false)));
}
TEST_F(PeerConnectionSimulcastTests, SimulcastLayersRemovedFromTail) {
static_assert(
kMaxSimulcastStreams < 8,
"Test assumes that the platform does not allow 8 simulcast layers");
auto pc = CreatePeerConnectionWrapper();
auto layers = CreateLayers({"1", "2", "3", "4", "5", "6", "7", "8"}, true);
std::vector<SimulcastLayer> expected_layers;
std::copy_n(layers.begin(), kMaxSimulcastStreams,
std::back_inserter(expected_layers));
auto transceiver = AddTransceiver(pc.get(), layers);
ValidateTransceiverParameters(transceiver, expected_layers);
}
// Checks that an offfer to send simulcast contains a SimulcastDescription.
TEST_F(PeerConnectionSimulcastTests, SimulcastAppearsInSessionDescription) {
auto pc = CreatePeerConnectionWrapper();
std::vector<std::string> rids({"f", "h", "q"});
auto layers = CreateLayers(rids, true);
auto transceiver = AddTransceiver(pc.get(), layers);
auto offer = pc->CreateOffer();
ASSERT_TRUE(offer);
auto contents = offer->description()->contents();
ASSERT_EQ(1u, contents.size());
auto content = contents[0];
auto mcd = content.media_description();
ASSERT_TRUE(mcd->HasSimulcast());
auto simulcast = mcd->simulcast_description();
EXPECT_THAT(simulcast.receive_layers(), IsEmpty());
// The size is validated separately because GetAllLayers() flattens the list.
EXPECT_THAT(simulcast.send_layers(), SizeIs(3));
std::vector<SimulcastLayer> result = simulcast.send_layers().GetAllLayers();
EXPECT_THAT(result, ElementsAreArray(layers));
auto streams = mcd->streams();
ASSERT_EQ(1u, streams.size());
auto stream = streams[0];
EXPECT_FALSE(stream.has_ssrcs());
EXPECT_TRUE(stream.has_rids());
std::vector<std::string> result_rids;
absl::c_transform(stream.rids(), std::back_inserter(result_rids),
[](const RidDescription& rid) { return rid.rid; });
EXPECT_THAT(result_rids, ElementsAreArray(rids));
}
// Checks that Simulcast layers propagate to the sender parameters.
TEST_F(PeerConnectionSimulcastTests, SimulcastLayersAreSetInSender) {
auto local = CreatePeerConnectionWrapper();
auto remote = CreatePeerConnectionWrapper();
auto layers = CreateLayers({"f", "h", "q"}, true);
auto transceiver = AddTransceiver(local.get(), layers);
auto offer = local->CreateOfferAndSetAsLocal();
{
SCOPED_TRACE("after create offer");
ValidateTransceiverParameters(transceiver, layers);
}
// Remove simulcast as the second peer connection won't support it.
auto simulcast = RemoveSimulcast(offer.get());
std::string error;
EXPECT_TRUE(remote->SetRemoteDescription(std::move(offer), &error)) << error;
auto answer = remote->CreateAnswerAndSetAsLocal();
// Setup an answer that mimics a server accepting simulcast.
auto mcd_answer = answer->description()->contents()[0].media_description();
mcd_answer->mutable_streams().clear();
auto simulcast_layers = simulcast.send_layers().GetAllLayers();
auto& receive_layers = mcd_answer->simulcast_description().receive_layers();
for (const auto& layer : simulcast_layers) {
receive_layers.AddLayer(layer);
}
EXPECT_TRUE(local->SetRemoteDescription(std::move(answer), &error)) << error;
{
SCOPED_TRACE("after set remote");
ValidateTransceiverParameters(transceiver, layers);
}
}
// Checks that paused Simulcast layers propagate to the sender parameters.
TEST_F(PeerConnectionSimulcastTests, PausedSimulcastLayersAreDisabledInSender) {
auto local = CreatePeerConnectionWrapper();
auto remote = CreatePeerConnectionWrapper();
auto layers = CreateLayers({"f", "h", "q"}, {true, false, true});
auto server_layers = CreateLayers({"f", "h", "q"}, {true, false, false});
RTC_DCHECK_EQ(layers.size(), server_layers.size());
auto transceiver = AddTransceiver(local.get(), layers);
auto offer = local->CreateOfferAndSetAsLocal();
{
SCOPED_TRACE("after create offer");
ValidateTransceiverParameters(transceiver, layers);
}
// Remove simulcast as the second peer connection won't support it.
RemoveSimulcast(offer.get());
std::string error;
EXPECT_TRUE(remote->SetRemoteDescription(std::move(offer), &error)) << error;
auto answer = remote->CreateAnswerAndSetAsLocal();
// Setup an answer that mimics a server accepting simulcast.
auto mcd_answer = answer->description()->contents()[0].media_description();
mcd_answer->mutable_streams().clear();
auto& receive_layers = mcd_answer->simulcast_description().receive_layers();
for (const SimulcastLayer& layer : server_layers) {
receive_layers.AddLayer(layer);
}
EXPECT_TRUE(local->SetRemoteDescription(std::move(answer), &error)) << error;
{
SCOPED_TRACE("after set remote");
ValidateTransceiverParameters(transceiver, server_layers);
}
}
// Checks that when Simulcast is not supported by the remote party, then all
// the layers (except the first) are removed.
TEST_F(PeerConnectionSimulcastTests, SimulcastRejectedRemovesExtraLayers) {
auto local = CreatePeerConnectionWrapper();
auto remote = CreatePeerConnectionWrapper();
auto layers = CreateLayers({"1", "2", "3", "4"}, true);
auto transceiver = AddTransceiver(local.get(), layers);
ExchangeOfferAnswer(local.get(), remote.get(), {});
auto parameters = transceiver->sender()->GetParameters();
// Should only have the first layer.
EXPECT_THAT(parameters.encodings,
ElementsAre(Field("rid", &RtpEncodingParameters::rid, Eq("1"))));
}
// Checks that if Simulcast is supported by remote party, but some layers are
// rejected, then only rejected layers are removed from the sender.
TEST_F(PeerConnectionSimulcastTests, RejectedSimulcastLayersAreDeactivated) {
auto local = CreatePeerConnectionWrapper();
auto remote = CreatePeerConnectionWrapper();
auto layers = CreateLayers({"1", "2", "3"}, true);
auto expected_layers = CreateLayers({"2", "3"}, true);
auto transceiver = AddTransceiver(local.get(), layers);
auto offer = local->CreateOfferAndSetAsLocal();
{
SCOPED_TRACE("after create offer");
ValidateTransceiverParameters(transceiver, layers);
}
// Remove simulcast as the second peer connection won't support it.
auto removed_simulcast = RemoveSimulcast(offer.get());
std::string error;
EXPECT_TRUE(remote->SetRemoteDescription(std::move(offer), &error)) << error;
auto answer = remote->CreateAnswerAndSetAsLocal();
auto mcd_answer = answer->description()->contents()[0].media_description();
// Setup the answer to look like a server response.
// Remove one of the layers to reject it in the answer.
auto simulcast_layers = removed_simulcast.send_layers().GetAllLayers();
simulcast_layers.erase(simulcast_layers.begin());
auto& receive_layers = mcd_answer->simulcast_description().receive_layers();
for (const auto& layer : simulcast_layers) {
receive_layers.AddLayer(layer);
}
ASSERT_TRUE(mcd_answer->HasSimulcast());
EXPECT_TRUE(local->SetRemoteDescription(std::move(answer), &error)) << error;
{
SCOPED_TRACE("after set remote");
ValidateTransceiverParameters(transceiver, expected_layers);
}
}
// Checks that simulcast is set up correctly when the server sends an offer
// requesting to receive simulcast.
TEST_F(PeerConnectionSimulcastTests, ServerSendsOfferToReceiveSimulcast) {
auto local = CreatePeerConnectionWrapper();
auto remote = CreatePeerConnectionWrapper();
auto layers = CreateLayers({"f", "h", "q"}, true);
AddTransceiver(local.get(), layers);
auto offer = local->CreateOfferAndSetAsLocal();
// Remove simulcast as a sender and set it up as a receiver.
RemoveSimulcast(offer.get());
AddRequestToReceiveSimulcast(layers, offer.get());
std::string error;
EXPECT_TRUE(remote->SetRemoteDescription(std::move(offer), &error)) << error;
auto transceiver = remote->pc()->GetTransceivers()[0];
transceiver->SetDirectionWithError(RtpTransceiverDirection::kSendRecv);
EXPECT_TRUE(remote->CreateAnswerAndSetAsLocal());
ValidateTransceiverParameters(transceiver, layers);
}
// Checks that SetRemoteDescription doesn't attempt to associate a transceiver
// when simulcast is requested by the server.
TEST_F(PeerConnectionSimulcastTests, TransceiverIsNotRecycledWithSimulcast) {
auto local = CreatePeerConnectionWrapper();
auto remote = CreatePeerConnectionWrapper();
auto layers = CreateLayers({"f", "h", "q"}, true);
AddTransceiver(local.get(), layers);
auto offer = local->CreateOfferAndSetAsLocal();
// Remove simulcast as a sender and set it up as a receiver.
RemoveSimulcast(offer.get());
AddRequestToReceiveSimulcast(layers, offer.get());
// Call AddTrack so that a transceiver is created.
remote->AddVideoTrack("fake_track");
std::string error;
EXPECT_TRUE(remote->SetRemoteDescription(std::move(offer), &error)) << error;
auto transceivers = remote->pc()->GetTransceivers();
ASSERT_EQ(2u, transceivers.size());
auto transceiver = transceivers[1];
transceiver->SetDirectionWithError(RtpTransceiverDirection::kSendRecv);
EXPECT_TRUE(remote->CreateAnswerAndSetAsLocal());
ValidateTransceiverParameters(transceiver, layers);
}
// Checks that if the number of layers changes during negotiation, then any
// outstanding get/set parameters transaction is invalidated.
TEST_F(PeerConnectionSimulcastTests, ParametersAreInvalidatedWhenLayersChange) {
auto local = CreatePeerConnectionWrapper();
auto remote = CreatePeerConnectionWrapper();
auto layers = CreateLayers({"1", "2", "3"}, true);
auto transceiver = AddTransceiver(local.get(), layers);
auto parameters = transceiver->sender()->GetParameters();
ASSERT_EQ(3u, parameters.encodings.size());
// Response will reject simulcast altogether.
ExchangeOfferAnswer(local.get(), remote.get(), {});
auto result = transceiver->sender()->SetParameters(parameters);
EXPECT_EQ(RTCErrorType::INVALID_STATE, result.type());
}
// Checks that even though negotiation modifies the sender's parameters, an
// outstanding get/set parameters transaction is not invalidated.
// This test negotiates twice because initial parameters before negotiation
// is missing critical information and cannot be set on the sender.
TEST_F(PeerConnectionSimulcastTests,
NegotiationDoesNotInvalidateParameterTransactions) {
auto local = CreatePeerConnectionWrapper();
auto remote = CreatePeerConnectionWrapper();
auto layers = CreateLayers({"1", "2", "3"}, true);
auto expected_layers = CreateLayers({"1", "2", "3"}, false);
auto transceiver = AddTransceiver(local.get(), layers);
ExchangeOfferAnswer(local.get(), remote.get(), expected_layers);
// Verify that negotiation does not invalidate the parameters.
auto parameters = transceiver->sender()->GetParameters();
ExchangeOfferAnswer(local.get(), remote.get(), expected_layers);
auto result = transceiver->sender()->SetParameters(parameters);
EXPECT_TRUE(result.ok());
ValidateTransceiverParameters(transceiver, expected_layers);
}
// Tests that simulcast is disabled if the RID extension is not negotiated
// regardless of if the RIDs and simulcast attribute were negotiated properly.
TEST_F(PeerConnectionSimulcastTests, NegotiationDoesNotHaveRidExtension) {
auto local = CreatePeerConnectionWrapper();
auto remote = CreatePeerConnectionWrapper();
auto layers = CreateLayers({"1", "2", "3"}, true);
auto expected_layers = CreateLayers({"1"}, true);
auto transceiver = AddTransceiver(local.get(), layers);
auto offer = local->CreateOfferAndSetAsLocal();
// Remove simulcast as the second peer connection won't support it.
RemoveSimulcast(offer.get());
std::string err;
EXPECT_TRUE(remote->SetRemoteDescription(std::move(offer), &err)) << err;
auto answer = remote->CreateAnswerAndSetAsLocal();
// Setup the answer to look like a server response.
// Drop the RID header extension.
auto mcd_answer = answer->description()->contents()[0].media_description();
auto& receive_layers = mcd_answer->simulcast_description().receive_layers();
for (const SimulcastLayer& layer : layers) {
receive_layers.AddLayer(layer);
}
cricket::RtpHeaderExtensions extensions;
for (auto extension : mcd_answer->rtp_header_extensions()) {
if (extension.uri != RtpExtension::kRidUri) {
extensions.push_back(extension);
}
}
mcd_answer->set_rtp_header_extensions(extensions);
EXPECT_EQ(layers.size(), mcd_answer->simulcast_description()
.receive_layers()
.GetAllLayers()
.size());
EXPECT_TRUE(local->SetRemoteDescription(std::move(answer), &err)) << err;
ValidateTransceiverParameters(transceiver, expected_layers);
}
TEST_F(PeerConnectionSimulcastTests, SimulcastAudioRejected) {
auto local = CreatePeerConnectionWrapper();
auto remote = CreatePeerConnectionWrapper();
auto layers = CreateLayers({"1", "2", "3", "4"}, true);
auto transceiver =
AddTransceiver(local.get(), layers, cricket::MEDIA_TYPE_AUDIO);
// Should only have the first layer.
auto parameters = transceiver->sender()->GetParameters();
EXPECT_EQ(1u, parameters.encodings.size());
EXPECT_THAT(parameters.encodings,
ElementsAre(Field("rid", &RtpEncodingParameters::rid, Eq(""))));
ExchangeOfferAnswer(local.get(), remote.get(), {});
// Still have a single layer after negotiation
parameters = transceiver->sender()->GetParameters();
EXPECT_EQ(1u, parameters.encodings.size());
EXPECT_THAT(parameters.encodings,
ElementsAre(Field("rid", &RtpEncodingParameters::rid, Eq(""))));
}
// Check that modifying the offer to remove simulcast and at the same
// time leaving in a RID line does not cause an exception.
TEST_F(PeerConnectionSimulcastTests, SimulcastSldModificationRejected) {
auto local = CreatePeerConnectionWrapper();
auto remote = CreatePeerConnectionWrapper();
auto layers = CreateLayers({"1", "2", "3"}, true);
AddTransceiver(local.get(), layers);
auto offer = local->CreateOffer();
std::string as_string;
EXPECT_TRUE(offer->ToString(&as_string));
auto simulcast_marker = "a=rid:3 send\r\na=simulcast:send 1;2;3\r\n";
auto pos = as_string.find(simulcast_marker);
EXPECT_NE(pos, std::string::npos);
as_string.erase(pos, strlen(simulcast_marker));
SdpParseError parse_error;
auto modified_offer =
CreateSessionDescription(SdpType::kOffer, as_string, &parse_error);
EXPECT_TRUE(modified_offer);
EXPECT_TRUE(local->SetLocalDescription(std::move(modified_offer)));
}
#if RTC_METRICS_ENABLED
//
// Checks the logged metrics when simulcast is not used.
TEST_F(PeerConnectionSimulcastMetricsTests, NoSimulcastUsageIsLogged) {
auto local = CreatePeerConnectionWrapper();
auto remote = CreatePeerConnectionWrapper();
auto layers = CreateLayers(0, true);
AddTransceiver(local.get(), layers);
ExchangeOfferAnswer(local.get(), remote.get(), layers);
EXPECT_THAT(LocalDescriptionSamples(),
ElementsAre(Pair(kSimulcastApiVersionNone, 2)));
EXPECT_THAT(RemoteDescriptionSamples(),
ElementsAre(Pair(kSimulcastApiVersionNone, 2)));
}
// Checks the logged metrics when spec-compliant simulcast is used.
TEST_F(PeerConnectionSimulcastMetricsTests, SpecComplianceIsLogged) {
auto local = CreatePeerConnectionWrapper();
auto remote = CreatePeerConnectionWrapper();
auto layers = CreateLayers(3, true);
AddTransceiver(local.get(), layers);
ExchangeOfferAnswer(local.get(), remote.get(), layers);
// Expecting 2 invocations of each, because we have 2 peer connections.
// Only the local peer connection will be aware of simulcast.
// The remote peer connection will think that there is no simulcast.
EXPECT_THAT(LocalDescriptionSamples(),
ElementsAre(Pair(kSimulcastApiVersionNone, 1),
Pair(kSimulcastApiVersionSpecCompliant, 1)));
EXPECT_THAT(RemoteDescriptionSamples(),
ElementsAre(Pair(kSimulcastApiVersionNone, 1),
Pair(kSimulcastApiVersionSpecCompliant, 1)));
}
// Checks the logged metrics when and incoming request to send spec-compliant
// simulcast is received from the remote party.
TEST_F(PeerConnectionSimulcastMetricsTests, IncomingSimulcastIsLogged) {
auto local = CreatePeerConnectionWrapper();
auto remote = CreatePeerConnectionWrapper();
auto layers = CreateLayers(3, true);
AddTransceiver(local.get(), layers);
auto offer = local->CreateOfferAndSetAsLocal();
EXPECT_THAT(LocalDescriptionSamples(),
ElementsAre(Pair(kSimulcastApiVersionSpecCompliant, 1)));
// Remove simulcast as a sender and set it up as a receiver.
RemoveSimulcast(offer.get());
AddRequestToReceiveSimulcast(layers, offer.get());
std::string error;
EXPECT_TRUE(remote->SetRemoteDescription(std::move(offer), &error)) << error;
EXPECT_THAT(RemoteDescriptionSamples(),
ElementsAre(Pair(kSimulcastApiVersionSpecCompliant, 1)));
auto transceiver = remote->pc()->GetTransceivers()[0];
transceiver->SetDirectionWithError(RtpTransceiverDirection::kSendRecv);
EXPECT_TRUE(remote->CreateAnswerAndSetAsLocal());
EXPECT_THAT(LocalDescriptionSamples(),
ElementsAre(Pair(kSimulcastApiVersionSpecCompliant, 2)));
}
// Checks that a spec-compliant simulcast offer that is rejected is logged.
TEST_F(PeerConnectionSimulcastMetricsTests, RejectedSimulcastIsLogged) {
auto local = CreatePeerConnectionWrapper();
auto remote = CreatePeerConnectionWrapper();
auto layers = CreateLayers({"1", "2", "3"}, true);
AddTransceiver(local.get(), layers);
auto offer = local->CreateOfferAndSetAsLocal();
EXPECT_THAT(LocalDescriptionSamples(),
ElementsAre(Pair(kSimulcastApiVersionSpecCompliant, 1)));
RemoveSimulcast(offer.get());
std::string error;
EXPECT_TRUE(remote->SetRemoteDescription(std::move(offer), &error)) << error;
EXPECT_THAT(RemoteDescriptionSamples(),
ElementsAre(Pair(kSimulcastApiVersionNone, 1)));
auto answer = remote->CreateAnswerAndSetAsLocal();
EXPECT_THAT(LocalDescriptionSamples(),
ElementsAre(Pair(kSimulcastApiVersionNone, 1),
Pair(kSimulcastApiVersionSpecCompliant, 1)));
EXPECT_TRUE(local->SetRemoteDescription(std::move(answer), &error)) << error;
EXPECT_THAT(RemoteDescriptionSamples(),
ElementsAre(Pair(kSimulcastApiVersionNone, 2)));
}
// Checks the logged metrics when legacy munging simulcast technique is used.
TEST_F(PeerConnectionSimulcastMetricsTests, LegacySimulcastIsLogged) {
auto local = CreatePeerConnectionWrapper();
auto remote = CreatePeerConnectionWrapper();
auto layers = CreateLayers(0, true);
AddTransceiver(local.get(), layers);
auto offer = local->CreateOffer();
// Munge the SDP to set up legacy simulcast.
const std::string end_line = "\r\n";
std::string sdp;
offer->ToString(&sdp);
rtc::StringBuilder builder(sdp);
builder << "a=ssrc:1111 cname:slimshady" << end_line;
builder << "a=ssrc:2222 cname:slimshady" << end_line;
builder << "a=ssrc:3333 cname:slimshady" << end_line;
builder << "a=ssrc-group:SIM 1111 2222 3333" << end_line;
SdpParseError parse_error;
auto sd =
CreateSessionDescription(SdpType::kOffer, builder.str(), &parse_error);
ASSERT_TRUE(sd) << parse_error.line << parse_error.description;
std::string error;
EXPECT_TRUE(local->SetLocalDescription(std::move(sd), &error)) << error;
EXPECT_THAT(LocalDescriptionSamples(),
ElementsAre(Pair(kSimulcastApiVersionLegacy, 1)));
EXPECT_TRUE(remote->SetRemoteDescription(std::move(offer), &error)) << error;
EXPECT_THAT(RemoteDescriptionSamples(),
ElementsAre(Pair(kSimulcastApiVersionNone, 1)));
auto answer = remote->CreateAnswerAndSetAsLocal();
EXPECT_THAT(LocalDescriptionSamples(),
ElementsAre(Pair(kSimulcastApiVersionNone, 1),
Pair(kSimulcastApiVersionLegacy, 1)));
// Legacy simulcast is not signaled in remote description.
EXPECT_TRUE(local->SetRemoteDescription(std::move(answer), &error)) << error;
EXPECT_THAT(RemoteDescriptionSamples(),
ElementsAre(Pair(kSimulcastApiVersionNone, 2)));
}
// Checks that disabling simulcast is logged in the metrics.
TEST_F(PeerConnectionSimulcastMetricsTests, SimulcastDisabledIsLogged) {
auto local = CreatePeerConnectionWrapper();
auto remote = CreatePeerConnectionWrapper();
auto layers = CreateLayers({"1", "2", "3"}, true);
AddTransceiver(local.get(), layers);
auto offer = local->CreateOfferAndSetAsLocal();
RemoveSimulcast(offer.get());
std::string error;
EXPECT_TRUE(remote->SetRemoteDescription(std::move(offer), &error)) << error;
auto answer = remote->CreateAnswerAndSetAsLocal();
EXPECT_TRUE(local->SetRemoteDescription(std::move(answer), &error)) << error;
EXPECT_EQ(1, metrics::NumSamples("WebRTC.PeerConnection.Simulcast.Disabled"));
EXPECT_EQ(1,
metrics::NumEvents("WebRTC.PeerConnection.Simulcast.Disabled", 1));
}
// Checks that the disabled metric is not logged if simulcast is not disabled.
TEST_F(PeerConnectionSimulcastMetricsTests, SimulcastDisabledIsNotLogged) {
auto local = CreatePeerConnectionWrapper();
auto remote = CreatePeerConnectionWrapper();
auto layers = CreateLayers({"1", "2", "3"}, true);
AddTransceiver(local.get(), layers);
ExchangeOfferAnswer(local.get(), remote.get(), layers);
EXPECT_EQ(0, metrics::NumSamples("WebRTC.PeerConnection.Simulcast.Disabled"));
}
const int kMaxLayersInMetricsTest = 8;
// Checks that the number of send encodings is logged in a metric.
TEST_P(PeerConnectionSimulcastMetricsTests, NumberOfSendEncodingsIsLogged) {
auto local = CreatePeerConnectionWrapper();
auto num_layers = GetParam();
auto layers = CreateLayers(num_layers, true);
AddTransceiver(local.get(), layers);
EXPECT_EQ(1, metrics::NumSamples(
"WebRTC.PeerConnection.Simulcast.NumberOfSendEncodings"));
EXPECT_EQ(1, metrics::NumEvents(
"WebRTC.PeerConnection.Simulcast.NumberOfSendEncodings",
num_layers));
}
INSTANTIATE_TEST_SUITE_P(NumberOfSendEncodings,
PeerConnectionSimulcastMetricsTests,
::testing::Range(0, kMaxLayersInMetricsTest));
#endif
// Inherits some helper methods from PeerConnectionSimulcastTests but
// uses real threads and PeerConnectionTestWrapper to create fake media streams
// with flowing media and establish connections.
// TODO(https://crbug.com/webrtc/14884): Move these integration tests into a
// separate file and rename them to PeerConnectionEncodingIntegrationTests.
class PeerConnectionSimulcastWithMediaFlowTests
: public PeerConnectionSimulcastTests {
public:
PeerConnectionSimulcastWithMediaFlowTests()
: background_thread_(std::make_unique<rtc::Thread>(&pss_)) {
RTC_CHECK(background_thread_->Start());
}
rtc::scoped_refptr<PeerConnectionTestWrapper> CreatePc() {
auto pc_wrapper = rtc::make_ref_counted<PeerConnectionTestWrapper>(
"pc", &pss_, background_thread_.get(), background_thread_.get());
pc_wrapper->CreatePc({}, webrtc::CreateOpusAudioEncoderFactory(),
webrtc::CreateOpusAudioDecoderFactory());
return pc_wrapper;
}
rtc::scoped_refptr<RtpTransceiverInterface> AddTransceiverWithSimulcastLayers(
rtc::scoped_refptr<PeerConnectionTestWrapper> local,
rtc::scoped_refptr<PeerConnectionTestWrapper> remote,
std::vector<SimulcastLayer> init_layers) {
rtc::scoped_refptr<webrtc::MediaStreamInterface> stream =
local->GetUserMedia(
/*audio=*/false, cricket::AudioOptions(), /*video=*/true,
{.width = 1280, .height = 720});
rtc::scoped_refptr<VideoTrackInterface> track = stream->GetVideoTracks()[0];
RTCErrorOr<rtc::scoped_refptr<RtpTransceiverInterface>>
transceiver_or_error = local->pc()->AddTransceiver(
track, CreateTransceiverInit(init_layers));
EXPECT_TRUE(transceiver_or_error.ok());
return transceiver_or_error.value();
}
std::vector<RtpCodecCapability> GetCapabilitiesAndRestrictToCodec(
rtc::scoped_refptr<PeerConnectionTestWrapper> pc_wrapper,
absl::string_view codec_name) {
std::vector<RtpCodecCapability> codecs =
pc_wrapper->pc_factory()
->GetRtpSenderCapabilities(cricket::MEDIA_TYPE_VIDEO)
.codecs;
codecs.erase(std::remove_if(codecs.begin(), codecs.end(),
[&codec_name](const RtpCodecCapability& codec) {
return !IsReliabilityMechanism(codec) &&
!absl::EqualsIgnoreCase(codec.name,
codec_name);
}),
codecs.end());
RTC_DCHECK(std::find_if(codecs.begin(), codecs.end(),
[&codec_name](const RtpCodecCapability& codec) {
return absl::EqualsIgnoreCase(codec.name,
codec_name);
}) != codecs.end());
return codecs;
}
void ExchangeIceCandidates(
rtc::scoped_refptr<PeerConnectionTestWrapper> local_pc_wrapper,
rtc::scoped_refptr<PeerConnectionTestWrapper> remote_pc_wrapper) {
local_pc_wrapper->SignalOnIceCandidateReady.connect(
remote_pc_wrapper.get(), &PeerConnectionTestWrapper::AddIceCandidate);
remote_pc_wrapper->SignalOnIceCandidateReady.connect(
local_pc_wrapper.get(), &PeerConnectionTestWrapper::AddIceCandidate);
}
void NegotiateWithSimulcastTweaks(
rtc::scoped_refptr<PeerConnectionTestWrapper> local_pc_wrapper,
rtc::scoped_refptr<PeerConnectionTestWrapper> remote_pc_wrapper,
std::vector<SimulcastLayer> init_layers) {
// Create and set offer for `local_pc_wrapper`.
std::unique_ptr<SessionDescriptionInterface> offer =
CreateOffer(local_pc_wrapper);
rtc::scoped_refptr<MockSetSessionDescriptionObserver> p1 =
SetLocalDescription(local_pc_wrapper, offer.get());
// Modify the offer before handoff because `remote_pc_wrapper` only supports
// receiving singlecast.
SimulcastDescription simulcast_description = RemoveSimulcast(offer.get());
rtc::scoped_refptr<MockSetSessionDescriptionObserver> p2 =
SetRemoteDescription(remote_pc_wrapper, offer.get());
EXPECT_TRUE(Await({p1, p2}));
// Create and set answer for `remote_pc_wrapper`.
std::unique_ptr<SessionDescriptionInterface> answer =
CreateAnswer(remote_pc_wrapper);
p1 = SetLocalDescription(remote_pc_wrapper, answer.get());
// Modify the answer before handoff because `local_pc_wrapper` should still
// send simulcast.
cricket::MediaContentDescription* mcd_answer =
answer->description()->contents()[0].media_description();
mcd_answer->mutable_streams().clear();
std::vector<SimulcastLayer> simulcast_layers =
simulcast_description.send_layers().GetAllLayers();
cricket::SimulcastLayerList& receive_layers =
mcd_answer->simulcast_description().receive_layers();
for (const auto& layer : simulcast_layers) {
receive_layers.AddLayer(layer);
}
p2 = SetRemoteDescription(local_pc_wrapper, answer.get());
EXPECT_TRUE(Await({p1, p2}));
}
rtc::scoped_refptr<const RTCStatsReport> GetStats(
rtc::scoped_refptr<PeerConnectionTestWrapper> pc_wrapper) {
auto callback = rtc::make_ref_counted<MockRTCStatsCollectorCallback>();
pc_wrapper->pc()->GetStats(callback.get());
EXPECT_TRUE_WAIT(callback->called(), kDefaultTimeout.ms());
return callback->report();
}
bool HasOutboundRtpBytesSent(
rtc::scoped_refptr<PeerConnectionTestWrapper> pc_wrapper,
size_t num_layers) {
rtc::scoped_refptr<const RTCStatsReport> report = GetStats(pc_wrapper);
std::vector<const RTCOutboundRtpStreamStats*> outbound_rtps =
report->GetStatsOfType<RTCOutboundRtpStreamStats>();
if (outbound_rtps.size() != num_layers) {
return false;
}
for (const auto* outbound_rtp : outbound_rtps) {
if (!outbound_rtp->bytes_sent.is_defined() ||
*outbound_rtp->bytes_sent == 0u) {
return false;
}
}
return true;
}
bool HasOutboundRtpExpectedResolutions(
rtc::scoped_refptr<PeerConnectionTestWrapper> pc_wrapper,
std::vector<RidAndResolution> resolutions,
bool log_during_ramp_up) {
rtc::scoped_refptr<const RTCStatsReport> report = GetStats(pc_wrapper);
std::vector<const RTCOutboundRtpStreamStats*> outbound_rtps =
report->GetStatsOfType<RTCOutboundRtpStreamStats>();
for (const RidAndResolution& resolution : resolutions) {
const RTCOutboundRtpStreamStats* outbound_rtp = nullptr;
if (!resolution.rid.empty()) {
outbound_rtp = FindOutboundRtpByRid(outbound_rtps, resolution.rid);
} else if (outbound_rtps.size() == 1u) {
outbound_rtp = outbound_rtps[0];
}
if (!outbound_rtp || !outbound_rtp->frame_width.is_defined() ||
!outbound_rtp->frame_height.is_defined()) {
// RTP not found by rid or has not encoded a frame yet.
return false;
}
// The actual resolution must never exceed what is configured, but it may
// be less due to adaptation or ramp up.
EXPECT_THAT(*outbound_rtp->frame_width, Le(resolution.width));
EXPECT_THAT(*outbound_rtp->frame_height, Le(resolution.height));
if (*outbound_rtp->frame_width != resolution.width ||
*outbound_rtp->frame_height != resolution.height) {
if (log_during_ramp_up) {
// Useful logging for debugging.
RTC_LOG(LS_ERROR)
<< "rid=" << resolution.rid << " is "
<< *outbound_rtp->frame_width << "x"
<< *outbound_rtp->frame_height << " (want " << resolution.width
<< "x" << resolution.height << ")";
}
return false;
}
}
return true;
}
protected:
std::unique_ptr<SessionDescriptionInterface> CreateOffer(
rtc::scoped_refptr<PeerConnectionTestWrapper> pc_wrapper) {
auto observer =
rtc::make_ref_counted<MockCreateSessionDescriptionObserver>();
pc_wrapper->pc()->CreateOffer(observer.get(), {});
EXPECT_EQ_WAIT(true, observer->called(), kDefaultTimeout.ms());
return observer->MoveDescription();
}
std::unique_ptr<SessionDescriptionInterface> CreateAnswer(
rtc::scoped_refptr<PeerConnectionTestWrapper> pc_wrapper) {
auto observer =
rtc::make_ref_counted<MockCreateSessionDescriptionObserver>();
pc_wrapper->pc()->CreateAnswer(observer.get(), {});
EXPECT_EQ_WAIT(true, observer->called(), kDefaultTimeout.ms());
return observer->MoveDescription();
}
rtc::scoped_refptr<MockSetSessionDescriptionObserver> SetLocalDescription(
rtc::scoped_refptr<PeerConnectionTestWrapper> pc_wrapper,
SessionDescriptionInterface* sdp) {
auto observer = rtc::make_ref_counted<MockSetSessionDescriptionObserver>();
pc_wrapper->pc()->SetLocalDescription(
observer.get(), CloneSessionDescription(sdp).release());
return observer;
}
rtc::scoped_refptr<MockSetSessionDescriptionObserver> SetRemoteDescription(
rtc::scoped_refptr<PeerConnectionTestWrapper> pc_wrapper,
SessionDescriptionInterface* sdp) {
auto observer = rtc::make_ref_counted<MockSetSessionDescriptionObserver>();
pc_wrapper->pc()->SetRemoteDescription(
observer.get(), CloneSessionDescription(sdp).release());
return observer;
}
// To avoid ICE candidates arriving before the remote endpoint has received
// the offer it is important to SetLocalDescription() and
// SetRemoteDescription() are kicked off without awaiting in-between. This
// helper is used to await multiple observers.
bool Await(std::vector<rtc::scoped_refptr<MockSetSessionDescriptionObserver>>
observers) {
for (auto& observer : observers) {
EXPECT_EQ_WAIT(true, observer->called(), kDefaultTimeout.ms());
if (!observer->result()) {
return false;
}
}
return true;
}
rtc::PhysicalSocketServer pss_;
std::unique_ptr<rtc::Thread> background_thread_;
};
TEST_F(PeerConnectionSimulcastWithMediaFlowTests,
SendingOneEncodings_VP8_DefaultsToL1T1) {
rtc::scoped_refptr<PeerConnectionTestWrapper> local_pc_wrapper = CreatePc();
rtc::scoped_refptr<PeerConnectionTestWrapper> remote_pc_wrapper = CreatePc();
ExchangeIceCandidates(local_pc_wrapper, remote_pc_wrapper);
std::vector<SimulcastLayer> layers = CreateLayers({"f"}, /*active=*/true);
rtc::scoped_refptr<RtpTransceiverInterface> transceiver =
AddTransceiverWithSimulcastLayers(local_pc_wrapper, remote_pc_wrapper,
layers);
std::vector<RtpCodecCapability> codecs =
GetCapabilitiesAndRestrictToCodec(local_pc_wrapper, "VP8");
transceiver->SetCodecPreferences(codecs);
NegotiateWithSimulcastTweaks(local_pc_wrapper, remote_pc_wrapper, layers);
local_pc_wrapper->WaitForConnection();
remote_pc_wrapper->WaitForConnection();
// Wait until media is flowing.
EXPECT_TRUE_WAIT(HasOutboundRtpBytesSent(local_pc_wrapper, 1u),
kDefaultTimeout.ms());
// Significant ramp up time is needed until maximum resolution is achieved so
// we disable `log_during_ramp_up` to avoid log spam.
EXPECT_TRUE_WAIT(
HasOutboundRtpExpectedResolutions(local_pc_wrapper, {{"", 1280, 720}},
/*log_during_ramp_up=*/false),
kLongTimeoutForRampingUp.ms());
// Verify codec and scalability mode.
rtc::scoped_refptr<const RTCStatsReport> report = GetStats(local_pc_wrapper);
std::vector<const RTCOutboundRtpStreamStats*> outbound_rtps =
report->GetStatsOfType<RTCOutboundRtpStreamStats>();
ASSERT_THAT(outbound_rtps, SizeIs(1u));
EXPECT_THAT(GetCurrentCodecMimeType(report, *outbound_rtps[0]),
StrCaseEq("video/VP8"));
EXPECT_THAT(*outbound_rtps[0]->scalability_mode, StrEq("L1T1"));
}
TEST_F(PeerConnectionSimulcastWithMediaFlowTests,
SendingThreeEncodings_VP8_Simulcast) {
rtc::scoped_refptr<PeerConnectionTestWrapper> local_pc_wrapper = CreatePc();
rtc::scoped_refptr<PeerConnectionTestWrapper> remote_pc_wrapper = CreatePc();
ExchangeIceCandidates(local_pc_wrapper, remote_pc_wrapper);
std::vector<SimulcastLayer> layers =
CreateLayers({"f", "h", "q"}, /*active=*/true);
rtc::scoped_refptr<RtpTransceiverInterface> transceiver =
AddTransceiverWithSimulcastLayers(local_pc_wrapper, remote_pc_wrapper,
layers);
std::vector<RtpCodecCapability> codecs =
GetCapabilitiesAndRestrictToCodec(local_pc_wrapper, "VP8");
transceiver->SetCodecPreferences(codecs);
NegotiateWithSimulcastTweaks(local_pc_wrapper, remote_pc_wrapper, layers);
local_pc_wrapper->WaitForConnection();
remote_pc_wrapper->WaitForConnection();
// Wait until media is flowing on all three layers.
// Ramp up time is needed before all three layers are sending.
EXPECT_TRUE_WAIT(HasOutboundRtpBytesSent(local_pc_wrapper, 3u),
kLongTimeoutForRampingUp.ms());
// Sometimes additional ramp up is needed to get the expected resolutions. If
// that has not happened yet we log (`log_during_ramp_up=true`).
EXPECT_TRUE_WAIT(HasOutboundRtpExpectedResolutions(
local_pc_wrapper,
{{"f", 320, 180}, {"h", 640, 360}, {"q", 1280, 720}},
/*log_during_ramp_up=*/true),
kLongTimeoutForRampingUp.ms());
// Verify codec and scalability mode.
rtc::scoped_refptr<const RTCStatsReport> report = GetStats(local_pc_wrapper);
std::vector<const RTCOutboundRtpStreamStats*> outbound_rtps =
report->GetStatsOfType<RTCOutboundRtpStreamStats>();
ASSERT_THAT(outbound_rtps, SizeIs(3u));
EXPECT_THAT(GetCurrentCodecMimeType(report, *outbound_rtps[0]),
StrCaseEq("video/VP8"));
EXPECT_THAT(GetCurrentCodecMimeType(report, *outbound_rtps[1]),
StrCaseEq("video/VP8"));
EXPECT_THAT(GetCurrentCodecMimeType(report, *outbound_rtps[2]),
StrCaseEq("video/VP8"));
EXPECT_THAT(*outbound_rtps[0]->scalability_mode, StrEq("L1T3"));
EXPECT_THAT(*outbound_rtps[1]->scalability_mode, StrEq("L1T3"));
EXPECT_THAT(*outbound_rtps[2]->scalability_mode, StrEq("L1T3"));
}
TEST_F(PeerConnectionSimulcastWithMediaFlowTests,
SendingOneEncoding_VP8_RejectsSVCWhenNotPossibleAndDefaultsToL1T1) {
rtc::scoped_refptr<PeerConnectionTestWrapper> local_pc_wrapper = CreatePc();
rtc::scoped_refptr<PeerConnectionTestWrapper> remote_pc_wrapper = CreatePc();
ExchangeIceCandidates(local_pc_wrapper, remote_pc_wrapper);
std::vector<SimulcastLayer> layers = CreateLayers({"f"}, /*active=*/true);
rtc::scoped_refptr<RtpTransceiverInterface> transceiver =
AddTransceiverWithSimulcastLayers(local_pc_wrapper, remote_pc_wrapper,
layers);
// Restricting codecs restricts what SetParameters() will accept or reject.
std::vector<RtpCodecCapability> codecs =
GetCapabilitiesAndRestrictToCodec(local_pc_wrapper, "VP8");
transceiver->SetCodecPreferences(codecs);
// Attempt SVC (L3T3_KEY). This is not possible because only VP8 is up for
// negotiation and VP8 does not support it.
rtc::scoped_refptr<RtpSenderInterface> sender = transceiver->sender();
RtpParameters parameters = sender->GetParameters();
ASSERT_EQ(parameters.encodings.size(), 1u);
parameters.encodings[0].scalability_mode = "L3T3_KEY";
EXPECT_FALSE(sender->SetParameters(parameters).ok());
// `scalability_mode` remains unset because SetParameters() failed.
parameters = sender->GetParameters();
ASSERT_EQ(parameters.encodings.size(), 1u);
EXPECT_THAT(parameters.encodings[0].scalability_mode, Eq(absl::nullopt));
NegotiateWithSimulcastTweaks(local_pc_wrapper, remote_pc_wrapper, layers);
local_pc_wrapper->WaitForConnection();
remote_pc_wrapper->WaitForConnection();
// Wait until media is flowing.
EXPECT_TRUE_WAIT(HasOutboundRtpBytesSent(local_pc_wrapper, 1u),
kDefaultTimeout.ms());
// When `scalability_mode` is not set, VP8 defaults to L1T1.
rtc::scoped_refptr<const RTCStatsReport> report = GetStats(local_pc_wrapper);
std::vector<const RTCOutboundRtpStreamStats*> outbound_rtps =
report->GetStatsOfType<RTCOutboundRtpStreamStats>();
ASSERT_THAT(outbound_rtps, SizeIs(1u));
EXPECT_THAT(GetCurrentCodecMimeType(report, *outbound_rtps[0]),
StrCaseEq("video/VP8"));
EXPECT_THAT(*outbound_rtps[0]->scalability_mode, StrEq("L1T1"));
// GetParameters() confirms `scalability_mode` is still not set.
parameters = sender->GetParameters();
ASSERT_EQ(parameters.encodings.size(), 1u);
EXPECT_THAT(parameters.encodings[0].scalability_mode, Eq(absl::nullopt));
}
TEST_F(PeerConnectionSimulcastWithMediaFlowTests,
SendingOneEncoding_VP8_FallbackFromSVCResultsInL1T2) {
rtc::scoped_refptr<PeerConnectionTestWrapper> local_pc_wrapper = CreatePc();
rtc::scoped_refptr<PeerConnectionTestWrapper> remote_pc_wrapper = CreatePc();
ExchangeIceCandidates(local_pc_wrapper, remote_pc_wrapper);
std::vector<SimulcastLayer> layers = CreateLayers({"f"}, /*active=*/true);
rtc::scoped_refptr<RtpTransceiverInterface> transceiver =
AddTransceiverWithSimulcastLayers(local_pc_wrapper, remote_pc_wrapper,
layers);
// Verify test assumption that VP8 is first in the list, but don't modify the
// codec preferences because we want the sender to think SVC is a possibility.
std::vector<RtpCodecCapability> codecs =
local_pc_wrapper->pc_factory()
->GetRtpSenderCapabilities(cricket::MEDIA_TYPE_VIDEO)
.codecs;
EXPECT_THAT(codecs[0].name, StrCaseEq("VP8"));
// Attempt SVC (L3T3_KEY), which is not possible with VP8, but the sender does
// not yet know which codec we'll use so the parameters will be accepted.
rtc::scoped_refptr<RtpSenderInterface> sender = transceiver->sender();
RtpParameters parameters = sender->GetParameters();
ASSERT_EQ(parameters.encodings.size(), 1u);
parameters.encodings[0].scalability_mode = "L3T3_KEY";
EXPECT_TRUE(sender->SetParameters(parameters).ok());
// Verify fallback has not happened yet.
parameters = sender->GetParameters();
ASSERT_EQ(parameters.encodings.size(), 1u);
EXPECT_THAT(parameters.encodings[0].scalability_mode,
Optional(std::string("L3T3_KEY")));
// Negotiate, this results in VP8 being picked and fallback happening.
NegotiateWithSimulcastTweaks(local_pc_wrapper, remote_pc_wrapper, layers);
local_pc_wrapper->WaitForConnection();
remote_pc_wrapper->WaitForConnection();
// `scalaiblity_mode` is assigned the fallback value "L1T2" which is different
// than the default of absl::nullopt.
parameters = sender->GetParameters();
ASSERT_EQ(parameters.encodings.size(), 1u);
EXPECT_THAT(parameters.encodings[0].scalability_mode,
Optional(std::string("L1T2")));
// Wait until media is flowing, no significant time needed because we only
// have one layer.
EXPECT_TRUE_WAIT(HasOutboundRtpBytesSent(local_pc_wrapper, 1u),
kDefaultTimeout.ms());
// GetStats() confirms "L1T2" is used which is different than the "L1T1"
// default or the "L3T3_KEY" that was attempted.
rtc::scoped_refptr<const RTCStatsReport> report = GetStats(local_pc_wrapper);
std::vector<const RTCOutboundRtpStreamStats*> outbound_rtps =
report->GetStatsOfType<RTCOutboundRtpStreamStats>();
ASSERT_THAT(outbound_rtps, SizeIs(1u));
EXPECT_THAT(GetCurrentCodecMimeType(report, *outbound_rtps[0]),
StrCaseEq("video/VP8"));
EXPECT_THAT(*outbound_rtps[0]->scalability_mode, StrEq("L1T2"));
}
#if defined(WEBRTC_USE_H264)
TEST_F(PeerConnectionSimulcastWithMediaFlowTests,
SendingThreeEncodings_H264_Simulcast) {
rtc::scoped_refptr<PeerConnectionTestWrapper> local_pc_wrapper = CreatePc();
rtc::scoped_refptr<PeerConnectionTestWrapper> remote_pc_wrapper = CreatePc();
ExchangeIceCandidates(local_pc_wrapper, remote_pc_wrapper);
std::vector<SimulcastLayer> layers =
CreateLayers({"f", "h", "q"}, /*active=*/true);
rtc::scoped_refptr<RtpTransceiverInterface> transceiver =
AddTransceiverWithSimulcastLayers(local_pc_wrapper, remote_pc_wrapper,
layers);
std::vector<RtpCodecCapability> codecs =
GetCapabilitiesAndRestrictToCodec(local_pc_wrapper, "H264");
transceiver->SetCodecPreferences(codecs);
NegotiateWithSimulcastTweaks(local_pc_wrapper, remote_pc_wrapper, layers);
local_pc_wrapper->WaitForConnection();
remote_pc_wrapper->WaitForConnection();
// Wait until media is flowing on all three layers.
// Ramp up time is needed before all three layers are sending.
EXPECT_TRUE_WAIT(HasOutboundRtpBytesSent(local_pc_wrapper, 3u),
kLongTimeoutForRampingUp.ms());
// Sometimes additional ramp up is needed to get the expected resolutions. If
// that has not happened yet we log (`log_during_ramp_up=true`).
EXPECT_TRUE_WAIT(HasOutboundRtpExpectedResolutions(
local_pc_wrapper,
{{"f", 320, 180}, {"h", 640, 360}, {"q", 1280, 720}},
/*log_during_ramp_up=*/true),
kLongTimeoutForRampingUp.ms());
// Verify codec and scalability mode.
rtc::scoped_refptr<const RTCStatsReport> report = GetStats(local_pc_wrapper);
std::vector<const RTCOutboundRtpStreamStats*> outbound_rtps =
report->GetStatsOfType<RTCOutboundRtpStreamStats>();
ASSERT_THAT(outbound_rtps, SizeIs(3u));
EXPECT_THAT(GetCurrentCodecMimeType(report, *outbound_rtps[0]),
StrCaseEq("video/H264"));
EXPECT_THAT(GetCurrentCodecMimeType(report, *outbound_rtps[1]),
StrCaseEq("video/H264"));
EXPECT_THAT(GetCurrentCodecMimeType(report, *outbound_rtps[2]),
StrCaseEq("video/H264"));
EXPECT_THAT(*outbound_rtps[0]->scalability_mode, StrEq("L1T3"));
EXPECT_THAT(*outbound_rtps[1]->scalability_mode, StrEq("L1T3"));
EXPECT_THAT(*outbound_rtps[2]->scalability_mode, StrEq("L1T3"));
}
#endif // defined(WEBRTC_USE_H264)
// The legacy SVC path is triggered when VP9 us used, but `scalability_mode` has
// not been specified.
// TODO(https://crbug.com/webrtc/14889): When legacy VP9 SVC path has been
// deprecated and removed, update this test to assert that simulcast is used
// (i.e. VP9 is not treated differently than VP8).
TEST_F(PeerConnectionSimulcastWithMediaFlowTests,
SendingThreeEncodings_VP9_LegacySVC) {
rtc::scoped_refptr<PeerConnectionTestWrapper> local_pc_wrapper = CreatePc();
rtc::scoped_refptr<PeerConnectionTestWrapper> remote_pc_wrapper = CreatePc();
ExchangeIceCandidates(local_pc_wrapper, remote_pc_wrapper);
std::vector<SimulcastLayer> layers =
CreateLayers({"f", "h", "q"}, /*active=*/true);
rtc::scoped_refptr<RtpTransceiverInterface> transceiver =
AddTransceiverWithSimulcastLayers(local_pc_wrapper, remote_pc_wrapper,
layers);
std::vector<RtpCodecCapability> codecs =
GetCapabilitiesAndRestrictToCodec(local_pc_wrapper, "VP9");
transceiver->SetCodecPreferences(codecs);
NegotiateWithSimulcastTweaks(local_pc_wrapper, remote_pc_wrapper, layers);
local_pc_wrapper->WaitForConnection();
remote_pc_wrapper->WaitForConnection();
// Wait until media is flowing. We only expect a single RTP stream.
// We expect to see bytes flowing almost immediately on the lowest layer.
EXPECT_TRUE_WAIT(HasOutboundRtpBytesSent(local_pc_wrapper, 1u),
kDefaultTimeout.ms());
// Significant ramp up time is needed until maximum resolution is achieved so
// we disable `log_during_ramp_up` to avoid log spam.
EXPECT_TRUE_WAIT(
HasOutboundRtpExpectedResolutions(local_pc_wrapper, {{"f", 1280, 720}},
/*log_during_ramp_up=*/false),
kLongTimeoutForRampingUp.ms());
// Verify codec and scalability mode.
rtc::scoped_refptr<const RTCStatsReport> report = GetStats(local_pc_wrapper);
std::vector<const RTCOutboundRtpStreamStats*> outbound_rtps =
report->GetStatsOfType<RTCOutboundRtpStreamStats>();
ASSERT_THAT(outbound_rtps, SizeIs(1u));
EXPECT_THAT(GetCurrentCodecMimeType(report, *outbound_rtps[0]),
StrCaseEq("video/VP9"));
EXPECT_THAT(*outbound_rtps[0]->scalability_mode, StrEq("L3T3_KEY"));
// Despite SVC being used on a single RTP stream, GetParameters() returns the
// three encodings that we configured earlier (this is not spec-compliant but
// it is how legacy SVC behaves).
rtc::scoped_refptr<RtpSenderInterface> sender = transceiver->sender();
std::vector<RtpEncodingParameters> encodings =
sender->GetParameters().encodings;
ASSERT_EQ(encodings.size(), 3u);
// When legacy SVC is used, `scalability_mode` is not specified.
EXPECT_FALSE(encodings[0].scalability_mode.has_value());
EXPECT_FALSE(encodings[1].scalability_mode.has_value());
EXPECT_FALSE(encodings[2].scalability_mode.has_value());
}
// The spec-compliant way to configure SVC. The expected outcome is the same as
// for the legacy SVC case except that we only have one encoding.
TEST_F(PeerConnectionSimulcastWithMediaFlowTests,
SendingOneEncoding_VP9_StandardSVC) {
rtc::scoped_refptr<PeerConnectionTestWrapper> local_pc_wrapper = CreatePc();
rtc::scoped_refptr<PeerConnectionTestWrapper> remote_pc_wrapper = CreatePc();
ExchangeIceCandidates(local_pc_wrapper, remote_pc_wrapper);
std::vector<SimulcastLayer> layers = CreateLayers({"f"}, /*active=*/true);
rtc::scoped_refptr<RtpTransceiverInterface> transceiver =
AddTransceiverWithSimulcastLayers(local_pc_wrapper, remote_pc_wrapper,
layers);
std::vector<RtpCodecCapability> codecs =
GetCapabilitiesAndRestrictToCodec(local_pc_wrapper, "VP9");
transceiver->SetCodecPreferences(codecs);
// Configure SVC, a.k.a. "L3T3_KEY".
rtc::scoped_refptr<RtpSenderInterface> sender = transceiver->sender();
RtpParameters parameters = sender->GetParameters();
ASSERT_EQ(parameters.encodings.size(), 1u);
parameters.encodings[0].scalability_mode = "L3T3_KEY";
EXPECT_TRUE(sender->SetParameters(parameters).ok());
NegotiateWithSimulcastTweaks(local_pc_wrapper, remote_pc_wrapper, layers);
local_pc_wrapper->WaitForConnection();
remote_pc_wrapper->WaitForConnection();
// Wait until media is flowing. We only expect a single RTP stream.
// We expect to see bytes flowing almost immediately on the lowest layer.
EXPECT_TRUE_WAIT(HasOutboundRtpBytesSent(local_pc_wrapper, 1u),
kDefaultTimeout.ms());
// Significant ramp up time is needed until maximum resolution is achieved so
// we disable `log_during_ramp_up` to avoid log spam.
// Because only a single encoding is used, the RID is not used.
EXPECT_TRUE_WAIT(
HasOutboundRtpExpectedResolutions(local_pc_wrapper, {{"", 1280, 720}},
/*log_during_ramp_up=*/false),
kLongTimeoutForRampingUp.ms());
// Verify codec and scalability mode.
rtc::scoped_refptr<const RTCStatsReport> report = GetStats(local_pc_wrapper);
std::vector<const RTCOutboundRtpStreamStats*> outbound_rtps =
report->GetStatsOfType<RTCOutboundRtpStreamStats>();
ASSERT_THAT(outbound_rtps, SizeIs(1u));
EXPECT_THAT(GetCurrentCodecMimeType(report, *outbound_rtps[0]),
StrCaseEq("video/VP9"));
EXPECT_THAT(*outbound_rtps[0]->scalability_mode, StrEq("L3T3_KEY"));
// GetParameters() is consistent with what we asked for and got.
parameters = sender->GetParameters();
ASSERT_EQ(parameters.encodings.size(), 1u);
EXPECT_THAT(parameters.encodings[0].scalability_mode,
Optional(std::string("L3T3_KEY")));
}
// TODO(https://crbug.com/webrtc/14884): A field trial shouldn't be needed to
// get spec-compliant behavior!
TEST_F(PeerConnectionSimulcastWithMediaFlowTests,
SendingThreeEncodings_VP9_Simulcast) {
test::ScopedFieldTrials field_trials(
"WebRTC-AllowDisablingLegacyScalability/Enabled/");
rtc::scoped_refptr<PeerConnectionTestWrapper> local_pc_wrapper = CreatePc();
rtc::scoped_refptr<PeerConnectionTestWrapper> remote_pc_wrapper = CreatePc();
ExchangeIceCandidates(local_pc_wrapper, remote_pc_wrapper);
std::vector<SimulcastLayer> layers =
CreateLayers({"f", "h", "q"}, /*active=*/true);
rtc::scoped_refptr<RtpTransceiverInterface> transceiver =
AddTransceiverWithSimulcastLayers(local_pc_wrapper, remote_pc_wrapper,
layers);
std::vector<RtpCodecCapability> codecs =
GetCapabilitiesAndRestrictToCodec(local_pc_wrapper, "VP9");
transceiver->SetCodecPreferences(codecs);
// Opt-in to spec-compliant simulcast by explicitly setting the
// `scalability_mode`.
rtc::scoped_refptr<RtpSenderInterface> sender = transceiver->sender();
RtpParameters parameters = sender->GetParameters();
ASSERT_EQ(parameters.encodings.size(), 3u);
parameters.encodings[0].scalability_mode = "L1T3";
parameters.encodings[1].scalability_mode = "L1T3";
parameters.encodings[2].scalability_mode = "L1T3";
sender->SetParameters(parameters);
NegotiateWithSimulcastTweaks(local_pc_wrapper, remote_pc_wrapper, layers);
local_pc_wrapper->WaitForConnection();
remote_pc_wrapper->WaitForConnection();
// GetParameters() does not report any fallback.
parameters = sender->GetParameters();
ASSERT_EQ(parameters.encodings.size(), 3u);
EXPECT_THAT(parameters.encodings[0].scalability_mode,
Optional(std::string("L1T3")));
EXPECT_THAT(parameters.encodings[1].scalability_mode,
Optional(std::string("L1T3")));
EXPECT_THAT(parameters.encodings[2].scalability_mode,
Optional(std::string("L1T3")));
// Wait until media is flowing on all three layers.
// Ramp up time is needed before all three layers are sending.
EXPECT_TRUE_WAIT(HasOutboundRtpBytesSent(local_pc_wrapper, 3u),
kLongTimeoutForRampingUp.ms());
// Sometimes additional ramp up is needed to get the expected resolutions. If
// that has not happened yet we log (`log_during_ramp_up=true`).
EXPECT_TRUE_WAIT(HasOutboundRtpExpectedResolutions(
local_pc_wrapper,
{{"f", 320, 180}, {"h", 640, 360}, {"q", 1280, 720}},
/*log_during_ramp_up=*/true),
kLongTimeoutForRampingUp.ms());
// Verify codec and scalability mode.
rtc::scoped_refptr<const RTCStatsReport> report = GetStats(local_pc_wrapper);
std::vector<const RTCOutboundRtpStreamStats*> outbound_rtps =
report->GetStatsOfType<RTCOutboundRtpStreamStats>();
ASSERT_THAT(outbound_rtps, SizeIs(3u));
EXPECT_THAT(GetCurrentCodecMimeType(report, *outbound_rtps[0]),
StrCaseEq("video/VP9"));
EXPECT_THAT(GetCurrentCodecMimeType(report, *outbound_rtps[1]),
StrCaseEq("video/VP9"));
EXPECT_THAT(GetCurrentCodecMimeType(report, *outbound_rtps[2]),
StrCaseEq("video/VP9"));
EXPECT_THAT(*outbound_rtps[0]->scalability_mode, StrEq("L1T3"));
EXPECT_THAT(*outbound_rtps[1]->scalability_mode, StrEq("L1T3"));
EXPECT_THAT(*outbound_rtps[2]->scalability_mode, StrEq("L1T3"));
}
} // namespace webrtc