blob: 233172439788911bfdaf8e6f272f1a1f17116686 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/rtp_rtcp/source/rtp_packet_history.h"
#include <memory>
#include <utility>
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/rtp_rtcp/source/rtp_packet_to_send.h"
#include "system_wrappers/include/clock.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
// Set a high sequence number so we'll suffer a wrap-around.
constexpr uint16_t kStartSeqNum = 65534u;
// Utility method for truncating sequence numbers to uint16.
uint16_t To16u(size_t sequence_number) {
return static_cast<uint16_t>(sequence_number & 0xFFFF);
}
} // namespace
using StorageMode = RtpPacketHistory::StorageMode;
class RtpPacketHistoryTest : public ::testing::TestWithParam<bool> {
protected:
RtpPacketHistoryTest()
: fake_clock_(123456),
hist_(&fake_clock_, /*enable_padding_prio=*/GetParam()) {}
SimulatedClock fake_clock_;
RtpPacketHistory hist_;
std::unique_ptr<RtpPacketToSend> CreateRtpPacket(uint16_t seq_num) {
// Payload, ssrc, timestamp and extensions are irrelevant for this tests.
std::unique_ptr<RtpPacketToSend> packet(new RtpPacketToSend(nullptr));
packet->SetSequenceNumber(seq_num);
packet->set_capture_time_ms(fake_clock_.TimeInMilliseconds());
packet->set_allow_retransmission(true);
return packet;
}
};
TEST_P(RtpPacketHistoryTest, SetStoreStatus) {
EXPECT_EQ(StorageMode::kDisabled, hist_.GetStorageMode());
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
EXPECT_EQ(StorageMode::kStoreAndCull, hist_.GetStorageMode());
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
EXPECT_EQ(StorageMode::kStoreAndCull, hist_.GetStorageMode());
hist_.SetStorePacketsStatus(StorageMode::kDisabled, 0);
EXPECT_EQ(StorageMode::kDisabled, hist_.GetStorageMode());
}
TEST_P(RtpPacketHistoryTest, ClearsHistoryAfterSetStoreStatus) {
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
// Store a packet, but with send-time. It should then not be removed.
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum), absl::nullopt);
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
// Changing store status, even to the current one, will clear the history.
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
}
TEST_P(RtpPacketHistoryTest, StartSeqResetAfterReset) {
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
// Store a packet, but with send-time. It should then not be removed.
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum), absl::nullopt);
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
// Changing store status, to clear the history.
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
// Add a new packet.
hist_.PutRtpPacket(CreateRtpPacket(To16u(kStartSeqNum + 1)), absl::nullopt);
EXPECT_TRUE(hist_.GetPacketState(To16u(kStartSeqNum + 1)));
// Advance time past where packet expires.
fake_clock_.AdvanceTimeMilliseconds(
RtpPacketHistory::kPacketCullingDelayFactor *
RtpPacketHistory::kMinPacketDurationMs);
// Add one more packet and verify no state left from packet before reset.
hist_.PutRtpPacket(CreateRtpPacket(To16u(kStartSeqNum + 2)), absl::nullopt);
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
EXPECT_TRUE(hist_.GetPacketState(To16u(kStartSeqNum + 1)));
EXPECT_TRUE(hist_.GetPacketState(To16u(kStartSeqNum + 2)));
}
TEST_P(RtpPacketHistoryTest, NoStoreStatus) {
EXPECT_EQ(StorageMode::kDisabled, hist_.GetStorageMode());
std::unique_ptr<RtpPacketToSend> packet = CreateRtpPacket(kStartSeqNum);
hist_.PutRtpPacket(std::move(packet), absl::nullopt);
// Packet should not be stored.
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
}
TEST_P(RtpPacketHistoryTest, GetRtpPacket_NotStored) {
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
EXPECT_FALSE(hist_.GetPacketState(0));
}
TEST_P(RtpPacketHistoryTest, PutRtpPacket) {
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
std::unique_ptr<RtpPacketToSend> packet = CreateRtpPacket(kStartSeqNum);
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
hist_.PutRtpPacket(std::move(packet), absl::nullopt);
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
}
TEST_P(RtpPacketHistoryTest, GetRtpPacket) {
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
int64_t capture_time_ms = 1;
std::unique_ptr<RtpPacketToSend> packet = CreateRtpPacket(kStartSeqNum);
packet->set_capture_time_ms(capture_time_ms);
rtc::CopyOnWriteBuffer buffer = packet->Buffer();
hist_.PutRtpPacket(std::move(packet), absl::nullopt);
std::unique_ptr<RtpPacketToSend> packet_out =
hist_.GetPacketAndSetSendTime(kStartSeqNum);
EXPECT_TRUE(packet_out);
EXPECT_EQ(buffer, packet_out->Buffer());
EXPECT_EQ(capture_time_ms, packet_out->capture_time_ms());
}
TEST_P(RtpPacketHistoryTest, PacketStateIsCorrect) {
const uint32_t kSsrc = 92384762;
const int64_t kRttMs = 100;
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
hist_.SetRtt(kRttMs);
std::unique_ptr<RtpPacketToSend> packet = CreateRtpPacket(kStartSeqNum);
packet->SetSsrc(kSsrc);
packet->SetPayloadSize(1234);
const size_t packet_size = packet->size();
hist_.PutRtpPacket(std::move(packet), fake_clock_.TimeInMilliseconds());
absl::optional<RtpPacketHistory::PacketState> state =
hist_.GetPacketState(kStartSeqNum);
ASSERT_TRUE(state);
EXPECT_EQ(state->rtp_sequence_number, kStartSeqNum);
EXPECT_EQ(state->send_time_ms, fake_clock_.TimeInMilliseconds());
EXPECT_EQ(state->capture_time_ms, fake_clock_.TimeInMilliseconds());
EXPECT_EQ(state->ssrc, kSsrc);
EXPECT_EQ(state->packet_size, packet_size);
EXPECT_EQ(state->times_retransmitted, 0u);
fake_clock_.AdvanceTimeMilliseconds(1);
EXPECT_TRUE(hist_.GetPacketAndSetSendTime(kStartSeqNum));
fake_clock_.AdvanceTimeMilliseconds(kRttMs + 1);
state = hist_.GetPacketState(kStartSeqNum);
ASSERT_TRUE(state);
EXPECT_EQ(state->times_retransmitted, 1u);
}
TEST_P(RtpPacketHistoryTest, MinResendTimeWithPacer) {
static const int64_t kMinRetransmitIntervalMs = 100;
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
hist_.SetRtt(kMinRetransmitIntervalMs);
int64_t capture_time_ms = fake_clock_.TimeInMilliseconds();
std::unique_ptr<RtpPacketToSend> packet = CreateRtpPacket(kStartSeqNum);
size_t len = packet->size();
hist_.PutRtpPacket(std::move(packet), absl::nullopt);
// First transmission: TimeToSendPacket() call from pacer.
EXPECT_TRUE(hist_.GetPacketAndSetSendTime(kStartSeqNum));
// First retransmission - allow early retransmission.
fake_clock_.AdvanceTimeMilliseconds(1);
// With pacer there's two calls to history:
// 1) When the NACK request arrived, use GetPacketState() to see if the
// packet is there and verify RTT constraints. Then we use the ssrc
// and sequence number to enqueue the retransmission in the pacer
// 2) When the pacer determines that it is time to send the packet, it calls
// GetPacketAndSetSendTime().
absl::optional<RtpPacketHistory::PacketState> packet_state =
hist_.GetPacketState(kStartSeqNum);
EXPECT_TRUE(packet_state);
EXPECT_EQ(len, packet_state->packet_size);
EXPECT_EQ(capture_time_ms, packet_state->capture_time_ms);
// Retransmission was allowed, next send it from pacer.
EXPECT_TRUE(hist_.GetPacketAndSetSendTime(kStartSeqNum));
// Second retransmission - advance time to just before retransmission OK.
fake_clock_.AdvanceTimeMilliseconds(kMinRetransmitIntervalMs - 1);
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
// Advance time to just after retransmission OK.
fake_clock_.AdvanceTimeMilliseconds(1);
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
EXPECT_TRUE(hist_.GetPacketAndSetSendTime(kStartSeqNum));
}
TEST_P(RtpPacketHistoryTest, MinResendTimeWithoutPacer) {
static const int64_t kMinRetransmitIntervalMs = 100;
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
hist_.SetRtt(kMinRetransmitIntervalMs);
int64_t capture_time_ms = fake_clock_.TimeInMilliseconds();
std::unique_ptr<RtpPacketToSend> packet = CreateRtpPacket(kStartSeqNum);
size_t len = packet->size();
hist_.PutRtpPacket(std::move(packet), fake_clock_.TimeInMilliseconds());
// First retransmission - allow early retransmission.
fake_clock_.AdvanceTimeMilliseconds(1);
packet = hist_.GetPacketAndSetSendTime(kStartSeqNum);
EXPECT_TRUE(packet);
EXPECT_EQ(len, packet->size());
EXPECT_EQ(capture_time_ms, packet->capture_time_ms());
// Second retransmission - advance time to just before retransmission OK.
fake_clock_.AdvanceTimeMilliseconds(kMinRetransmitIntervalMs - 1);
EXPECT_FALSE(hist_.GetPacketAndSetSendTime(kStartSeqNum));
// Advance time to just after retransmission OK.
fake_clock_.AdvanceTimeMilliseconds(1);
EXPECT_TRUE(hist_.GetPacketAndSetSendTime(kStartSeqNum));
}
TEST_P(RtpPacketHistoryTest, RemovesOldestSentPacketWhenAtMaxSize) {
const size_t kMaxNumPackets = 10;
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, kMaxNumPackets);
// History does not allow removing packets within kMinPacketDurationMs,
// so in order to test capacity, make sure insertion spans this time.
const int64_t kPacketIntervalMs =
RtpPacketHistory::kMinPacketDurationMs / kMaxNumPackets;
// Add packets until the buffer is full.
for (size_t i = 0; i < kMaxNumPackets; ++i) {
std::unique_ptr<RtpPacketToSend> packet =
CreateRtpPacket(To16u(kStartSeqNum + i));
// Immediate mark packet as sent.
hist_.PutRtpPacket(std::move(packet), fake_clock_.TimeInMilliseconds());
fake_clock_.AdvanceTimeMilliseconds(kPacketIntervalMs);
}
// First packet should still be there.
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
// History is full, oldest one should be overwritten.
std::unique_ptr<RtpPacketToSend> packet =
CreateRtpPacket(To16u(kStartSeqNum + kMaxNumPackets));
hist_.PutRtpPacket(std::move(packet), fake_clock_.TimeInMilliseconds());
// Oldest packet should be gone, but packet after than one still present.
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
EXPECT_TRUE(hist_.GetPacketState(To16u(kStartSeqNum + 1)));
}
TEST_P(RtpPacketHistoryTest, RemovesOldestPacketWhenAtMaxCapacity) {
// Tests the absolute upper bound on number of stored packets. Don't allow
// storing more than this, even if packets have not yet been sent.
const size_t kMaxNumPackets = RtpPacketHistory::kMaxCapacity;
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull,
RtpPacketHistory::kMaxCapacity);
// Add packets until the buffer is full.
for (size_t i = 0; i < kMaxNumPackets; ++i) {
std::unique_ptr<RtpPacketToSend> packet =
CreateRtpPacket(To16u(kStartSeqNum + i));
// Don't mark packets as sent, preventing them from being removed.
hist_.PutRtpPacket(std::move(packet), absl::nullopt);
}
// First packet should still be there.
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
// History is full, oldest one should be overwritten.
std::unique_ptr<RtpPacketToSend> packet =
CreateRtpPacket(To16u(kStartSeqNum + kMaxNumPackets));
hist_.PutRtpPacket(std::move(packet), fake_clock_.TimeInMilliseconds());
// Oldest packet should be gone, but packet after than one still present.
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
EXPECT_TRUE(hist_.GetPacketState(To16u(kStartSeqNum + 1)));
}
TEST_P(RtpPacketHistoryTest, RemovesLowestPrioPaddingWhenAtMaxCapacity) {
if (!GetParam()) {
// Padding prioritization is off, ignore this test.
return;
}
// Tests the absolute upper bound on number of packets in the prioritized
// set of potential padding packets.
const size_t kMaxNumPackets = RtpPacketHistory::kMaxPaddingtHistory;
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, kMaxNumPackets * 2);
hist_.SetRtt(1);
// Add packets until the max is reached, and then yet another one.
for (size_t i = 0; i < kMaxNumPackets + 1; ++i) {
std::unique_ptr<RtpPacketToSend> packet =
CreateRtpPacket(To16u(kStartSeqNum + i));
// Don't mark packets as sent, preventing them from being removed.
hist_.PutRtpPacket(std::move(packet), fake_clock_.TimeInMilliseconds());
}
// Advance time to allow retransmission/padding.
fake_clock_.AdvanceTimeMilliseconds(1);
// The oldest packet will be least prioritized and has fallen out of the
// priority set.
for (size_t i = kMaxNumPackets - 1; i > 0; --i) {
auto packet = hist_.GetPayloadPaddingPacket();
ASSERT_TRUE(packet);
EXPECT_EQ(packet->SequenceNumber(), To16u(kStartSeqNum + i + 1));
}
// Wrap around to newest padding packet again.
auto packet = hist_.GetPayloadPaddingPacket();
ASSERT_TRUE(packet);
EXPECT_EQ(packet->SequenceNumber(), To16u(kStartSeqNum + kMaxNumPackets));
}
TEST_P(RtpPacketHistoryTest, DontRemoveUnsentPackets) {
const size_t kMaxNumPackets = 10;
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, kMaxNumPackets);
// Add packets until the buffer is full.
for (size_t i = 0; i < kMaxNumPackets; ++i) {
// Mark packets as unsent.
hist_.PutRtpPacket(CreateRtpPacket(To16u(kStartSeqNum + i)), absl::nullopt);
}
fake_clock_.AdvanceTimeMilliseconds(RtpPacketHistory::kMinPacketDurationMs);
// First packet should still be there.
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
// History is full, but old packets not sent, so allow expansion.
hist_.PutRtpPacket(CreateRtpPacket(To16u(kStartSeqNum + kMaxNumPackets)),
fake_clock_.TimeInMilliseconds());
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
// Set all packet as sent and advance time past min packet duration time,
// otherwise packets till still be prevented from being removed.
for (size_t i = 0; i <= kMaxNumPackets; ++i) {
EXPECT_TRUE(hist_.GetPacketAndSetSendTime(To16u(kStartSeqNum + i)));
}
fake_clock_.AdvanceTimeMilliseconds(RtpPacketHistory::kMinPacketDurationMs);
// Add a new packet, this means the two oldest ones will be culled.
hist_.PutRtpPacket(CreateRtpPacket(To16u(kStartSeqNum + kMaxNumPackets + 1)),
fake_clock_.TimeInMilliseconds());
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
EXPECT_FALSE(hist_.GetPacketState(To16u(kStartSeqNum + 1)));
EXPECT_TRUE(hist_.GetPacketState(To16u(kStartSeqNum + 2)));
}
TEST_P(RtpPacketHistoryTest, DontRemoveTooRecentlyTransmittedPackets) {
// Set size to remove old packets as soon as possible.
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 1);
// Add a packet, marked as send, and advance time to just before removal time.
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum),
fake_clock_.TimeInMilliseconds());
fake_clock_.AdvanceTimeMilliseconds(RtpPacketHistory::kMinPacketDurationMs -
1);
// Add a new packet to trigger culling.
hist_.PutRtpPacket(CreateRtpPacket(To16u(kStartSeqNum + 1)),
fake_clock_.TimeInMilliseconds());
// First packet should still be there.
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
// Advance time to where packet will be eligible for removal and try again.
fake_clock_.AdvanceTimeMilliseconds(1);
hist_.PutRtpPacket(CreateRtpPacket(To16u(kStartSeqNum + 2)),
fake_clock_.TimeInMilliseconds());
// First packet should no be gone, but next one still there.
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
EXPECT_TRUE(hist_.GetPacketState(To16u(kStartSeqNum + 1)));
}
TEST_P(RtpPacketHistoryTest, DontRemoveTooRecentlyTransmittedPacketsHighRtt) {
const int64_t kRttMs = RtpPacketHistory::kMinPacketDurationMs * 2;
const int64_t kPacketTimeoutMs =
kRttMs * RtpPacketHistory::kMinPacketDurationRtt;
// Set size to remove old packets as soon as possible.
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 1);
hist_.SetRtt(kRttMs);
// Add a packet, marked as send, and advance time to just before removal time.
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum),
fake_clock_.TimeInMilliseconds());
fake_clock_.AdvanceTimeMilliseconds(kPacketTimeoutMs - 1);
// Add a new packet to trigger culling.
hist_.PutRtpPacket(CreateRtpPacket(To16u(kStartSeqNum + 1)),
fake_clock_.TimeInMilliseconds());
// First packet should still be there.
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
// Advance time to where packet will be eligible for removal and try again.
fake_clock_.AdvanceTimeMilliseconds(1);
hist_.PutRtpPacket(CreateRtpPacket(To16u(kStartSeqNum + 2)),
fake_clock_.TimeInMilliseconds());
// First packet should no be gone, but next one still there.
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
EXPECT_TRUE(hist_.GetPacketState(To16u(kStartSeqNum + 1)));
}
TEST_P(RtpPacketHistoryTest, RemovesOldWithCulling) {
const size_t kMaxNumPackets = 10;
// Enable culling. Even without feedback, this can trigger early removal.
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, kMaxNumPackets);
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum),
fake_clock_.TimeInMilliseconds());
int64_t kMaxPacketDurationMs = RtpPacketHistory::kMinPacketDurationMs *
RtpPacketHistory::kPacketCullingDelayFactor;
fake_clock_.AdvanceTimeMilliseconds(kMaxPacketDurationMs - 1);
// First packet should still be there.
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
// Advance to where packet can be culled, even if buffer is not full.
fake_clock_.AdvanceTimeMilliseconds(1);
hist_.PutRtpPacket(CreateRtpPacket(To16u(kStartSeqNum + 1)),
fake_clock_.TimeInMilliseconds());
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
}
TEST_P(RtpPacketHistoryTest, RemovesOldWithCullingHighRtt) {
const size_t kMaxNumPackets = 10;
const int64_t kRttMs = RtpPacketHistory::kMinPacketDurationMs * 2;
// Enable culling. Even without feedback, this can trigger early removal.
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, kMaxNumPackets);
hist_.SetRtt(kRttMs);
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum),
fake_clock_.TimeInMilliseconds());
int64_t kMaxPacketDurationMs = kRttMs *
RtpPacketHistory::kMinPacketDurationRtt *
RtpPacketHistory::kPacketCullingDelayFactor;
fake_clock_.AdvanceTimeMilliseconds(kMaxPacketDurationMs - 1);
// First packet should still be there.
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
// Advance to where packet can be culled, even if buffer is not full.
fake_clock_.AdvanceTimeMilliseconds(1);
hist_.PutRtpPacket(CreateRtpPacket(To16u(kStartSeqNum + 1)),
fake_clock_.TimeInMilliseconds());
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
}
TEST_P(RtpPacketHistoryTest, CullWithAcks) {
const int64_t kPacketLifetime = RtpPacketHistory::kMinPacketDurationMs *
RtpPacketHistory::kPacketCullingDelayFactor;
const int64_t start_time = fake_clock_.TimeInMilliseconds();
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
// Insert three packets 33ms apart, immediately mark them as sent.
std::unique_ptr<RtpPacketToSend> packet = CreateRtpPacket(kStartSeqNum);
packet->SetPayloadSize(50);
hist_.PutRtpPacket(std::move(packet), fake_clock_.TimeInMilliseconds());
hist_.GetPacketAndSetSendTime(kStartSeqNum);
fake_clock_.AdvanceTimeMilliseconds(33);
packet = CreateRtpPacket(To16u(kStartSeqNum + 1));
packet->SetPayloadSize(50);
hist_.PutRtpPacket(std::move(packet), fake_clock_.TimeInMilliseconds());
hist_.GetPacketAndSetSendTime(To16u(kStartSeqNum + 1));
fake_clock_.AdvanceTimeMilliseconds(33);
packet = CreateRtpPacket(To16u(kStartSeqNum + 2));
packet->SetPayloadSize(50);
hist_.PutRtpPacket(std::move(packet), fake_clock_.TimeInMilliseconds());
hist_.GetPacketAndSetSendTime(To16u(kStartSeqNum + 2));
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum).has_value());
EXPECT_TRUE(hist_.GetPacketState(To16u(kStartSeqNum + 1)).has_value());
EXPECT_TRUE(hist_.GetPacketState(To16u(kStartSeqNum + 2)).has_value());
// Remove middle one using ack, check that only that one is gone.
std::vector<uint16_t> acked_sequence_numbers = {To16u(kStartSeqNum + 1)};
hist_.CullAcknowledgedPackets(acked_sequence_numbers);
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum).has_value());
EXPECT_FALSE(hist_.GetPacketState(To16u(kStartSeqNum + 1)).has_value());
EXPECT_TRUE(hist_.GetPacketState(To16u(kStartSeqNum + 2)).has_value());
// Advance time to where second packet would have expired, verify first packet
// is removed.
int64_t second_packet_expiry_time = start_time + kPacketLifetime + 33 + 1;
fake_clock_.AdvanceTimeMilliseconds(second_packet_expiry_time -
fake_clock_.TimeInMilliseconds());
hist_.SetRtt(1); // Trigger culling of old packets.
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum).has_value());
EXPECT_FALSE(hist_.GetPacketState(To16u(kStartSeqNum + 1)).has_value());
EXPECT_TRUE(hist_.GetPacketState(To16u(kStartSeqNum + 2)).has_value());
// Advance to where last packet expires, verify all gone.
fake_clock_.AdvanceTimeMilliseconds(33);
hist_.SetRtt(1); // Trigger culling of old packets.
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum).has_value());
EXPECT_FALSE(hist_.GetPacketState(To16u(kStartSeqNum + 1)).has_value());
EXPECT_FALSE(hist_.GetPacketState(To16u(kStartSeqNum + 2)).has_value());
}
TEST_P(RtpPacketHistoryTest, SetsPendingTransmissionState) {
const int64_t kRttMs = RtpPacketHistory::kMinPacketDurationMs * 2;
hist_.SetRtt(kRttMs);
// Set size to remove old packets as soon as possible.
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 1);
// Add a packet, without send time, indicating it's in pacer queue.
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum),
/* send_time_ms = */ absl::nullopt);
// Packet is pending transmission.
absl::optional<RtpPacketHistory::PacketState> packet_state =
hist_.GetPacketState(kStartSeqNum);
ASSERT_TRUE(packet_state.has_value());
EXPECT_TRUE(packet_state->pending_transmission);
// Packet sent, state should be back to non-pending.
EXPECT_TRUE(hist_.GetPacketAndSetSendTime(kStartSeqNum));
packet_state = hist_.GetPacketState(kStartSeqNum);
ASSERT_TRUE(packet_state.has_value());
EXPECT_FALSE(packet_state->pending_transmission);
// Time for a retransmission.
fake_clock_.AdvanceTimeMilliseconds(kRttMs);
EXPECT_TRUE(hist_.SetPendingTransmission(kStartSeqNum));
packet_state = hist_.GetPacketState(kStartSeqNum);
ASSERT_TRUE(packet_state.has_value());
EXPECT_TRUE(packet_state->pending_transmission);
// Packet sent.
EXPECT_TRUE(hist_.GetPacketAndSetSendTime(kStartSeqNum));
// Too early for retransmission.
ASSERT_FALSE(hist_.GetPacketState(kStartSeqNum).has_value());
// Retransmission allowed again, it's not in a pending state.
fake_clock_.AdvanceTimeMilliseconds(kRttMs);
packet_state = hist_.GetPacketState(kStartSeqNum);
ASSERT_TRUE(packet_state.has_value());
EXPECT_FALSE(packet_state->pending_transmission);
}
TEST_P(RtpPacketHistoryTest, GetPacketAndSetSent) {
const int64_t kRttMs = RtpPacketHistory::kMinPacketDurationMs * 2;
hist_.SetRtt(kRttMs);
// Set size to remove old packets as soon as possible.
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 1);
// Add a sent packet to the history.
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum),
fake_clock_.TimeInMicroseconds());
// Retransmission request, first retransmission is allowed immediately.
EXPECT_TRUE(hist_.GetPacketAndMarkAsPending(kStartSeqNum));
// Packet not yet sent, new retransmission not allowed.
fake_clock_.AdvanceTimeMilliseconds(kRttMs);
EXPECT_FALSE(hist_.GetPacketAndMarkAsPending(kStartSeqNum));
// Mark as sent, but too early for retransmission.
hist_.MarkPacketAsSent(kStartSeqNum);
EXPECT_FALSE(hist_.GetPacketAndMarkAsPending(kStartSeqNum));
// Enough time has passed, retransmission is allowed again.
fake_clock_.AdvanceTimeMilliseconds(kRttMs);
EXPECT_TRUE(hist_.GetPacketAndMarkAsPending(kStartSeqNum));
}
TEST_P(RtpPacketHistoryTest, GetPacketWithEncapsulation) {
const uint32_t kSsrc = 92384762;
const int64_t kRttMs = RtpPacketHistory::kMinPacketDurationMs * 2;
hist_.SetRtt(kRttMs);
// Set size to remove old packets as soon as possible.
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 1);
// Add a sent packet to the history, with a set SSRC.
std::unique_ptr<RtpPacketToSend> packet = CreateRtpPacket(kStartSeqNum);
packet->SetSsrc(kSsrc);
hist_.PutRtpPacket(std::move(packet), fake_clock_.TimeInMicroseconds());
// Retransmission request, simulate an RTX-like encapsulation, were the packet
// is sent on a different SSRC.
std::unique_ptr<RtpPacketToSend> retransmit_packet =
hist_.GetPacketAndMarkAsPending(
kStartSeqNum, [](const RtpPacketToSend& packet) {
auto encapsulated_packet =
std::make_unique<RtpPacketToSend>(packet);
encapsulated_packet->SetSsrc(packet.Ssrc() + 1);
return encapsulated_packet;
});
ASSERT_TRUE(retransmit_packet);
EXPECT_EQ(retransmit_packet->Ssrc(), kSsrc + 1);
}
TEST_P(RtpPacketHistoryTest, GetPacketWithEncapsulationAbortOnNullptr) {
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 1);
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum),
fake_clock_.TimeInMicroseconds());
// Retransmission request, but the encapsulator determines that this packet is
// not suitable for retransmission (bandwidth exhausted?) so the retransmit is
// aborted and the packet is not marked as pending.
EXPECT_FALSE(hist_.GetPacketAndMarkAsPending(
kStartSeqNum, [](const RtpPacketToSend&) { return nullptr; }));
// New try, this time getting the packet should work, and it should not be
// blocked due to any pending status.
EXPECT_TRUE(hist_.GetPacketAndMarkAsPending(kStartSeqNum));
}
TEST_P(RtpPacketHistoryTest, DontRemovePendingTransmissions) {
const int64_t kRttMs = RtpPacketHistory::kMinPacketDurationMs * 2;
const int64_t kPacketTimeoutMs =
kRttMs * RtpPacketHistory::kMinPacketDurationRtt;
// Set size to remove old packets as soon as possible.
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 1);
hist_.SetRtt(kRttMs);
// Add a sent packet.
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum),
fake_clock_.TimeInMilliseconds());
// Advance clock to just before packet timeout.
fake_clock_.AdvanceTimeMilliseconds(kPacketTimeoutMs - 1);
// Mark as enqueued in pacer.
EXPECT_TRUE(hist_.SetPendingTransmission(kStartSeqNum));
// Advance clock to where packet would have timed out. It should still
// be there and pending.
fake_clock_.AdvanceTimeMilliseconds(1);
absl::optional<RtpPacketHistory::PacketState> packet_state =
hist_.GetPacketState(kStartSeqNum);
ASSERT_TRUE(packet_state.has_value());
EXPECT_TRUE(packet_state->pending_transmission);
// Packet sent. Now it can be removed.
EXPECT_TRUE(hist_.GetPacketAndSetSendTime(kStartSeqNum));
hist_.SetRtt(kRttMs); // Force culling of old packets.
packet_state = hist_.GetPacketState(kStartSeqNum);
ASSERT_FALSE(packet_state.has_value());
}
TEST_P(RtpPacketHistoryTest, PrioritizedPayloadPadding) {
if (!GetParam()) {
// Padding prioritization is off, ignore this test.
return;
}
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 1);
// Add two sent packets, one millisecond apart.
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum),
fake_clock_.TimeInMilliseconds());
fake_clock_.AdvanceTimeMilliseconds(1);
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum + 1),
fake_clock_.TimeInMilliseconds());
fake_clock_.AdvanceTimeMilliseconds(1);
// Latest packet given equal retransmission count.
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(),
kStartSeqNum + 1);
// Older packet has lower retransmission count.
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(), kStartSeqNum);
// Equal retransmission count again, use newest packet.
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(),
kStartSeqNum + 1);
// Older packet has lower retransmission count.
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(), kStartSeqNum);
// Remove newest packet.
hist_.CullAcknowledgedPackets(std::vector<uint16_t>{kStartSeqNum + 1});
// Only older packet left.
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(), kStartSeqNum);
hist_.CullAcknowledgedPackets(std::vector<uint16_t>{kStartSeqNum});
EXPECT_EQ(hist_.GetPayloadPaddingPacket(), nullptr);
}
TEST_P(RtpPacketHistoryTest, NoPendingPacketAsPadding) {
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 1);
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum),
fake_clock_.TimeInMilliseconds());
fake_clock_.AdvanceTimeMilliseconds(1);
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(), kStartSeqNum);
// If packet is pending retransmission, don't try to use it as padding.
hist_.SetPendingTransmission(kStartSeqNum);
EXPECT_EQ(nullptr, hist_.GetPayloadPaddingPacket());
// Market it as no longer pending, should be usable as padding again.
hist_.GetPacketAndSetSendTime(kStartSeqNum);
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(), kStartSeqNum);
}
TEST_P(RtpPacketHistoryTest, PayloadPaddingWithEncapsulation) {
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 1);
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum),
fake_clock_.TimeInMilliseconds());
fake_clock_.AdvanceTimeMilliseconds(1);
// Aborted padding.
EXPECT_EQ(nullptr, hist_.GetPayloadPaddingPacket(
[](const RtpPacketToSend&) { return nullptr; }));
// Get copy of packet, but with sequence number modified.
auto padding_packet =
hist_.GetPayloadPaddingPacket([&](const RtpPacketToSend& packet) {
auto encapsulated_packet = std::make_unique<RtpPacketToSend>(packet);
encapsulated_packet->SetSequenceNumber(kStartSeqNum + 1);
return encapsulated_packet;
});
ASSERT_TRUE(padding_packet);
EXPECT_EQ(padding_packet->SequenceNumber(), kStartSeqNum + 1);
}
TEST_P(RtpPacketHistoryTest, NackAfterAckIsNoop) {
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 2);
// Add two sent packets.
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum),
fake_clock_.TimeInMilliseconds());
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum + 1),
fake_clock_.TimeInMilliseconds());
// Remove newest one.
hist_.CullAcknowledgedPackets(std::vector<uint16_t>{kStartSeqNum + 1});
// Retransmission request for already acked packet, should be noop.
auto packet = hist_.GetPacketAndMarkAsPending(kStartSeqNum + 1);
EXPECT_EQ(packet.get(), nullptr);
}
TEST_P(RtpPacketHistoryTest, OutOfOrderInsertRemoval) {
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
// Insert packets, out of order, including both forwards and backwards
// sequence number wraps.
const int seq_offsets[] = {0, 1, -1, 2, -2, 3, -3};
const int64_t start_time_ms = fake_clock_.TimeInMilliseconds();
for (int offset : seq_offsets) {
uint16_t seq_no = To16u(kStartSeqNum + offset);
std::unique_ptr<RtpPacketToSend> packet = CreateRtpPacket(seq_no);
packet->SetPayloadSize(50);
hist_.PutRtpPacket(std::move(packet), fake_clock_.TimeInMilliseconds());
hist_.GetPacketAndSetSendTime(seq_no);
fake_clock_.AdvanceTimeMilliseconds(33);
}
// Check packet are there and remove them in the same out-of-order fashion.
int64_t expected_time_offset_ms = 0;
for (int offset : seq_offsets) {
uint16_t seq_no = To16u(kStartSeqNum + offset);
absl::optional<RtpPacketHistory::PacketState> packet_state =
hist_.GetPacketState(seq_no);
ASSERT_TRUE(packet_state.has_value());
EXPECT_EQ(packet_state->send_time_ms,
start_time_ms + expected_time_offset_ms);
std::vector<uint16_t> acked_sequence_numbers = {seq_no};
hist_.CullAcknowledgedPackets(acked_sequence_numbers);
expected_time_offset_ms += 33;
}
}
TEST_P(RtpPacketHistoryTest, UsesLastPacketAsPaddingWithPrioOff) {
if (GetParam()) {
// Padding prioritization is enabled, ignore this test.
return;
}
const size_t kHistorySize = 10;
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, kHistorySize);
EXPECT_EQ(hist_.GetPayloadPaddingPacket(), nullptr);
for (size_t i = 0; i < kHistorySize; ++i) {
hist_.PutRtpPacket(CreateRtpPacket(To16u(kStartSeqNum + i)),
fake_clock_.TimeInMilliseconds());
hist_.MarkPacketAsSent(To16u(kStartSeqNum + i));
fake_clock_.AdvanceTimeMilliseconds(1);
// Last packet always returned.
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(),
To16u(kStartSeqNum + i));
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(),
To16u(kStartSeqNum + i));
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(),
To16u(kStartSeqNum + i));
}
// Remove packets from the end, last in the list should be returned.
for (size_t i = kHistorySize - 1; i > 0; --i) {
hist_.CullAcknowledgedPackets(
std::vector<uint16_t>{To16u(kStartSeqNum + i)});
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(),
To16u(kStartSeqNum + i - 1));
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(),
To16u(kStartSeqNum + i - 1));
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(),
To16u(kStartSeqNum + i - 1));
}
hist_.CullAcknowledgedPackets(std::vector<uint16_t>{kStartSeqNum});
EXPECT_EQ(hist_.GetPayloadPaddingPacket(), nullptr);
}
INSTANTIATE_TEST_SUITE_P(WithAndWithoutPaddingPrio,
RtpPacketHistoryTest,
::testing::Bool());
} // namespace webrtc