blob: 5f3a73fad17b8535d6630eeb986f36d095259069 [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Handling of certificates and keypairs for SSLStreamAdapter's peer mode.
#include "webrtc/base/sslidentity.h"
#include <ctime>
#include <string>
#include "webrtc/base/base64.h"
#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/sslconfig.h"
#if SSL_USE_OPENSSL
#include "webrtc/base/opensslidentity.h"
#endif // SSL_USE_OPENSSL
namespace rtc {
const char kPemTypeCertificate[] = "CERTIFICATE";
const char kPemTypeRsaPrivateKey[] = "RSA PRIVATE KEY";
const char kPemTypeEcPrivateKey[] = "EC PRIVATE KEY";
KeyParams::KeyParams(KeyType key_type) {
if (key_type == KT_ECDSA) {
type_ = KT_ECDSA;
params_.curve = EC_NIST_P256;
} else if (key_type == KT_RSA) {
type_ = KT_RSA;
params_.rsa.mod_size = kRsaDefaultModSize;
params_.rsa.pub_exp = kRsaDefaultExponent;
} else {
RTC_NOTREACHED();
}
}
// static
KeyParams KeyParams::RSA(int mod_size, int pub_exp) {
KeyParams kt(KT_RSA);
kt.params_.rsa.mod_size = mod_size;
kt.params_.rsa.pub_exp = pub_exp;
return kt;
}
// static
KeyParams KeyParams::ECDSA(ECCurve curve) {
KeyParams kt(KT_ECDSA);
kt.params_.curve = curve;
return kt;
}
bool KeyParams::IsValid() const {
if (type_ == KT_RSA) {
return (params_.rsa.mod_size >= kRsaMinModSize &&
params_.rsa.mod_size <= kRsaMaxModSize &&
params_.rsa.pub_exp > params_.rsa.mod_size);
} else if (type_ == KT_ECDSA) {
return (params_.curve == EC_NIST_P256);
}
return false;
}
RSAParams KeyParams::rsa_params() const {
RTC_DCHECK(type_ == KT_RSA);
return params_.rsa;
}
ECCurve KeyParams::ec_curve() const {
RTC_DCHECK(type_ == KT_ECDSA);
return params_.curve;
}
KeyType IntKeyTypeFamilyToKeyType(int key_type_family) {
return static_cast<KeyType>(key_type_family);
}
bool SSLIdentity::PemToDer(const std::string& pem_type,
const std::string& pem_string,
std::string* der) {
// Find the inner body. We need this to fulfill the contract of
// returning pem_length.
size_t header = pem_string.find("-----BEGIN " + pem_type + "-----");
if (header == std::string::npos)
return false;
size_t body = pem_string.find("\n", header);
if (body == std::string::npos)
return false;
size_t trailer = pem_string.find("-----END " + pem_type + "-----");
if (trailer == std::string::npos)
return false;
std::string inner = pem_string.substr(body + 1, trailer - (body + 1));
*der = Base64::Decode(inner, Base64::DO_PARSE_WHITE |
Base64::DO_PAD_ANY |
Base64::DO_TERM_BUFFER);
return true;
}
std::string SSLIdentity::DerToPem(const std::string& pem_type,
const unsigned char* data,
size_t length) {
std::stringstream result;
result << "-----BEGIN " << pem_type << "-----\n";
std::string b64_encoded;
Base64::EncodeFromArray(data, length, &b64_encoded);
// Divide the Base-64 encoded data into 64-character chunks, as per
// 4.3.2.4 of RFC 1421.
static const size_t kChunkSize = 64;
size_t chunks = (b64_encoded.size() + (kChunkSize - 1)) / kChunkSize;
for (size_t i = 0, chunk_offset = 0; i < chunks;
++i, chunk_offset += kChunkSize) {
result << b64_encoded.substr(chunk_offset, kChunkSize);
result << "\n";
}
result << "-----END " << pem_type << "-----\n";
return result.str();
}
SSLCertChain::SSLCertChain(const std::vector<SSLCertificate*>& certs) {
ASSERT(!certs.empty());
certs_.resize(certs.size());
std::transform(certs.begin(), certs.end(), certs_.begin(), DupCert);
}
SSLCertChain::SSLCertChain(const SSLCertificate* cert) {
certs_.push_back(cert->GetReference());
}
SSLCertChain::~SSLCertChain() {
std::for_each(certs_.begin(), certs_.end(), DeleteCert);
}
#if SSL_USE_OPENSSL
// static
SSLCertificate* SSLCertificate::FromPEMString(const std::string& pem_string) {
return OpenSSLCertificate::FromPEMString(pem_string);
}
// static
SSLIdentity* SSLIdentity::GenerateWithExpiration(const std::string& common_name,
const KeyParams& key_params,
time_t certificate_lifetime) {
return OpenSSLIdentity::GenerateWithExpiration(common_name, key_params,
certificate_lifetime);
}
// static
SSLIdentity* SSLIdentity::Generate(const std::string& common_name,
const KeyParams& key_params) {
return OpenSSLIdentity::GenerateWithExpiration(
common_name, key_params, kDefaultCertificateLifetimeInSeconds);
}
// static
SSLIdentity* SSLIdentity::Generate(const std::string& common_name,
KeyType key_type) {
return OpenSSLIdentity::GenerateWithExpiration(
common_name, KeyParams(key_type), kDefaultCertificateLifetimeInSeconds);
}
SSLIdentity* SSLIdentity::GenerateForTest(const SSLIdentityParams& params) {
return OpenSSLIdentity::GenerateForTest(params);
}
// static
SSLIdentity* SSLIdentity::FromPEMStrings(const std::string& private_key,
const std::string& certificate) {
return OpenSSLIdentity::FromPEMStrings(private_key, certificate);
}
bool operator==(const SSLIdentity& a, const SSLIdentity& b) {
return static_cast<const OpenSSLIdentity&>(a) ==
static_cast<const OpenSSLIdentity&>(b);
}
bool operator!=(const SSLIdentity& a, const SSLIdentity& b) {
return !(a == b);
}
#else // !SSL_USE_OPENSSL
#error "No SSL implementation"
#endif // SSL_USE_OPENSSL
// Read |n| bytes from ASN1 number string at *|pp| and return the numeric value.
// Update *|pp| and *|np| to reflect number of read bytes.
static inline int ASN1ReadInt(const unsigned char** pp, size_t* np, size_t n) {
const unsigned char* p = *pp;
int x = 0;
for (size_t i = 0; i < n; i++)
x = 10 * x + p[i] - '0';
*pp = p + n;
*np = *np - n;
return x;
}
int64_t ASN1TimeToSec(const unsigned char* s, size_t length, bool long_format) {
size_t bytes_left = length;
// Make sure the string ends with Z. Doing it here protects the strspn call
// from running off the end of the string in Z's absense.
if (length == 0 || s[length - 1] != 'Z')
return -1;
// Make sure we only have ASCII digits so that we don't need to clutter the
// code below and ASN1ReadInt with error checking.
size_t n = strspn(reinterpret_cast<const char*>(s), "0123456789");
if (n + 1 != length)
return -1;
int year;
// Read out ASN1 year, in either 2-char "UTCTIME" or 4-char "GENERALIZEDTIME"
// format. Both format use UTC in this context.
if (long_format) {
// ASN1 format: yyyymmddhh[mm[ss[.fff]]]Z where the Z is literal, but
// RFC 5280 requires us to only support exactly yyyymmddhhmmssZ.
if (bytes_left < 11)
return -1;
year = ASN1ReadInt(&s, &bytes_left, 4);
year -= 1900;
} else {
// ASN1 format: yymmddhhmm[ss]Z where the Z is literal, but RFC 5280
// requires us to only support exactly yymmddhhmmssZ.
if (bytes_left < 9)
return -1;
year = ASN1ReadInt(&s, &bytes_left, 2);
if (year < 50) // Per RFC 5280 4.1.2.5.1
year += 100;
}
std::tm tm;
tm.tm_year = year;
// Read out remaining ASN1 time data and store it in |tm| in documented
// std::tm format.
tm.tm_mon = ASN1ReadInt(&s, &bytes_left, 2) - 1;
tm.tm_mday = ASN1ReadInt(&s, &bytes_left, 2);
tm.tm_hour = ASN1ReadInt(&s, &bytes_left, 2);
tm.tm_min = ASN1ReadInt(&s, &bytes_left, 2);
tm.tm_sec = ASN1ReadInt(&s, &bytes_left, 2);
if (bytes_left != 1) {
// Now just Z should remain. Its existence was asserted above.
return -1;
}
return TmToSeconds(tm);
}
} // namespace rtc