blob: c16c3b383b67c496d3a1657772e6508c47d560b0 [file] [log] [blame]
/*
* Copyright 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "video/video_analyzer.h"
#include <algorithm>
#include <utility>
#include "absl/algorithm/container.h"
#include "absl/flags/flag.h"
#include "absl/flags/parse.h"
#include "common_video/libyuv/include/webrtc_libyuv.h"
#include "modules/rtp_rtcp/source/create_video_rtp_depacketizer.h"
#include "modules/rtp_rtcp/source/rtp_packet.h"
#include "rtc_base/cpu_time.h"
#include "rtc_base/format_macros.h"
#include "rtc_base/memory_usage.h"
#include "rtc_base/task_queue_for_test.h"
#include "rtc_base/task_utils/repeating_task.h"
#include "system_wrappers/include/cpu_info.h"
#include "test/call_test.h"
#include "test/testsupport/file_utils.h"
#include "test/testsupport/frame_writer.h"
#include "test/testsupport/perf_test.h"
#include "test/testsupport/test_artifacts.h"
ABSL_FLAG(bool,
save_worst_frame,
false,
"Enable saving a frame with the lowest PSNR to a jpeg file in the "
"test_artifacts_dir");
namespace webrtc {
namespace {
constexpr TimeDelta kSendStatsPollingInterval = TimeDelta::Seconds(1);
constexpr size_t kMaxComparisons = 10;
// How often is keep alive message printed.
constexpr int kKeepAliveIntervalSeconds = 30;
// Interval between checking that the test is over.
constexpr int kProbingIntervalMs = 500;
constexpr int kKeepAliveIntervalIterations =
kKeepAliveIntervalSeconds * 1000 / kProbingIntervalMs;
bool IsFlexfec(int payload_type) {
return payload_type == test::CallTest::kFlexfecPayloadType;
}
} // namespace
VideoAnalyzer::VideoAnalyzer(test::LayerFilteringTransport* transport,
const std::string& test_label,
double avg_psnr_threshold,
double avg_ssim_threshold,
int duration_frames,
TimeDelta test_duration,
FILE* graph_data_output_file,
const std::string& graph_title,
uint32_t ssrc_to_analyze,
uint32_t rtx_ssrc_to_analyze,
size_t selected_stream,
int selected_sl,
int selected_tl,
bool is_quick_test_enabled,
Clock* clock,
std::string rtp_dump_name,
TaskQueueBase* task_queue)
: transport_(transport),
receiver_(nullptr),
call_(nullptr),
send_stream_(nullptr),
receive_stream_(nullptr),
audio_receive_stream_(nullptr),
captured_frame_forwarder_(this, clock, duration_frames, test_duration),
test_label_(test_label),
graph_data_output_file_(graph_data_output_file),
graph_title_(graph_title),
ssrc_to_analyze_(ssrc_to_analyze),
rtx_ssrc_to_analyze_(rtx_ssrc_to_analyze),
selected_stream_(selected_stream),
selected_sl_(selected_sl),
selected_tl_(selected_tl),
mean_decode_time_ms_(0.0),
freeze_count_(0),
total_freezes_duration_ms_(0),
total_frames_duration_ms_(0),
sum_squared_frame_durations_(0),
decode_frame_rate_(0),
render_frame_rate_(0),
last_fec_bytes_(0),
frames_to_process_(duration_frames),
test_end_(clock->CurrentTime() + test_duration),
frames_recorded_(0),
frames_processed_(0),
captured_frames_(0),
dropped_frames_(0),
dropped_frames_before_first_encode_(0),
dropped_frames_before_rendering_(0),
last_render_time_(0),
last_render_delta_ms_(0),
last_unfreeze_time_ms_(0),
rtp_timestamp_delta_(0),
cpu_time_(0),
wallclock_time_(0),
avg_psnr_threshold_(avg_psnr_threshold),
avg_ssim_threshold_(avg_ssim_threshold),
is_quick_test_enabled_(is_quick_test_enabled),
quit_(false),
done_(true, false),
vp8_depacketizer_(CreateVideoRtpDepacketizer(kVideoCodecVP8)),
vp9_depacketizer_(CreateVideoRtpDepacketizer(kVideoCodecVP9)),
clock_(clock),
start_ms_(clock->TimeInMilliseconds()),
task_queue_(task_queue) {
// Create thread pool for CPU-expensive PSNR/SSIM calculations.
// Try to use about as many threads as cores, but leave kMinCoresLeft alone,
// so that we don't accidentally starve "real" worker threads (codec etc).
// Also, don't allocate more than kMaxComparisonThreads, even if there are
// spare cores.
uint32_t num_cores = CpuInfo::DetectNumberOfCores();
RTC_DCHECK_GE(num_cores, 1);
static const uint32_t kMinCoresLeft = 4;
static const uint32_t kMaxComparisonThreads = 8;
if (num_cores <= kMinCoresLeft) {
num_cores = 1;
} else {
num_cores -= kMinCoresLeft;
num_cores = std::min(num_cores, kMaxComparisonThreads);
}
for (uint32_t i = 0; i < num_cores; ++i) {
rtc::PlatformThread* thread =
new rtc::PlatformThread(&FrameComparisonThread, this, "Analyzer");
thread->Start();
comparison_thread_pool_.push_back(thread);
}
if (!rtp_dump_name.empty()) {
fprintf(stdout, "Writing rtp dump to %s\n", rtp_dump_name.c_str());
rtp_file_writer_.reset(test::RtpFileWriter::Create(
test::RtpFileWriter::kRtpDump, rtp_dump_name));
}
}
VideoAnalyzer::~VideoAnalyzer() {
{
MutexLock lock(&comparison_lock_);
quit_ = true;
}
for (rtc::PlatformThread* thread : comparison_thread_pool_) {
thread->Stop();
delete thread;
}
}
void VideoAnalyzer::SetReceiver(PacketReceiver* receiver) {
receiver_ = receiver;
}
void VideoAnalyzer::SetSource(
rtc::VideoSourceInterface<VideoFrame>* video_source,
bool respect_sink_wants) {
if (respect_sink_wants)
captured_frame_forwarder_.SetSource(video_source);
rtc::VideoSinkWants wants;
video_source->AddOrUpdateSink(InputInterface(), wants);
}
void VideoAnalyzer::SetCall(Call* call) {
MutexLock lock(&lock_);
RTC_DCHECK(!call_);
call_ = call;
}
void VideoAnalyzer::SetSendStream(VideoSendStream* stream) {
MutexLock lock(&lock_);
RTC_DCHECK(!send_stream_);
send_stream_ = stream;
}
void VideoAnalyzer::SetReceiveStream(VideoReceiveStream* stream) {
MutexLock lock(&lock_);
RTC_DCHECK(!receive_stream_);
receive_stream_ = stream;
}
void VideoAnalyzer::SetAudioReceiveStream(AudioReceiveStream* recv_stream) {
MutexLock lock(&lock_);
RTC_CHECK(!audio_receive_stream_);
audio_receive_stream_ = recv_stream;
}
rtc::VideoSinkInterface<VideoFrame>* VideoAnalyzer::InputInterface() {
return &captured_frame_forwarder_;
}
rtc::VideoSourceInterface<VideoFrame>* VideoAnalyzer::OutputInterface() {
return &captured_frame_forwarder_;
}
PacketReceiver::DeliveryStatus VideoAnalyzer::DeliverPacket(
MediaType media_type,
rtc::CopyOnWriteBuffer packet,
int64_t packet_time_us) {
// Ignore timestamps of RTCP packets. They're not synchronized with
// RTP packet timestamps and so they would confuse wrap_handler_.
if (RtpHeaderParser::IsRtcp(packet.cdata(), packet.size())) {
return receiver_->DeliverPacket(media_type, std::move(packet),
packet_time_us);
}
if (rtp_file_writer_) {
test::RtpPacket p;
memcpy(p.data, packet.cdata(), packet.size());
p.length = packet.size();
p.original_length = packet.size();
p.time_ms = clock_->TimeInMilliseconds() - start_ms_;
rtp_file_writer_->WritePacket(&p);
}
RtpPacket rtp_packet;
rtp_packet.Parse(packet);
if (!IsFlexfec(rtp_packet.PayloadType()) &&
(rtp_packet.Ssrc() == ssrc_to_analyze_ ||
rtp_packet.Ssrc() == rtx_ssrc_to_analyze_)) {
// Ignore FlexFEC timestamps, to avoid collisions with media timestamps.
// (FlexFEC and media are sent on different SSRCs, which have different
// timestamps spaces.)
// Also ignore packets from wrong SSRC, but include retransmits.
MutexLock lock(&lock_);
int64_t timestamp =
wrap_handler_.Unwrap(rtp_packet.Timestamp() - rtp_timestamp_delta_);
recv_times_[timestamp] = clock_->CurrentNtpInMilliseconds();
}
return receiver_->DeliverPacket(media_type, std::move(packet),
packet_time_us);
}
void VideoAnalyzer::PreEncodeOnFrame(const VideoFrame& video_frame) {
MutexLock lock(&lock_);
if (!first_encoded_timestamp_) {
while (frames_.front().timestamp() != video_frame.timestamp()) {
++dropped_frames_before_first_encode_;
frames_.pop_front();
RTC_CHECK(!frames_.empty());
}
first_encoded_timestamp_ = video_frame.timestamp();
}
}
void VideoAnalyzer::PostEncodeOnFrame(size_t stream_id, uint32_t timestamp) {
MutexLock lock(&lock_);
if (!first_sent_timestamp_ && stream_id == selected_stream_) {
first_sent_timestamp_ = timestamp;
}
}
bool VideoAnalyzer::SendRtp(const uint8_t* packet,
size_t length,
const PacketOptions& options) {
RtpPacket rtp_packet;
rtp_packet.Parse(packet, length);
int64_t current_time = clock_->CurrentNtpInMilliseconds();
bool result = transport_->SendRtp(packet, length, options);
{
MutexLock lock(&lock_);
if (rtp_timestamp_delta_ == 0 && rtp_packet.Ssrc() == ssrc_to_analyze_) {
RTC_CHECK(static_cast<bool>(first_sent_timestamp_));
rtp_timestamp_delta_ = rtp_packet.Timestamp() - *first_sent_timestamp_;
}
if (!IsFlexfec(rtp_packet.PayloadType()) &&
rtp_packet.Ssrc() == ssrc_to_analyze_) {
// Ignore FlexFEC timestamps, to avoid collisions with media timestamps.
// (FlexFEC and media are sent on different SSRCs, which have different
// timestamps spaces.)
// Also ignore packets from wrong SSRC and retransmits.
int64_t timestamp =
wrap_handler_.Unwrap(rtp_packet.Timestamp() - rtp_timestamp_delta_);
send_times_[timestamp] = current_time;
if (IsInSelectedSpatialAndTemporalLayer(rtp_packet)) {
encoded_frame_sizes_[timestamp] += rtp_packet.payload_size();
}
}
}
return result;
}
bool VideoAnalyzer::SendRtcp(const uint8_t* packet, size_t length) {
return transport_->SendRtcp(packet, length);
}
void VideoAnalyzer::OnFrame(const VideoFrame& video_frame) {
int64_t render_time_ms = clock_->CurrentNtpInMilliseconds();
MutexLock lock(&lock_);
StartExcludingCpuThreadTime();
int64_t send_timestamp =
wrap_handler_.Unwrap(video_frame.timestamp() - rtp_timestamp_delta_);
while (wrap_handler_.Unwrap(frames_.front().timestamp()) < send_timestamp) {
if (!last_rendered_frame_) {
// No previous frame rendered, this one was dropped after sending but
// before rendering.
++dropped_frames_before_rendering_;
} else {
AddFrameComparison(frames_.front(), *last_rendered_frame_, true,
render_time_ms);
}
frames_.pop_front();
RTC_DCHECK(!frames_.empty());
}
VideoFrame reference_frame = frames_.front();
frames_.pop_front();
int64_t reference_timestamp =
wrap_handler_.Unwrap(reference_frame.timestamp());
if (send_timestamp == reference_timestamp - 1) {
// TODO(ivica): Make this work for > 2 streams.
// Look at RTPSender::BuildRTPHeader.
++send_timestamp;
}
ASSERT_EQ(reference_timestamp, send_timestamp);
AddFrameComparison(reference_frame, video_frame, false, render_time_ms);
last_rendered_frame_ = video_frame;
StopExcludingCpuThreadTime();
}
void VideoAnalyzer::Wait() {
// Frame comparisons can be very expensive. Wait for test to be done, but
// at time-out check if frames_processed is going up. If so, give it more
// time, otherwise fail. Hopefully this will reduce test flakiness.
RepeatingTaskHandle stats_polling_task = RepeatingTaskHandle::DelayedStart(
task_queue_, kSendStatsPollingInterval, [this] {
PollStats();
return kSendStatsPollingInterval;
});
int last_frames_processed = -1;
int last_frames_captured = -1;
int iteration = 0;
while (!done_.Wait(kProbingIntervalMs)) {
int frames_processed;
int frames_captured;
{
MutexLock lock(&comparison_lock_);
frames_processed = frames_processed_;
frames_captured = captured_frames_;
}
// Print some output so test infrastructure won't think we've crashed.
const char* kKeepAliveMessages[3] = {
"Uh, I'm-I'm not quite dead, sir.",
"Uh, I-I think uh, I could pull through, sir.",
"Actually, I think I'm all right to come with you--"};
if (++iteration % kKeepAliveIntervalIterations == 0) {
printf("- %s\n", kKeepAliveMessages[iteration % 3]);
}
if (last_frames_processed == -1) {
last_frames_processed = frames_processed;
last_frames_captured = frames_captured;
continue;
}
if (frames_processed == last_frames_processed &&
last_frames_captured == frames_captured &&
clock_->CurrentTime() > test_end_) {
done_.Set();
break;
}
last_frames_processed = frames_processed;
last_frames_captured = frames_captured;
}
if (iteration > 0)
printf("- Farewell, sweet Concorde!\n");
SendTask(RTC_FROM_HERE, task_queue_, [&] { stats_polling_task.Stop(); });
PrintResults();
if (graph_data_output_file_)
PrintSamplesToFile();
}
void VideoAnalyzer::StartMeasuringCpuProcessTime() {
MutexLock lock(&cpu_measurement_lock_);
cpu_time_ -= rtc::GetProcessCpuTimeNanos();
wallclock_time_ -= rtc::SystemTimeNanos();
}
void VideoAnalyzer::StopMeasuringCpuProcessTime() {
MutexLock lock(&cpu_measurement_lock_);
cpu_time_ += rtc::GetProcessCpuTimeNanos();
wallclock_time_ += rtc::SystemTimeNanos();
}
void VideoAnalyzer::StartExcludingCpuThreadTime() {
MutexLock lock(&cpu_measurement_lock_);
cpu_time_ += rtc::GetThreadCpuTimeNanos();
}
void VideoAnalyzer::StopExcludingCpuThreadTime() {
MutexLock lock(&cpu_measurement_lock_);
cpu_time_ -= rtc::GetThreadCpuTimeNanos();
}
double VideoAnalyzer::GetCpuUsagePercent() {
MutexLock lock(&cpu_measurement_lock_);
return static_cast<double>(cpu_time_) / wallclock_time_ * 100.0;
}
bool VideoAnalyzer::IsInSelectedSpatialAndTemporalLayer(
const RtpPacket& rtp_packet) {
if (rtp_packet.PayloadType() == test::CallTest::kPayloadTypeVP8) {
auto parsed_payload = vp8_depacketizer_->Parse(rtp_packet.PayloadBuffer());
RTC_DCHECK(parsed_payload);
const auto& vp8_header = absl::get<RTPVideoHeaderVP8>(
parsed_payload->video_header.video_type_header);
int temporal_idx = vp8_header.temporalIdx;
return selected_tl_ < 0 || temporal_idx == kNoTemporalIdx ||
temporal_idx <= selected_tl_;
}
if (rtp_packet.PayloadType() == test::CallTest::kPayloadTypeVP9) {
auto parsed_payload = vp9_depacketizer_->Parse(rtp_packet.PayloadBuffer());
RTC_DCHECK(parsed_payload);
const auto& vp9_header = absl::get<RTPVideoHeaderVP9>(
parsed_payload->video_header.video_type_header);
int temporal_idx = vp9_header.temporal_idx;
int spatial_idx = vp9_header.spatial_idx;
return (selected_tl_ < 0 || temporal_idx == kNoTemporalIdx ||
temporal_idx <= selected_tl_) &&
(selected_sl_ < 0 || spatial_idx == kNoSpatialIdx ||
spatial_idx <= selected_sl_);
}
return true;
}
void VideoAnalyzer::PollStats() {
// Do not grab |comparison_lock_|, before |GetStats()| completes.
// Otherwise a deadlock may occur:
// 1) |comparison_lock_| is acquired after |lock_|
// 2) |lock_| is acquired after internal pacer lock in SendRtp()
// 3) internal pacer lock is acquired by GetStats().
Call::Stats call_stats = call_->GetStats();
MutexLock lock(&comparison_lock_);
send_bandwidth_bps_.AddSample(call_stats.send_bandwidth_bps);
VideoSendStream::Stats send_stats = send_stream_->GetStats();
// It's not certain that we yet have estimates for any of these stats.
// Check that they are positive before mixing them in.
if (send_stats.encode_frame_rate > 0)
encode_frame_rate_.AddSample(send_stats.encode_frame_rate);
if (send_stats.avg_encode_time_ms > 0)
encode_time_ms_.AddSample(send_stats.avg_encode_time_ms);
if (send_stats.encode_usage_percent > 0)
encode_usage_percent_.AddSample(send_stats.encode_usage_percent);
if (send_stats.media_bitrate_bps > 0)
media_bitrate_bps_.AddSample(send_stats.media_bitrate_bps);
size_t fec_bytes = 0;
for (const auto& kv : send_stats.substreams) {
fec_bytes += kv.second.rtp_stats.fec.payload_bytes +
kv.second.rtp_stats.fec.padding_bytes;
}
fec_bitrate_bps_.AddSample((fec_bytes - last_fec_bytes_) * 8);
last_fec_bytes_ = fec_bytes;
if (receive_stream_ != nullptr) {
VideoReceiveStream::Stats receive_stats = receive_stream_->GetStats();
// |total_decode_time_ms| gives a good estimate of the mean decode time,
// |decode_ms| is used to keep track of the standard deviation.
if (receive_stats.frames_decoded > 0)
mean_decode_time_ms_ =
static_cast<double>(receive_stats.total_decode_time_ms) /
receive_stats.frames_decoded;
if (receive_stats.decode_ms > 0)
decode_time_ms_.AddSample(receive_stats.decode_ms);
if (receive_stats.max_decode_ms > 0)
decode_time_max_ms_.AddSample(receive_stats.max_decode_ms);
if (receive_stats.width > 0 && receive_stats.height > 0) {
pixels_.AddSample(receive_stats.width * receive_stats.height);
}
// |frames_decoded| and |frames_rendered| are used because they are more
// accurate than |decode_frame_rate| and |render_frame_rate|.
// The latter two are calculated on a momentary basis.
const double total_frames_duration_sec_double =
static_cast<double>(receive_stats.total_frames_duration_ms) / 1000.0;
if (total_frames_duration_sec_double > 0) {
decode_frame_rate_ = static_cast<double>(receive_stats.frames_decoded) /
total_frames_duration_sec_double;
render_frame_rate_ = static_cast<double>(receive_stats.frames_rendered) /
total_frames_duration_sec_double;
}
// Freeze metrics.
freeze_count_ = receive_stats.freeze_count;
total_freezes_duration_ms_ = receive_stats.total_freezes_duration_ms;
total_frames_duration_ms_ = receive_stats.total_frames_duration_ms;
sum_squared_frame_durations_ = receive_stats.sum_squared_frame_durations;
}
if (audio_receive_stream_ != nullptr) {
AudioReceiveStream::Stats receive_stats =
audio_receive_stream_->GetStats(/*get_and_clear_legacy_stats=*/true);
audio_expand_rate_.AddSample(receive_stats.expand_rate);
audio_accelerate_rate_.AddSample(receive_stats.accelerate_rate);
audio_jitter_buffer_ms_.AddSample(receive_stats.jitter_buffer_ms);
}
memory_usage_.AddSample(rtc::GetProcessResidentSizeBytes());
}
void VideoAnalyzer::FrameComparisonThread(void* obj) {
VideoAnalyzer* analyzer = static_cast<VideoAnalyzer*>(obj);
while (analyzer->CompareFrames()) {
}
}
bool VideoAnalyzer::CompareFrames() {
if (AllFramesRecorded())
return false;
FrameComparison comparison;
if (!PopComparison(&comparison)) {
// Wait until new comparison task is available, or test is done.
// If done, wake up remaining threads waiting.
comparison_available_event_.Wait(1000);
if (AllFramesRecorded()) {
comparison_available_event_.Set();
return false;
}
return true; // Try again.
}
StartExcludingCpuThreadTime();
PerformFrameComparison(comparison);
StopExcludingCpuThreadTime();
if (FrameProcessed()) {
done_.Set();
comparison_available_event_.Set();
return false;
}
return true;
}
bool VideoAnalyzer::PopComparison(VideoAnalyzer::FrameComparison* comparison) {
MutexLock lock(&comparison_lock_);
// If AllFramesRecorded() is true, it means we have already popped
// frames_to_process_ frames from comparisons_, so there is no more work
// for this thread to be done. frames_processed_ might still be lower if
// all comparisons are not done, but those frames are currently being
// worked on by other threads.
if (comparisons_.empty() || AllFramesRecordedLocked())
return false;
*comparison = comparisons_.front();
comparisons_.pop_front();
FrameRecorded();
return true;
}
void VideoAnalyzer::FrameRecorded() {
++frames_recorded_;
}
bool VideoAnalyzer::AllFramesRecorded() {
MutexLock lock(&comparison_lock_);
return AllFramesRecordedLocked();
}
bool VideoAnalyzer::AllFramesRecordedLocked() {
RTC_DCHECK(frames_recorded_ <= frames_to_process_);
return frames_recorded_ == frames_to_process_ ||
(clock_->CurrentTime() > test_end_ && comparisons_.empty()) || quit_;
}
bool VideoAnalyzer::FrameProcessed() {
MutexLock lock(&comparison_lock_);
++frames_processed_;
assert(frames_processed_ <= frames_to_process_);
return frames_processed_ == frames_to_process_ ||
(clock_->CurrentTime() > test_end_ && comparisons_.empty());
}
void VideoAnalyzer::PrintResults() {
using ::webrtc::test::ImproveDirection;
StopMeasuringCpuProcessTime();
int dropped_frames_diff;
{
MutexLock lock(&lock_);
dropped_frames_diff = dropped_frames_before_first_encode_ +
dropped_frames_before_rendering_ + frames_.size();
}
MutexLock lock(&comparison_lock_);
PrintResult("psnr", psnr_, "dB", ImproveDirection::kBiggerIsBetter);
PrintResult("ssim", ssim_, "unitless", ImproveDirection::kBiggerIsBetter);
PrintResult("sender_time", sender_time_, "ms",
ImproveDirection::kSmallerIsBetter);
PrintResult("receiver_time", receiver_time_, "ms",
ImproveDirection::kSmallerIsBetter);
PrintResult("network_time", network_time_, "ms",
ImproveDirection::kSmallerIsBetter);
PrintResult("total_delay_incl_network", end_to_end_, "ms",
ImproveDirection::kSmallerIsBetter);
PrintResult("time_between_rendered_frames", rendered_delta_, "ms",
ImproveDirection::kSmallerIsBetter);
PrintResult("encode_frame_rate", encode_frame_rate_, "fps",
ImproveDirection::kBiggerIsBetter);
PrintResult("encode_time", encode_time_ms_, "ms",
ImproveDirection::kSmallerIsBetter);
PrintResult("media_bitrate", media_bitrate_bps_, "bps",
ImproveDirection::kNone);
PrintResult("fec_bitrate", fec_bitrate_bps_, "bps", ImproveDirection::kNone);
PrintResult("send_bandwidth", send_bandwidth_bps_, "bps",
ImproveDirection::kNone);
PrintResult("pixels_per_frame", pixels_, "count",
ImproveDirection::kBiggerIsBetter);
test::PrintResult("decode_frame_rate", "", test_label_.c_str(),
decode_frame_rate_, "fps", false,
ImproveDirection::kBiggerIsBetter);
test::PrintResult("render_frame_rate", "", test_label_.c_str(),
render_frame_rate_, "fps", false,
ImproveDirection::kBiggerIsBetter);
// Record the time from the last freeze until the last rendered frame to
// ensure we cover the full timespan of the session. Otherwise the metric
// would penalize an early freeze followed by no freezes until the end.
time_between_freezes_.AddSample(last_render_time_ - last_unfreeze_time_ms_);
// Freeze metrics.
PrintResult("time_between_freezes", time_between_freezes_, "ms",
ImproveDirection::kBiggerIsBetter);
const double freeze_count_double = static_cast<double>(freeze_count_);
const double total_freezes_duration_ms_double =
static_cast<double>(total_freezes_duration_ms_);
const double total_frames_duration_ms_double =
static_cast<double>(total_frames_duration_ms_);
if (total_frames_duration_ms_double > 0) {
test::PrintResult(
"freeze_duration_ratio", "", test_label_.c_str(),
total_freezes_duration_ms_double / total_frames_duration_ms_double,
"unitless", false, ImproveDirection::kSmallerIsBetter);
RTC_DCHECK_LE(total_freezes_duration_ms_double,
total_frames_duration_ms_double);
constexpr double ms_per_minute = 60 * 1000;
const double total_frames_duration_min =
total_frames_duration_ms_double / ms_per_minute;
if (total_frames_duration_min > 0) {
test::PrintResult("freeze_count_per_minute", "", test_label_.c_str(),
freeze_count_double / total_frames_duration_min,
"unitless", false, ImproveDirection::kSmallerIsBetter);
}
}
test::PrintResult("freeze_duration_average", "", test_label_.c_str(),
freeze_count_double > 0
? total_freezes_duration_ms_double / freeze_count_double
: 0,
"ms", false, ImproveDirection::kSmallerIsBetter);
if (1000 * sum_squared_frame_durations_ > 0) {
test::PrintResult(
"harmonic_frame_rate", "", test_label_.c_str(),
total_frames_duration_ms_double / (1000 * sum_squared_frame_durations_),
"fps", false, ImproveDirection::kBiggerIsBetter);
}
if (worst_frame_) {
test::PrintResult("min_psnr", "", test_label_.c_str(), worst_frame_->psnr,
"dB", false, ImproveDirection::kBiggerIsBetter);
}
if (receive_stream_ != nullptr) {
PrintResultWithExternalMean("decode_time", mean_decode_time_ms_,
decode_time_ms_, "ms",
ImproveDirection::kSmallerIsBetter);
}
dropped_frames_ += dropped_frames_diff;
test::PrintResult("dropped_frames", "", test_label_.c_str(), dropped_frames_,
"count", false, ImproveDirection::kSmallerIsBetter);
test::PrintResult("cpu_usage", "", test_label_.c_str(), GetCpuUsagePercent(),
"%", false, ImproveDirection::kSmallerIsBetter);
#if defined(WEBRTC_WIN)
// On Linux and Mac in Resident Set some unused pages may be counted.
// Therefore this metric will depend on order in which tests are run and
// will be flaky.
PrintResult("memory_usage", memory_usage_, "sizeInBytes",
ImproveDirection::kSmallerIsBetter);
#endif
// Saving only the worst frame for manual analysis. Intention here is to
// only detect video corruptions and not to track picture quality. Thus,
// jpeg is used here.
if (absl::GetFlag(FLAGS_save_worst_frame) && worst_frame_) {
std::string output_dir;
test::GetTestArtifactsDir(&output_dir);
std::string output_path =
test::JoinFilename(output_dir, test_label_ + ".jpg");
RTC_LOG(LS_INFO) << "Saving worst frame to " << output_path;
test::JpegFrameWriter frame_writer(output_path);
RTC_CHECK(
frame_writer.WriteFrame(worst_frame_->frame, 100 /*best quality*/));
}
if (audio_receive_stream_ != nullptr) {
PrintResult("audio_expand_rate", audio_expand_rate_, "unitless",
ImproveDirection::kSmallerIsBetter);
PrintResult("audio_accelerate_rate", audio_accelerate_rate_, "unitless",
ImproveDirection::kSmallerIsBetter);
PrintResult("audio_jitter_buffer", audio_jitter_buffer_ms_, "ms",
ImproveDirection::kNone);
}
// Disable quality check for quick test, as quality checks may fail
// because too few samples were collected.
if (!is_quick_test_enabled_) {
EXPECT_GT(*psnr_.GetMean(), avg_psnr_threshold_);
EXPECT_GT(*ssim_.GetMean(), avg_ssim_threshold_);
}
}
void VideoAnalyzer::PerformFrameComparison(
const VideoAnalyzer::FrameComparison& comparison) {
// Perform expensive psnr and ssim calculations while not holding lock.
double psnr = -1.0;
double ssim = -1.0;
if (comparison.reference && !comparison.dropped) {
psnr = I420PSNR(&*comparison.reference, &*comparison.render);
ssim = I420SSIM(&*comparison.reference, &*comparison.render);
}
MutexLock lock(&comparison_lock_);
if (psnr >= 0.0 && (!worst_frame_ || worst_frame_->psnr > psnr)) {
worst_frame_.emplace(FrameWithPsnr{psnr, *comparison.render});
}
if (graph_data_output_file_) {
samples_.push_back(Sample(comparison.dropped, comparison.input_time_ms,
comparison.send_time_ms, comparison.recv_time_ms,
comparison.render_time_ms,
comparison.encoded_frame_size, psnr, ssim));
}
if (psnr >= 0.0)
psnr_.AddSample(psnr);
if (ssim >= 0.0)
ssim_.AddSample(ssim);
if (comparison.dropped) {
++dropped_frames_;
return;
}
if (last_unfreeze_time_ms_ == 0)
last_unfreeze_time_ms_ = comparison.render_time_ms;
if (last_render_time_ != 0) {
const int64_t render_delta_ms =
comparison.render_time_ms - last_render_time_;
rendered_delta_.AddSample(render_delta_ms);
if (last_render_delta_ms_ != 0 &&
render_delta_ms - last_render_delta_ms_ > 150) {
time_between_freezes_.AddSample(last_render_time_ -
last_unfreeze_time_ms_);
last_unfreeze_time_ms_ = comparison.render_time_ms;
}
last_render_delta_ms_ = render_delta_ms;
}
last_render_time_ = comparison.render_time_ms;
sender_time_.AddSample(comparison.send_time_ms - comparison.input_time_ms);
if (comparison.recv_time_ms > 0) {
// If recv_time_ms == 0, this frame consisted of a packets which were all
// lost in the transport. Since we were able to render the frame, however,
// the dropped packets were recovered by FlexFEC. The FlexFEC recovery
// happens internally in Call, and we can therefore here not know which
// FEC packets that protected the lost media packets. Consequently, we
// were not able to record a meaningful recv_time_ms. We therefore skip
// this sample.
//
// The reasoning above does not hold for ULPFEC and RTX, as for those
// strategies the timestamp of the received packets is set to the
// timestamp of the protected/retransmitted media packet. I.e., then
// recv_time_ms != 0, even though the media packets were lost.
receiver_time_.AddSample(comparison.render_time_ms -
comparison.recv_time_ms);
network_time_.AddSample(comparison.recv_time_ms - comparison.send_time_ms);
}
end_to_end_.AddSample(comparison.render_time_ms - comparison.input_time_ms);
encoded_frame_size_.AddSample(comparison.encoded_frame_size);
}
void VideoAnalyzer::PrintResult(
const char* result_type,
Statistics stats,
const char* unit,
webrtc::test::ImproveDirection improve_direction) {
test::PrintResultMeanAndError(
result_type, "", test_label_.c_str(), stats.GetMean().value_or(0),
stats.GetStandardDeviation().value_or(0), unit, false, improve_direction);
}
void VideoAnalyzer::PrintResultWithExternalMean(
const char* result_type,
double mean,
Statistics stats,
const char* unit,
webrtc::test::ImproveDirection improve_direction) {
// If the true mean is different than the sample mean, the sample variance is
// too low. The sample variance given a known mean is obtained by adding the
// squared error between the true mean and the sample mean.
double compensated_variance =
stats.Size() > 0
? *stats.GetVariance() + pow(mean - *stats.GetMean(), 2.0)
: 0.0;
test::PrintResultMeanAndError(result_type, "", test_label_.c_str(), mean,
std::sqrt(compensated_variance), unit, false,
improve_direction);
}
void VideoAnalyzer::PrintSamplesToFile() {
FILE* out = graph_data_output_file_;
MutexLock lock(&comparison_lock_);
absl::c_sort(samples_, [](const Sample& A, const Sample& B) -> bool {
return A.input_time_ms < B.input_time_ms;
});
fprintf(out, "%s\n", graph_title_.c_str());
fprintf(out, "%" RTC_PRIuS "\n", samples_.size());
fprintf(out,
"dropped "
"input_time_ms "
"send_time_ms "
"recv_time_ms "
"render_time_ms "
"encoded_frame_size "
"psnr "
"ssim "
"encode_time_ms\n");
for (const Sample& sample : samples_) {
fprintf(out,
"%d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %" RTC_PRIuS
" %lf %lf\n",
sample.dropped, sample.input_time_ms, sample.send_time_ms,
sample.recv_time_ms, sample.render_time_ms,
sample.encoded_frame_size, sample.psnr, sample.ssim);
}
}
void VideoAnalyzer::AddCapturedFrameForComparison(
const VideoFrame& video_frame) {
bool must_capture = false;
{
MutexLock lock(&comparison_lock_);
must_capture = captured_frames_ < frames_to_process_;
if (must_capture) {
++captured_frames_;
}
}
if (must_capture) {
MutexLock lock(&lock_);
frames_.push_back(video_frame);
}
}
void VideoAnalyzer::AddFrameComparison(const VideoFrame& reference,
const VideoFrame& render,
bool dropped,
int64_t render_time_ms) {
int64_t reference_timestamp = wrap_handler_.Unwrap(reference.timestamp());
int64_t send_time_ms = send_times_[reference_timestamp];
send_times_.erase(reference_timestamp);
int64_t recv_time_ms = recv_times_[reference_timestamp];
recv_times_.erase(reference_timestamp);
// TODO(ivica): Make this work for > 2 streams.
auto it = encoded_frame_sizes_.find(reference_timestamp);
if (it == encoded_frame_sizes_.end())
it = encoded_frame_sizes_.find(reference_timestamp - 1);
size_t encoded_size = it == encoded_frame_sizes_.end() ? 0 : it->second;
if (it != encoded_frame_sizes_.end())
encoded_frame_sizes_.erase(it);
MutexLock lock(&comparison_lock_);
if (comparisons_.size() < kMaxComparisons) {
comparisons_.push_back(FrameComparison(
reference, render, dropped, reference.ntp_time_ms(), send_time_ms,
recv_time_ms, render_time_ms, encoded_size));
} else {
comparisons_.push_back(FrameComparison(dropped, reference.ntp_time_ms(),
send_time_ms, recv_time_ms,
render_time_ms, encoded_size));
}
comparison_available_event_.Set();
}
VideoAnalyzer::FrameComparison::FrameComparison()
: dropped(false),
input_time_ms(0),
send_time_ms(0),
recv_time_ms(0),
render_time_ms(0),
encoded_frame_size(0) {}
VideoAnalyzer::FrameComparison::FrameComparison(const VideoFrame& reference,
const VideoFrame& render,
bool dropped,
int64_t input_time_ms,
int64_t send_time_ms,
int64_t recv_time_ms,
int64_t render_time_ms,
size_t encoded_frame_size)
: reference(reference),
render(render),
dropped(dropped),
input_time_ms(input_time_ms),
send_time_ms(send_time_ms),
recv_time_ms(recv_time_ms),
render_time_ms(render_time_ms),
encoded_frame_size(encoded_frame_size) {}
VideoAnalyzer::FrameComparison::FrameComparison(bool dropped,
int64_t input_time_ms,
int64_t send_time_ms,
int64_t recv_time_ms,
int64_t render_time_ms,
size_t encoded_frame_size)
: dropped(dropped),
input_time_ms(input_time_ms),
send_time_ms(send_time_ms),
recv_time_ms(recv_time_ms),
render_time_ms(render_time_ms),
encoded_frame_size(encoded_frame_size) {}
VideoAnalyzer::Sample::Sample(int dropped,
int64_t input_time_ms,
int64_t send_time_ms,
int64_t recv_time_ms,
int64_t render_time_ms,
size_t encoded_frame_size,
double psnr,
double ssim)
: dropped(dropped),
input_time_ms(input_time_ms),
send_time_ms(send_time_ms),
recv_time_ms(recv_time_ms),
render_time_ms(render_time_ms),
encoded_frame_size(encoded_frame_size),
psnr(psnr),
ssim(ssim) {}
VideoAnalyzer::CapturedFrameForwarder::CapturedFrameForwarder(
VideoAnalyzer* analyzer,
Clock* clock,
int frames_to_capture,
TimeDelta test_duration)
: analyzer_(analyzer),
send_stream_input_(nullptr),
video_source_(nullptr),
clock_(clock),
captured_frames_(0),
frames_to_capture_(frames_to_capture),
test_end_(clock->CurrentTime() + test_duration) {}
void VideoAnalyzer::CapturedFrameForwarder::SetSource(
VideoSourceInterface<VideoFrame>* video_source) {
video_source_ = video_source;
}
void VideoAnalyzer::CapturedFrameForwarder::OnFrame(
const VideoFrame& video_frame) {
VideoFrame copy = video_frame;
// Frames from the capturer does not have a rtp timestamp.
// Create one so it can be used for comparison.
RTC_DCHECK_EQ(0, video_frame.timestamp());
if (video_frame.ntp_time_ms() == 0)
copy.set_ntp_time_ms(clock_->CurrentNtpInMilliseconds());
copy.set_timestamp(copy.ntp_time_ms() * 90);
analyzer_->AddCapturedFrameForComparison(copy);
MutexLock lock(&lock_);
++captured_frames_;
if (send_stream_input_ && clock_->CurrentTime() <= test_end_ &&
captured_frames_ <= frames_to_capture_) {
send_stream_input_->OnFrame(copy);
}
}
void VideoAnalyzer::CapturedFrameForwarder::AddOrUpdateSink(
rtc::VideoSinkInterface<VideoFrame>* sink,
const rtc::VideoSinkWants& wants) {
{
MutexLock lock(&lock_);
RTC_DCHECK(!send_stream_input_ || send_stream_input_ == sink);
send_stream_input_ = sink;
}
if (video_source_) {
video_source_->AddOrUpdateSink(this, wants);
}
}
void VideoAnalyzer::CapturedFrameForwarder::RemoveSink(
rtc::VideoSinkInterface<VideoFrame>* sink) {
MutexLock lock(&lock_);
RTC_DCHECK(sink == send_stream_input_);
send_stream_input_ = nullptr;
}
} // namespace webrtc