| /* |
| * Copyright 2004 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <stdint.h> |
| |
| #if defined(WEBRTC_POSIX) |
| #include <sys/time.h> |
| #if defined(WEBRTC_MAC) |
| #include <mach/mach_time.h> |
| #endif |
| #endif |
| |
| #if defined(WEBRTC_WIN) |
| #ifndef WIN32_LEAN_AND_MEAN |
| #define WIN32_LEAN_AND_MEAN |
| #endif |
| #include <windows.h> |
| #include <mmsystem.h> |
| #endif |
| |
| #include "webrtc/base/checks.h" |
| #include "webrtc/base/timeutils.h" |
| |
| namespace rtc { |
| |
| ClockInterface* g_clock = nullptr; |
| |
| ClockInterface* SetClockForTesting(ClockInterface* clock) { |
| ClockInterface* prev = g_clock; |
| g_clock = clock; |
| return prev; |
| } |
| |
| uint64_t SystemTimeNanos() { |
| int64_t ticks; |
| #if defined(WEBRTC_MAC) |
| static mach_timebase_info_data_t timebase; |
| if (timebase.denom == 0) { |
| // Get the timebase if this is the first time we run. |
| // Recommended by Apple's QA1398. |
| if (mach_timebase_info(&timebase) != KERN_SUCCESS) { |
| RTC_DCHECK(false); |
| } |
| } |
| // Use timebase to convert absolute time tick units into nanoseconds. |
| ticks = mach_absolute_time() * timebase.numer / timebase.denom; |
| #elif defined(WEBRTC_POSIX) |
| struct timespec ts; |
| // TODO(deadbeef): Do we need to handle the case when CLOCK_MONOTONIC is not |
| // supported? |
| clock_gettime(CLOCK_MONOTONIC, &ts); |
| ticks = kNumNanosecsPerSec * static_cast<int64_t>(ts.tv_sec) + |
| static_cast<int64_t>(ts.tv_nsec); |
| #elif defined(WEBRTC_WIN) |
| static volatile LONG last_timegettime = 0; |
| static volatile int64_t num_wrap_timegettime = 0; |
| volatile LONG* last_timegettime_ptr = &last_timegettime; |
| DWORD now = timeGetTime(); |
| // Atomically update the last gotten time |
| DWORD old = InterlockedExchange(last_timegettime_ptr, now); |
| if (now < old) { |
| // If now is earlier than old, there may have been a race between threads. |
| // 0x0fffffff ~3.1 days, the code will not take that long to execute |
| // so it must have been a wrap around. |
| if (old > 0xf0000000 && now < 0x0fffffff) { |
| num_wrap_timegettime++; |
| } |
| } |
| ticks = now + (num_wrap_timegettime << 32); |
| // TODO(deadbeef): Calculate with nanosecond precision. Otherwise, we're |
| // just wasting a multiply and divide when doing Time() on Windows. |
| ticks = ticks * kNumNanosecsPerMillisec; |
| #else |
| #error Unsupported platform. |
| #endif |
| return ticks; |
| } |
| |
| int64_t SystemTimeMillis() { |
| return static_cast<int64_t>(SystemTimeNanos() / kNumNanosecsPerMillisec); |
| } |
| |
| uint64_t TimeNanos() { |
| if (g_clock) { |
| return g_clock->TimeNanos(); |
| } |
| return SystemTimeNanos(); |
| } |
| |
| uint32_t Time32() { |
| return static_cast<uint32_t>(TimeNanos() / kNumNanosecsPerMillisec); |
| } |
| |
| int64_t TimeMillis() { |
| return static_cast<int64_t>(TimeNanos() / kNumNanosecsPerMillisec); |
| } |
| |
| uint64_t TimeMicros() { |
| return static_cast<uint64_t>(TimeNanos() / kNumNanosecsPerMicrosec); |
| } |
| |
| int64_t TimeAfter(int64_t elapsed) { |
| RTC_DCHECK_GE(elapsed, 0); |
| return TimeMillis() + elapsed; |
| } |
| |
| int32_t TimeDiff32(uint32_t later, uint32_t earlier) { |
| return later - earlier; |
| } |
| |
| int64_t TimeDiff(int64_t later, int64_t earlier) { |
| return later - earlier; |
| } |
| |
| TimestampWrapAroundHandler::TimestampWrapAroundHandler() |
| : last_ts_(0), num_wrap_(-1) {} |
| |
| int64_t TimestampWrapAroundHandler::Unwrap(uint32_t ts) { |
| if (num_wrap_ == -1) { |
| last_ts_ = ts; |
| num_wrap_ = 0; |
| return ts; |
| } |
| |
| if (ts < last_ts_) { |
| if (last_ts_ >= 0xf0000000 && ts < 0x0fffffff) |
| ++num_wrap_; |
| } else if ((ts - last_ts_) > 0xf0000000) { |
| // Backwards wrap. Unwrap with last wrap count and don't update last_ts_. |
| return ts + ((num_wrap_ - 1) << 32); |
| } |
| |
| last_ts_ = ts; |
| return ts + (num_wrap_ << 32); |
| } |
| |
| int64_t TmToSeconds(const std::tm& tm) { |
| static short int mdays[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; |
| static short int cumul_mdays[12] = {0, 31, 59, 90, 120, 151, |
| 181, 212, 243, 273, 304, 334}; |
| int year = tm.tm_year + 1900; |
| int month = tm.tm_mon; |
| int day = tm.tm_mday - 1; // Make 0-based like the rest. |
| int hour = tm.tm_hour; |
| int min = tm.tm_min; |
| int sec = tm.tm_sec; |
| |
| bool expiry_in_leap_year = (year % 4 == 0 && |
| (year % 100 != 0 || year % 400 == 0)); |
| |
| if (year < 1970) |
| return -1; |
| if (month < 0 || month > 11) |
| return -1; |
| if (day < 0 || day >= mdays[month] + (expiry_in_leap_year && month == 2 - 1)) |
| return -1; |
| if (hour < 0 || hour > 23) |
| return -1; |
| if (min < 0 || min > 59) |
| return -1; |
| if (sec < 0 || sec > 59) |
| return -1; |
| |
| day += cumul_mdays[month]; |
| |
| // Add number of leap days between 1970 and the expiration year, inclusive. |
| day += ((year / 4 - 1970 / 4) - (year / 100 - 1970 / 100) + |
| (year / 400 - 1970 / 400)); |
| |
| // We will have added one day too much above if expiration is during a leap |
| // year, and expiration is in January or February. |
| if (expiry_in_leap_year && month <= 2 - 1) // |month| is zero based. |
| day -= 1; |
| |
| // Combine all variables into seconds from 1970-01-01 00:00 (except |month| |
| // which was accumulated into |day| above). |
| return (((static_cast<int64_t> |
| (year - 1970) * 365 + day) * 24 + hour) * 60 + min) * 60 + sec; |
| } |
| |
| } // namespace rtc |