blob: 917aa951ee442795f11eeab5426ca88f663ab87d [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/adaptive_fir_filter.h"
// Defines WEBRTC_ARCH_X86_FAMILY, used below.
#include "rtc_base/system/arch.h"
#if defined(WEBRTC_HAS_NEON)
#include <arm_neon.h>
#endif
#if defined(WEBRTC_ARCH_X86_FAMILY)
#include <emmintrin.h>
#endif
#include <math.h>
#include <algorithm>
#include <functional>
#include "modules/audio_processing/aec3/fft_data.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace aec3 {
// Computes and stores the frequency response of the filter.
void ComputeFrequencyResponse(
size_t num_partitions,
const std::vector<std::vector<FftData>>& H,
std::vector<std::array<float, kFftLengthBy2Plus1>>* H2) {
for (auto& H2_ch : *H2) {
H2_ch.fill(0.f);
}
const size_t num_render_channels = H[0].size();
RTC_DCHECK_EQ(H.size(), H2->capacity());
for (size_t p = 0; p < num_partitions; ++p) {
RTC_DCHECK_EQ(kFftLengthBy2Plus1, (*H2)[p].size());
for (size_t ch = 0; ch < num_render_channels; ++ch) {
for (size_t j = 0; j < kFftLengthBy2Plus1; ++j) {
float tmp =
H[p][ch].re[j] * H[p][ch].re[j] + H[p][ch].im[j] * H[p][ch].im[j];
(*H2)[p][j] = std::max((*H2)[p][j], tmp);
}
}
}
}
#if defined(WEBRTC_HAS_NEON)
// Computes and stores the frequency response of the filter.
void ComputeFrequencyResponse_Neon(
size_t num_partitions,
const std::vector<std::vector<FftData>>& H,
std::vector<std::array<float, kFftLengthBy2Plus1>>* H2) {
for (auto& H2_ch : *H2) {
H2_ch.fill(0.f);
}
const size_t num_render_channels = H[0].size();
RTC_DCHECK_EQ(H.size(), H2->capacity());
for (size_t p = 0; p < num_partitions; ++p) {
RTC_DCHECK_EQ(kFftLengthBy2Plus1, (*H2)[p].size());
auto& H2_p = (*H2)[p];
for (size_t ch = 0; ch < num_render_channels; ++ch) {
const FftData& H_p_ch = H[p][ch];
for (size_t j = 0; j < kFftLengthBy2; j += 4) {
const float32x4_t re = vld1q_f32(&H_p_ch.re[j]);
const float32x4_t im = vld1q_f32(&H_p_ch.im[j]);
float32x4_t H2_new = vmulq_f32(re, re);
H2_new = vmlaq_f32(H2_new, im, im);
float32x4_t H2_p_j = vld1q_f32(&H2_p[j]);
H2_p_j = vmaxq_f32(H2_p_j, H2_new);
vst1q_f32(&H2_p[j], H2_p_j);
}
float H2_new = H_p_ch.re[kFftLengthBy2] * H_p_ch.re[kFftLengthBy2] +
H_p_ch.im[kFftLengthBy2] * H_p_ch.im[kFftLengthBy2];
H2_p[kFftLengthBy2] = std::max(H2_p[kFftLengthBy2], H2_new);
}
}
}
#endif
#if defined(WEBRTC_ARCH_X86_FAMILY)
// Computes and stores the frequency response of the filter.
void ComputeFrequencyResponse_Sse2(
size_t num_partitions,
const std::vector<std::vector<FftData>>& H,
std::vector<std::array<float, kFftLengthBy2Plus1>>* H2) {
for (auto& H2_ch : *H2) {
H2_ch.fill(0.f);
}
const size_t num_render_channels = H[0].size();
RTC_DCHECK_EQ(H.size(), H2->capacity());
// constexpr __mmmask8 kMaxMask = static_cast<__mmmask8>(256u);
for (size_t p = 0; p < num_partitions; ++p) {
RTC_DCHECK_EQ(kFftLengthBy2Plus1, (*H2)[p].size());
auto& H2_p = (*H2)[p];
for (size_t ch = 0; ch < num_render_channels; ++ch) {
const FftData& H_p_ch = H[p][ch];
for (size_t j = 0; j < kFftLengthBy2; j += 4) {
const __m128 re = _mm_loadu_ps(&H_p_ch.re[j]);
const __m128 re2 = _mm_mul_ps(re, re);
const __m128 im = _mm_loadu_ps(&H_p_ch.im[j]);
const __m128 im2 = _mm_mul_ps(im, im);
const __m128 H2_new = _mm_add_ps(re2, im2);
__m128 H2_k_j = _mm_loadu_ps(&H2_p[j]);
H2_k_j = _mm_max_ps(H2_k_j, H2_new);
_mm_storeu_ps(&H2_p[j], H2_k_j);
}
float H2_new = H_p_ch.re[kFftLengthBy2] * H_p_ch.re[kFftLengthBy2] +
H_p_ch.im[kFftLengthBy2] * H_p_ch.im[kFftLengthBy2];
H2_p[kFftLengthBy2] = std::max(H2_p[kFftLengthBy2], H2_new);
}
}
}
#endif
// Adapts the filter partitions as H(t+1)=H(t)+G(t)*conj(X(t)).
void AdaptPartitions(const RenderBuffer& render_buffer,
const FftData& G,
size_t num_partitions,
std::vector<std::vector<FftData>>* H) {
rtc::ArrayView<const std::vector<FftData>> render_buffer_data =
render_buffer.GetFftBuffer();
size_t index = render_buffer.Position();
const size_t num_render_channels = render_buffer_data[index].size();
for (size_t p = 0; p < num_partitions; ++p) {
for (size_t ch = 0; ch < num_render_channels; ++ch) {
const FftData& X_p_ch = render_buffer_data[index][ch];
FftData& H_p_ch = (*H)[p][ch];
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
H_p_ch.re[k] += X_p_ch.re[k] * G.re[k] + X_p_ch.im[k] * G.im[k];
H_p_ch.im[k] += X_p_ch.re[k] * G.im[k] - X_p_ch.im[k] * G.re[k];
}
}
index = index < (render_buffer_data.size() - 1) ? index + 1 : 0;
}
}
#if defined(WEBRTC_HAS_NEON)
// Adapts the filter partitions. (Neon variant)
void AdaptPartitions_Neon(const RenderBuffer& render_buffer,
const FftData& G,
size_t num_partitions,
std::vector<std::vector<FftData>>* H) {
rtc::ArrayView<const std::vector<FftData>> render_buffer_data =
render_buffer.GetFftBuffer();
const size_t num_render_channels = render_buffer_data[0].size();
const size_t lim1 = std::min(
render_buffer_data.size() - render_buffer.Position(), num_partitions);
const size_t lim2 = num_partitions;
constexpr size_t kNumFourBinBands = kFftLengthBy2 / 4;
size_t X_partition = render_buffer.Position();
size_t limit = lim1;
size_t p = 0;
do {
for (; p < limit; ++p, ++X_partition) {
for (size_t ch = 0; ch < num_render_channels; ++ch) {
FftData& H_p_ch = (*H)[p][ch];
const FftData& X = render_buffer_data[X_partition][ch];
for (size_t k = 0, n = 0; n < kNumFourBinBands; ++n, k += 4) {
const float32x4_t G_re = vld1q_f32(&G.re[k]);
const float32x4_t G_im = vld1q_f32(&G.im[k]);
const float32x4_t X_re = vld1q_f32(&X.re[k]);
const float32x4_t X_im = vld1q_f32(&X.im[k]);
const float32x4_t H_re = vld1q_f32(&H_p_ch.re[k]);
const float32x4_t H_im = vld1q_f32(&H_p_ch.im[k]);
const float32x4_t a = vmulq_f32(X_re, G_re);
const float32x4_t e = vmlaq_f32(a, X_im, G_im);
const float32x4_t c = vmulq_f32(X_re, G_im);
const float32x4_t f = vmlsq_f32(c, X_im, G_re);
const float32x4_t g = vaddq_f32(H_re, e);
const float32x4_t h = vaddq_f32(H_im, f);
vst1q_f32(&H_p_ch.re[k], g);
vst1q_f32(&H_p_ch.im[k], h);
}
}
}
X_partition = 0;
limit = lim2;
} while (p < lim2);
X_partition = render_buffer.Position();
limit = lim1;
p = 0;
do {
for (; p < limit; ++p, ++X_partition) {
for (size_t ch = 0; ch < num_render_channels; ++ch) {
FftData& H_p_ch = (*H)[p][ch];
const FftData& X = render_buffer_data[X_partition][ch];
H_p_ch.re[kFftLengthBy2] += X.re[kFftLengthBy2] * G.re[kFftLengthBy2] +
X.im[kFftLengthBy2] * G.im[kFftLengthBy2];
H_p_ch.im[kFftLengthBy2] += X.re[kFftLengthBy2] * G.im[kFftLengthBy2] -
X.im[kFftLengthBy2] * G.re[kFftLengthBy2];
}
}
X_partition = 0;
limit = lim2;
} while (p < lim2);
}
#endif
#if defined(WEBRTC_ARCH_X86_FAMILY)
// Adapts the filter partitions. (SSE2 variant)
void AdaptPartitions_Sse2(const RenderBuffer& render_buffer,
const FftData& G,
size_t num_partitions,
std::vector<std::vector<FftData>>* H) {
rtc::ArrayView<const std::vector<FftData>> render_buffer_data =
render_buffer.GetFftBuffer();
const size_t num_render_channels = render_buffer_data[0].size();
const size_t lim1 = std::min(
render_buffer_data.size() - render_buffer.Position(), num_partitions);
const size_t lim2 = num_partitions;
constexpr size_t kNumFourBinBands = kFftLengthBy2 / 4;
size_t X_partition = render_buffer.Position();
size_t limit = lim1;
size_t p = 0;
do {
for (; p < limit; ++p, ++X_partition) {
for (size_t ch = 0; ch < num_render_channels; ++ch) {
FftData& H_p_ch = (*H)[p][ch];
const FftData& X = render_buffer_data[X_partition][ch];
for (size_t k = 0, n = 0; n < kNumFourBinBands; ++n, k += 4) {
const __m128 G_re = _mm_loadu_ps(&G.re[k]);
const __m128 G_im = _mm_loadu_ps(&G.im[k]);
const __m128 X_re = _mm_loadu_ps(&X.re[k]);
const __m128 X_im = _mm_loadu_ps(&X.im[k]);
const __m128 H_re = _mm_loadu_ps(&H_p_ch.re[k]);
const __m128 H_im = _mm_loadu_ps(&H_p_ch.im[k]);
const __m128 a = _mm_mul_ps(X_re, G_re);
const __m128 b = _mm_mul_ps(X_im, G_im);
const __m128 c = _mm_mul_ps(X_re, G_im);
const __m128 d = _mm_mul_ps(X_im, G_re);
const __m128 e = _mm_add_ps(a, b);
const __m128 f = _mm_sub_ps(c, d);
const __m128 g = _mm_add_ps(H_re, e);
const __m128 h = _mm_add_ps(H_im, f);
_mm_storeu_ps(&H_p_ch.re[k], g);
_mm_storeu_ps(&H_p_ch.im[k], h);
}
}
}
X_partition = 0;
limit = lim2;
} while (p < lim2);
X_partition = render_buffer.Position();
limit = lim1;
p = 0;
do {
for (; p < limit; ++p, ++X_partition) {
for (size_t ch = 0; ch < num_render_channels; ++ch) {
FftData& H_p_ch = (*H)[p][ch];
const FftData& X = render_buffer_data[X_partition][ch];
H_p_ch.re[kFftLengthBy2] += X.re[kFftLengthBy2] * G.re[kFftLengthBy2] +
X.im[kFftLengthBy2] * G.im[kFftLengthBy2];
H_p_ch.im[kFftLengthBy2] += X.re[kFftLengthBy2] * G.im[kFftLengthBy2] -
X.im[kFftLengthBy2] * G.re[kFftLengthBy2];
}
}
X_partition = 0;
limit = lim2;
} while (p < lim2);
}
#endif
// Produces the filter output.
void ApplyFilter(const RenderBuffer& render_buffer,
size_t num_partitions,
const std::vector<std::vector<FftData>>& H,
FftData* S) {
S->re.fill(0.f);
S->im.fill(0.f);
rtc::ArrayView<const std::vector<FftData>> render_buffer_data =
render_buffer.GetFftBuffer();
size_t index = render_buffer.Position();
const size_t num_render_channels = render_buffer_data[index].size();
for (size_t p = 0; p < num_partitions; ++p) {
RTC_DCHECK_EQ(num_render_channels, H[p].size());
for (size_t ch = 0; ch < num_render_channels; ++ch) {
const FftData& X_p_ch = render_buffer_data[index][ch];
const FftData& H_p_ch = H[p][ch];
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
S->re[k] += X_p_ch.re[k] * H_p_ch.re[k] - X_p_ch.im[k] * H_p_ch.im[k];
S->im[k] += X_p_ch.re[k] * H_p_ch.im[k] + X_p_ch.im[k] * H_p_ch.re[k];
}
}
index = index < (render_buffer_data.size() - 1) ? index + 1 : 0;
}
}
#if defined(WEBRTC_HAS_NEON)
// Produces the filter output (Neon variant).
void ApplyFilter_Neon(const RenderBuffer& render_buffer,
size_t num_partitions,
const std::vector<std::vector<FftData>>& H,
FftData* S) {
// const RenderBuffer& render_buffer,
// rtc::ArrayView<const FftData> H,
// FftData* S) {
RTC_DCHECK_GE(H.size(), H.size() - 1);
S->Clear();
rtc::ArrayView<const std::vector<FftData>> render_buffer_data =
render_buffer.GetFftBuffer();
const size_t num_render_channels = render_buffer_data[0].size();
const size_t lim1 = std::min(
render_buffer_data.size() - render_buffer.Position(), num_partitions);
const size_t lim2 = num_partitions;
constexpr size_t kNumFourBinBands = kFftLengthBy2 / 4;
size_t X_partition = render_buffer.Position();
size_t p = 0;
size_t limit = lim1;
do {
for (; p < limit; ++p, ++X_partition) {
for (size_t ch = 0; ch < num_render_channels; ++ch) {
const FftData& H_p_ch = H[p][ch];
const FftData& X = render_buffer_data[X_partition][ch];
for (size_t k = 0, n = 0; n < kNumFourBinBands; ++n, k += 4) {
const float32x4_t X_re = vld1q_f32(&X.re[k]);
const float32x4_t X_im = vld1q_f32(&X.im[k]);
const float32x4_t H_re = vld1q_f32(&H_p_ch.re[k]);
const float32x4_t H_im = vld1q_f32(&H_p_ch.im[k]);
const float32x4_t S_re = vld1q_f32(&S->re[k]);
const float32x4_t S_im = vld1q_f32(&S->im[k]);
const float32x4_t a = vmulq_f32(X_re, H_re);
const float32x4_t e = vmlsq_f32(a, X_im, H_im);
const float32x4_t c = vmulq_f32(X_re, H_im);
const float32x4_t f = vmlaq_f32(c, X_im, H_re);
const float32x4_t g = vaddq_f32(S_re, e);
const float32x4_t h = vaddq_f32(S_im, f);
vst1q_f32(&S->re[k], g);
vst1q_f32(&S->im[k], h);
}
}
}
limit = lim2;
X_partition = 0;
} while (p < lim2);
X_partition = render_buffer.Position();
p = 0;
limit = lim1;
do {
for (; p < limit; ++p, ++X_partition) {
for (size_t ch = 0; ch < num_render_channels; ++ch) {
const FftData& H_p_ch = H[p][ch];
const FftData& X = render_buffer_data[X_partition][ch];
S->re[kFftLengthBy2] += X.re[kFftLengthBy2] * H_p_ch.re[kFftLengthBy2] -
X.im[kFftLengthBy2] * H_p_ch.im[kFftLengthBy2];
S->im[kFftLengthBy2] += X.re[kFftLengthBy2] * H_p_ch.im[kFftLengthBy2] +
X.im[kFftLengthBy2] * H_p_ch.re[kFftLengthBy2];
}
}
limit = lim2;
X_partition = 0;
} while (p < lim2);
}
#endif
#if defined(WEBRTC_ARCH_X86_FAMILY)
// Produces the filter output (SSE2 variant).
void ApplyFilter_Sse2(const RenderBuffer& render_buffer,
size_t num_partitions,
const std::vector<std::vector<FftData>>& H,
FftData* S) {
// const RenderBuffer& render_buffer,
// rtc::ArrayView<const FftData> H,
// FftData* S) {
RTC_DCHECK_GE(H.size(), H.size() - 1);
S->re.fill(0.f);
S->im.fill(0.f);
rtc::ArrayView<const std::vector<FftData>> render_buffer_data =
render_buffer.GetFftBuffer();
const size_t num_render_channels = render_buffer_data[0].size();
const size_t lim1 = std::min(
render_buffer_data.size() - render_buffer.Position(), num_partitions);
const size_t lim2 = num_partitions;
constexpr size_t kNumFourBinBands = kFftLengthBy2 / 4;
size_t X_partition = render_buffer.Position();
size_t p = 0;
size_t limit = lim1;
do {
for (; p < limit; ++p, ++X_partition) {
for (size_t ch = 0; ch < num_render_channels; ++ch) {
const FftData& H_p_ch = H[p][ch];
const FftData& X = render_buffer_data[X_partition][ch];
for (size_t k = 0, n = 0; n < kNumFourBinBands; ++n, k += 4) {
const __m128 X_re = _mm_loadu_ps(&X.re[k]);
const __m128 X_im = _mm_loadu_ps(&X.im[k]);
const __m128 H_re = _mm_loadu_ps(&H_p_ch.re[k]);
const __m128 H_im = _mm_loadu_ps(&H_p_ch.im[k]);
const __m128 S_re = _mm_loadu_ps(&S->re[k]);
const __m128 S_im = _mm_loadu_ps(&S->im[k]);
const __m128 a = _mm_mul_ps(X_re, H_re);
const __m128 b = _mm_mul_ps(X_im, H_im);
const __m128 c = _mm_mul_ps(X_re, H_im);
const __m128 d = _mm_mul_ps(X_im, H_re);
const __m128 e = _mm_sub_ps(a, b);
const __m128 f = _mm_add_ps(c, d);
const __m128 g = _mm_add_ps(S_re, e);
const __m128 h = _mm_add_ps(S_im, f);
_mm_storeu_ps(&S->re[k], g);
_mm_storeu_ps(&S->im[k], h);
}
}
}
limit = lim2;
X_partition = 0;
} while (p < lim2);
X_partition = render_buffer.Position();
p = 0;
limit = lim1;
do {
for (; p < limit; ++p, ++X_partition) {
for (size_t ch = 0; ch < num_render_channels; ++ch) {
const FftData& H_p_ch = H[p][ch];
const FftData& X = render_buffer_data[X_partition][ch];
S->re[kFftLengthBy2] += X.re[kFftLengthBy2] * H_p_ch.re[kFftLengthBy2] -
X.im[kFftLengthBy2] * H_p_ch.im[kFftLengthBy2];
S->im[kFftLengthBy2] += X.re[kFftLengthBy2] * H_p_ch.im[kFftLengthBy2] +
X.im[kFftLengthBy2] * H_p_ch.re[kFftLengthBy2];
}
}
limit = lim2;
X_partition = 0;
} while (p < lim2);
}
#endif
} // namespace aec3
namespace {
// Ensures that the newly added filter partitions after a size increase are set
// to zero.
void ZeroFilter(size_t old_size,
size_t new_size,
std::vector<std::vector<FftData>>* H) {
RTC_DCHECK_GE(H->size(), old_size);
RTC_DCHECK_GE(H->size(), new_size);
for (size_t p = old_size; p < new_size; ++p) {
RTC_DCHECK_EQ((*H)[p].size(), (*H)[0].size());
for (size_t ch = 0; ch < (*H)[0].size(); ++ch) {
(*H)[p][ch].Clear();
}
}
}
} // namespace
AdaptiveFirFilter::AdaptiveFirFilter(size_t max_size_partitions,
size_t initial_size_partitions,
size_t size_change_duration_blocks,
size_t num_render_channels,
Aec3Optimization optimization,
ApmDataDumper* data_dumper)
: data_dumper_(data_dumper),
fft_(),
optimization_(optimization),
num_render_channels_(num_render_channels),
max_size_partitions_(max_size_partitions),
size_change_duration_blocks_(
static_cast<int>(size_change_duration_blocks)),
current_size_partitions_(initial_size_partitions),
target_size_partitions_(initial_size_partitions),
old_target_size_partitions_(initial_size_partitions),
H_(max_size_partitions_, std::vector<FftData>(num_render_channels_)) {
RTC_DCHECK(data_dumper_);
RTC_DCHECK_GE(max_size_partitions, initial_size_partitions);
RTC_DCHECK_LT(0, size_change_duration_blocks_);
one_by_size_change_duration_blocks_ = 1.f / size_change_duration_blocks_;
ZeroFilter(0, max_size_partitions_, &H_);
SetSizePartitions(current_size_partitions_, true);
}
AdaptiveFirFilter::~AdaptiveFirFilter() = default;
void AdaptiveFirFilter::HandleEchoPathChange() {
// TODO(peah): Check the value and purpose of the code below.
ZeroFilter(current_size_partitions_, max_size_partitions_, &H_);
}
void AdaptiveFirFilter::SetSizePartitions(size_t size, bool immediate_effect) {
RTC_DCHECK_EQ(max_size_partitions_, H_.capacity());
RTC_DCHECK_LE(size, max_size_partitions_);
target_size_partitions_ = std::min(max_size_partitions_, size);
if (immediate_effect) {
size_t old_size_partitions_ = current_size_partitions_;
current_size_partitions_ = old_target_size_partitions_ =
target_size_partitions_;
ZeroFilter(old_size_partitions_, current_size_partitions_, &H_);
partition_to_constrain_ =
std::min(partition_to_constrain_, current_size_partitions_ - 1);
size_change_counter_ = 0;
} else {
size_change_counter_ = size_change_duration_blocks_;
}
}
void AdaptiveFirFilter::UpdateSize() {
RTC_DCHECK_GE(size_change_duration_blocks_, size_change_counter_);
size_t old_size_partitions_ = current_size_partitions_;
if (size_change_counter_ > 0) {
--size_change_counter_;
auto average = [](float from, float to, float from_weight) {
return from * from_weight + to * (1.f - from_weight);
};
float change_factor =
size_change_counter_ * one_by_size_change_duration_blocks_;
current_size_partitions_ = average(old_target_size_partitions_,
target_size_partitions_, change_factor);
partition_to_constrain_ =
std::min(partition_to_constrain_, current_size_partitions_ - 1);
} else {
current_size_partitions_ = old_target_size_partitions_ =
target_size_partitions_;
}
ZeroFilter(old_size_partitions_, current_size_partitions_, &H_);
RTC_DCHECK_LE(0, size_change_counter_);
}
void AdaptiveFirFilter::Filter(const RenderBuffer& render_buffer,
FftData* S) const {
RTC_DCHECK(S);
switch (optimization_) {
#if defined(WEBRTC_ARCH_X86_FAMILY)
case Aec3Optimization::kSse2:
aec3::ApplyFilter_Sse2(render_buffer, current_size_partitions_, H_, S);
break;
case Aec3Optimization::kAvx2:
aec3::ApplyFilter_Avx2(render_buffer, current_size_partitions_, H_, S);
break;
#endif
#if defined(WEBRTC_HAS_NEON)
case Aec3Optimization::kNeon:
aec3::ApplyFilter_Neon(render_buffer, current_size_partitions_, H_, S);
break;
#endif
default:
aec3::ApplyFilter(render_buffer, current_size_partitions_, H_, S);
}
}
void AdaptiveFirFilter::Adapt(const RenderBuffer& render_buffer,
const FftData& G) {
// Adapt the filter and update the filter size.
AdaptAndUpdateSize(render_buffer, G);
// Constrain the filter partitions in a cyclic manner.
Constrain();
}
void AdaptiveFirFilter::Adapt(const RenderBuffer& render_buffer,
const FftData& G,
std::vector<float>* impulse_response) {
// Adapt the filter and update the filter size.
AdaptAndUpdateSize(render_buffer, G);
// Constrain the filter partitions in a cyclic manner.
ConstrainAndUpdateImpulseResponse(impulse_response);
}
void AdaptiveFirFilter::ComputeFrequencyResponse(
std::vector<std::array<float, kFftLengthBy2Plus1>>* H2) const {
RTC_DCHECK_GE(max_size_partitions_, H2->capacity());
H2->resize(current_size_partitions_);
switch (optimization_) {
#if defined(WEBRTC_ARCH_X86_FAMILY)
case Aec3Optimization::kSse2:
aec3::ComputeFrequencyResponse_Sse2(current_size_partitions_, H_, H2);
break;
case Aec3Optimization::kAvx2:
aec3::ComputeFrequencyResponse_Avx2(current_size_partitions_, H_, H2);
break;
#endif
#if defined(WEBRTC_HAS_NEON)
case Aec3Optimization::kNeon:
aec3::ComputeFrequencyResponse_Neon(current_size_partitions_, H_, H2);
break;
#endif
default:
aec3::ComputeFrequencyResponse(current_size_partitions_, H_, H2);
}
}
void AdaptiveFirFilter::AdaptAndUpdateSize(const RenderBuffer& render_buffer,
const FftData& G) {
// Update the filter size if needed.
UpdateSize();
// Adapt the filter.
switch (optimization_) {
#if defined(WEBRTC_ARCH_X86_FAMILY)
case Aec3Optimization::kSse2:
aec3::AdaptPartitions_Sse2(render_buffer, G, current_size_partitions_,
&H_);
break;
case Aec3Optimization::kAvx2:
aec3::AdaptPartitions_Avx2(render_buffer, G, current_size_partitions_,
&H_);
break;
#endif
#if defined(WEBRTC_HAS_NEON)
case Aec3Optimization::kNeon:
aec3::AdaptPartitions_Neon(render_buffer, G, current_size_partitions_,
&H_);
break;
#endif
default:
aec3::AdaptPartitions(render_buffer, G, current_size_partitions_, &H_);
}
}
// Constrains the partition of the frequency domain filter to be limited in
// time via setting the relevant time-domain coefficients to zero and updates
// the corresponding values in an externally stored impulse response estimate.
void AdaptiveFirFilter::ConstrainAndUpdateImpulseResponse(
std::vector<float>* impulse_response) {
RTC_DCHECK_EQ(GetTimeDomainLength(max_size_partitions_),
impulse_response->capacity());
impulse_response->resize(GetTimeDomainLength(current_size_partitions_));
std::array<float, kFftLength> h;
impulse_response->resize(GetTimeDomainLength(current_size_partitions_));
std::fill(
impulse_response->begin() + partition_to_constrain_ * kFftLengthBy2,
impulse_response->begin() + (partition_to_constrain_ + 1) * kFftLengthBy2,
0.f);
for (size_t ch = 0; ch < num_render_channels_; ++ch) {
fft_.Ifft(H_[partition_to_constrain_][ch], &h);
static constexpr float kScale = 1.0f / kFftLengthBy2;
std::for_each(h.begin(), h.begin() + kFftLengthBy2,
[](float& a) { a *= kScale; });
std::fill(h.begin() + kFftLengthBy2, h.end(), 0.f);
if (ch == 0) {
std::copy(
h.begin(), h.begin() + kFftLengthBy2,
impulse_response->begin() + partition_to_constrain_ * kFftLengthBy2);
} else {
for (size_t k = 0, j = partition_to_constrain_ * kFftLengthBy2;
k < kFftLengthBy2; ++k, ++j) {
if (fabsf((*impulse_response)[j]) < fabsf(h[k])) {
(*impulse_response)[j] = h[k];
}
}
}
fft_.Fft(&h, &H_[partition_to_constrain_][ch]);
}
partition_to_constrain_ =
partition_to_constrain_ < (current_size_partitions_ - 1)
? partition_to_constrain_ + 1
: 0;
}
// Constrains the a partiton of the frequency domain filter to be limited in
// time via setting the relevant time-domain coefficients to zero.
void AdaptiveFirFilter::Constrain() {
std::array<float, kFftLength> h;
for (size_t ch = 0; ch < num_render_channels_; ++ch) {
fft_.Ifft(H_[partition_to_constrain_][ch], &h);
static constexpr float kScale = 1.0f / kFftLengthBy2;
std::for_each(h.begin(), h.begin() + kFftLengthBy2,
[](float& a) { a *= kScale; });
std::fill(h.begin() + kFftLengthBy2, h.end(), 0.f);
fft_.Fft(&h, &H_[partition_to_constrain_][ch]);
}
partition_to_constrain_ =
partition_to_constrain_ < (current_size_partitions_ - 1)
? partition_to_constrain_ + 1
: 0;
}
void AdaptiveFirFilter::ScaleFilter(float factor) {
for (auto& H_p : H_) {
for (auto& H_p_ch : H_p) {
for (auto& re : H_p_ch.re) {
re *= factor;
}
for (auto& im : H_p_ch.im) {
im *= factor;
}
}
}
}
// Set the filter coefficients.
void AdaptiveFirFilter::SetFilter(size_t num_partitions,
const std::vector<std::vector<FftData>>& H) {
const size_t min_num_partitions =
std::min(current_size_partitions_, num_partitions);
for (size_t p = 0; p < min_num_partitions; ++p) {
RTC_DCHECK_EQ(H_[p].size(), H[p].size());
RTC_DCHECK_EQ(num_render_channels_, H_[p].size());
for (size_t ch = 0; ch < num_render_channels_; ++ch) {
std::copy(H[p][ch].re.begin(), H[p][ch].re.end(), H_[p][ch].re.begin());
std::copy(H[p][ch].im.begin(), H[p][ch].im.end(), H_[p][ch].im.begin());
}
}
}
} // namespace webrtc