blob: 74bb47f710c07597531b6f656135833cf018065f [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/test/fake_recording_device.h"
#include <cmath>
#include <memory>
#include <string>
#include <vector>
#include "api/array_view.h"
#include "rtc_base/strings/string_builder.h"
#include "test/gtest.h"
namespace webrtc {
namespace test {
namespace {
constexpr int kInitialMicLevel = 100;
// TODO(alessiob): Add new fake recording device kind values here as they are
// added in FakeRecordingDevice::FakeRecordingDevice.
const std::vector<int> kFakeRecDeviceKinds = {0, 1, 2};
const std::vector<std::vector<float>> kTestMultiChannelSamples{
std::vector<float>{-10.f, -1.f, -0.1f, 0.f, 0.1f, 1.f, 10.f}};
// Writes samples into ChannelBuffer<float>.
void WritesDataIntoChannelBuffer(const std::vector<std::vector<float>>& data,
ChannelBuffer<float>* buff) {
EXPECT_EQ(data.size(), buff->num_channels());
EXPECT_EQ(data[0].size(), buff->num_frames());
for (size_t c = 0; c < buff->num_channels(); ++c) {
for (size_t f = 0; f < buff->num_frames(); ++f) {
buff->channels()[c][f] = data[c][f];
}
}
}
std::unique_ptr<ChannelBuffer<float>> CreateChannelBufferWithData(
const std::vector<std::vector<float>>& data) {
auto buff =
std::make_unique<ChannelBuffer<float>>(data[0].size(), data.size());
WritesDataIntoChannelBuffer(data, buff.get());
return buff;
}
// Checks that the samples modified using monotonic level values are also
// monotonic.
void CheckIfMonotoneSamplesModules(const ChannelBuffer<float>* prev,
const ChannelBuffer<float>* curr) {
RTC_DCHECK_EQ(prev->num_channels(), curr->num_channels());
RTC_DCHECK_EQ(prev->num_frames(), curr->num_frames());
bool valid = true;
for (size_t i = 0; i < prev->num_channels(); ++i) {
for (size_t j = 0; j < prev->num_frames(); ++j) {
valid = std::fabs(prev->channels()[i][j]) <=
std::fabs(curr->channels()[i][j]);
if (!valid) {
break;
}
}
if (!valid) {
break;
}
}
EXPECT_TRUE(valid);
}
// Checks that the samples in each pair have the same sign unless the sample in
// |dst| is zero (because of zero gain).
void CheckSameSign(const ChannelBuffer<float>* src,
const ChannelBuffer<float>* dst) {
RTC_DCHECK_EQ(src->num_channels(), dst->num_channels());
RTC_DCHECK_EQ(src->num_frames(), dst->num_frames());
const auto fsgn = [](float x) { return ((x < 0) ? -1 : (x > 0) ? 1 : 0); };
bool valid = true;
for (size_t i = 0; i < src->num_channels(); ++i) {
for (size_t j = 0; j < src->num_frames(); ++j) {
valid = dst->channels()[i][j] == 0.0f ||
fsgn(src->channels()[i][j]) == fsgn(dst->channels()[i][j]);
if (!valid) {
break;
}
}
if (!valid) {
break;
}
}
EXPECT_TRUE(valid);
}
std::string FakeRecordingDeviceKindToString(int fake_rec_device_kind) {
rtc::StringBuilder ss;
ss << "fake recording device: " << fake_rec_device_kind;
return ss.Release();
}
std::string AnalogLevelToString(int level) {
rtc::StringBuilder ss;
ss << "analog level: " << level;
return ss.Release();
}
} // namespace
TEST(FakeRecordingDevice, CheckHelperFunctions) {
constexpr size_t kC = 0; // Channel index.
constexpr size_t kS = 1; // Sample index.
// Check read.
auto buff = CreateChannelBufferWithData(kTestMultiChannelSamples);
for (size_t c = 0; c < kTestMultiChannelSamples.size(); ++c) {
for (size_t s = 0; s < kTestMultiChannelSamples[0].size(); ++s) {
EXPECT_EQ(kTestMultiChannelSamples[c][s], buff->channels()[c][s]);
}
}
// Check write.
buff->channels()[kC][kS] = -5.0f;
RTC_DCHECK_NE(buff->channels()[kC][kS], kTestMultiChannelSamples[kC][kS]);
// Check reset.
WritesDataIntoChannelBuffer(kTestMultiChannelSamples, buff.get());
EXPECT_EQ(buff->channels()[kC][kS], kTestMultiChannelSamples[kC][kS]);
}
// Implicitly checks that changes to the mic and undo levels are visible to the
// FakeRecordingDeviceWorker implementation are injected in FakeRecordingDevice.
TEST(FakeRecordingDevice, TestWorkerAbstractClass) {
FakeRecordingDevice fake_recording_device(kInitialMicLevel, 1);
auto buff1 = CreateChannelBufferWithData(kTestMultiChannelSamples);
fake_recording_device.SetMicLevel(100);
fake_recording_device.SimulateAnalogGain(buff1.get());
auto buff2 = CreateChannelBufferWithData(kTestMultiChannelSamples);
fake_recording_device.SetMicLevel(200);
fake_recording_device.SimulateAnalogGain(buff2.get());
for (size_t c = 0; c < kTestMultiChannelSamples.size(); ++c) {
for (size_t s = 0; s < kTestMultiChannelSamples[0].size(); ++s) {
EXPECT_LE(std::abs(buff1->channels()[c][s]),
std::abs(buff2->channels()[c][s]));
}
}
auto buff3 = CreateChannelBufferWithData(kTestMultiChannelSamples);
fake_recording_device.SetMicLevel(200);
fake_recording_device.SetUndoMicLevel(100);
fake_recording_device.SimulateAnalogGain(buff3.get());
for (size_t c = 0; c < kTestMultiChannelSamples.size(); ++c) {
for (size_t s = 0; s < kTestMultiChannelSamples[0].size(); ++s) {
EXPECT_LE(std::abs(buff1->channels()[c][s]),
std::abs(buff3->channels()[c][s]));
EXPECT_LE(std::abs(buff2->channels()[c][s]),
std::abs(buff3->channels()[c][s]));
}
}
}
TEST(FakeRecordingDevice, GainCurveShouldBeMonotone) {
// Create input-output buffers.
auto buff_prev = CreateChannelBufferWithData(kTestMultiChannelSamples);
auto buff_curr = CreateChannelBufferWithData(kTestMultiChannelSamples);
// Test different mappings.
for (auto fake_rec_device_kind : kFakeRecDeviceKinds) {
SCOPED_TRACE(FakeRecordingDeviceKindToString(fake_rec_device_kind));
FakeRecordingDevice fake_recording_device(kInitialMicLevel,
fake_rec_device_kind);
// TODO(alessiob): The test below is designed for state-less recording
// devices. If, for instance, a device has memory, the test might need
// to be redesigned (e.g., re-initialize fake recording device).
// Apply lowest analog level.
WritesDataIntoChannelBuffer(kTestMultiChannelSamples, buff_prev.get());
fake_recording_device.SetMicLevel(0);
fake_recording_device.SimulateAnalogGain(buff_prev.get());
// Increment analog level to check monotonicity.
for (int i = 1; i <= 255; ++i) {
SCOPED_TRACE(AnalogLevelToString(i));
WritesDataIntoChannelBuffer(kTestMultiChannelSamples, buff_curr.get());
fake_recording_device.SetMicLevel(i);
fake_recording_device.SimulateAnalogGain(buff_curr.get());
CheckIfMonotoneSamplesModules(buff_prev.get(), buff_curr.get());
// Update prev.
buff_prev.swap(buff_curr);
}
}
}
TEST(FakeRecordingDevice, GainCurveShouldNotChangeSign) {
// Create view on original samples.
std::unique_ptr<const ChannelBuffer<float>> buff_orig =
CreateChannelBufferWithData(kTestMultiChannelSamples);
// Create output buffer.
auto buff = CreateChannelBufferWithData(kTestMultiChannelSamples);
// Test different mappings.
for (auto fake_rec_device_kind : kFakeRecDeviceKinds) {
SCOPED_TRACE(FakeRecordingDeviceKindToString(fake_rec_device_kind));
FakeRecordingDevice fake_recording_device(kInitialMicLevel,
fake_rec_device_kind);
// TODO(alessiob): The test below is designed for state-less recording
// devices. If, for instance, a device has memory, the test might need
// to be redesigned (e.g., re-initialize fake recording device).
for (int i = 0; i <= 255; ++i) {
SCOPED_TRACE(AnalogLevelToString(i));
WritesDataIntoChannelBuffer(kTestMultiChannelSamples, buff.get());
fake_recording_device.SetMicLevel(i);
fake_recording_device.SimulateAnalogGain(buff.get());
CheckSameSign(buff_orig.get(), buff.get());
}
}
}
} // namespace test
} // namespace webrtc