| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/aec3/matched_filter.h" |
| |
| // Defines WEBRTC_ARCH_X86_FAMILY, used below. |
| #include "rtc_base/system/arch.h" |
| |
| #if defined(WEBRTC_ARCH_X86_FAMILY) |
| #include <emmintrin.h> |
| #endif |
| #include <algorithm> |
| #include <string> |
| |
| #include "modules/audio_processing/aec3/aec3_common.h" |
| #include "modules/audio_processing/aec3/decimator.h" |
| #include "modules/audio_processing/aec3/render_delay_buffer.h" |
| #include "modules/audio_processing/logging/apm_data_dumper.h" |
| #include "modules/audio_processing/test/echo_canceller_test_tools.h" |
| #include "rtc_base/random.h" |
| #include "rtc_base/strings/string_builder.h" |
| #include "system_wrappers/include/cpu_features_wrapper.h" |
| #include "test/gtest.h" |
| |
| namespace webrtc { |
| namespace aec3 { |
| namespace { |
| |
| std::string ProduceDebugText(size_t delay, size_t down_sampling_factor) { |
| rtc::StringBuilder ss; |
| ss << "Delay: " << delay; |
| ss << ", Down sampling factor: " << down_sampling_factor; |
| return ss.Release(); |
| } |
| |
| constexpr size_t kNumMatchedFilters = 10; |
| constexpr size_t kDownSamplingFactors[] = {2, 4, 8}; |
| constexpr size_t kWindowSizeSubBlocks = 32; |
| constexpr size_t kAlignmentShiftSubBlocks = kWindowSizeSubBlocks * 3 / 4; |
| |
| } // namespace |
| |
| class MatchedFilterTest : public ::testing::TestWithParam<bool> {}; |
| |
| #if defined(WEBRTC_HAS_NEON) |
| // Verifies that the optimized methods for NEON are similar to their reference |
| // counterparts. |
| TEST_P(MatchedFilterTest, TestNeonOptimizations) { |
| Random random_generator(42U); |
| constexpr float kSmoothing = 0.7f; |
| const bool kComputeAccumulatederror = GetParam(); |
| for (auto down_sampling_factor : kDownSamplingFactors) { |
| const size_t sub_block_size = kBlockSize / down_sampling_factor; |
| |
| std::vector<float> x(2000); |
| RandomizeSampleVector(&random_generator, x); |
| std::vector<float> y(sub_block_size); |
| std::vector<float> h_NEON(512); |
| std::vector<float> h(512); |
| std::vector<float> accumulated_error(512); |
| std::vector<float> accumulated_error_NEON(512); |
| std::vector<float> scratch_memory(512); |
| |
| int x_index = 0; |
| for (int k = 0; k < 1000; ++k) { |
| RandomizeSampleVector(&random_generator, y); |
| |
| bool filters_updated = false; |
| float error_sum = 0.f; |
| bool filters_updated_NEON = false; |
| float error_sum_NEON = 0.f; |
| |
| MatchedFilterCore_NEON(x_index, h.size() * 150.f * 150.f, kSmoothing, x, |
| y, h_NEON, &filters_updated_NEON, &error_sum_NEON, |
| kComputeAccumulatederror, accumulated_error_NEON, |
| scratch_memory); |
| |
| MatchedFilterCore(x_index, h.size() * 150.f * 150.f, kSmoothing, x, y, h, |
| &filters_updated, &error_sum, kComputeAccumulatederror, |
| accumulated_error); |
| |
| EXPECT_EQ(filters_updated, filters_updated_NEON); |
| EXPECT_NEAR(error_sum, error_sum_NEON, error_sum / 100000.f); |
| |
| for (size_t j = 0; j < h.size(); ++j) { |
| EXPECT_NEAR(h[j], h_NEON[j], 0.00001f); |
| } |
| |
| if (kComputeAccumulatederror) { |
| for (size_t j = 0; j < accumulated_error.size(); ++j) { |
| float difference = |
| std::abs(accumulated_error[j] - accumulated_error_NEON[j]); |
| float relative_difference = accumulated_error[j] > 0 |
| ? difference / accumulated_error[j] |
| : difference; |
| EXPECT_NEAR(relative_difference, 0.0f, 0.02f); |
| } |
| } |
| |
| x_index = (x_index + sub_block_size) % x.size(); |
| } |
| } |
| } |
| #endif |
| |
| #if defined(WEBRTC_ARCH_X86_FAMILY) |
| // Verifies that the optimized methods for SSE2 are bitexact to their reference |
| // counterparts. |
| TEST_P(MatchedFilterTest, TestSse2Optimizations) { |
| const bool kComputeAccumulatederror = GetParam(); |
| bool use_sse2 = (GetCPUInfo(kSSE2) != 0); |
| if (use_sse2) { |
| Random random_generator(42U); |
| constexpr float kSmoothing = 0.7f; |
| for (auto down_sampling_factor : kDownSamplingFactors) { |
| const size_t sub_block_size = kBlockSize / down_sampling_factor; |
| std::vector<float> x(2000); |
| RandomizeSampleVector(&random_generator, x); |
| std::vector<float> y(sub_block_size); |
| std::vector<float> h_SSE2(512); |
| std::vector<float> h(512); |
| std::vector<float> accumulated_error(512 / 4); |
| std::vector<float> accumulated_error_SSE2(512 / 4); |
| std::vector<float> scratch_memory(512); |
| int x_index = 0; |
| for (int k = 0; k < 1000; ++k) { |
| RandomizeSampleVector(&random_generator, y); |
| |
| bool filters_updated = false; |
| float error_sum = 0.f; |
| bool filters_updated_SSE2 = false; |
| float error_sum_SSE2 = 0.f; |
| |
| MatchedFilterCore_SSE2(x_index, h.size() * 150.f * 150.f, kSmoothing, x, |
| y, h_SSE2, &filters_updated_SSE2, |
| &error_sum_SSE2, kComputeAccumulatederror, |
| accumulated_error_SSE2, scratch_memory); |
| |
| MatchedFilterCore(x_index, h.size() * 150.f * 150.f, kSmoothing, x, y, |
| h, &filters_updated, &error_sum, |
| kComputeAccumulatederror, accumulated_error); |
| |
| EXPECT_EQ(filters_updated, filters_updated_SSE2); |
| EXPECT_NEAR(error_sum, error_sum_SSE2, error_sum / 100000.f); |
| |
| for (size_t j = 0; j < h.size(); ++j) { |
| EXPECT_NEAR(h[j], h_SSE2[j], 0.00001f); |
| } |
| |
| for (size_t j = 0; j < accumulated_error.size(); ++j) { |
| float difference = |
| std::abs(accumulated_error[j] - accumulated_error_SSE2[j]); |
| float relative_difference = accumulated_error[j] > 0 |
| ? difference / accumulated_error[j] |
| : difference; |
| EXPECT_NEAR(relative_difference, 0.0f, 0.00001f); |
| } |
| |
| x_index = (x_index + sub_block_size) % x.size(); |
| } |
| } |
| } |
| } |
| |
| TEST_P(MatchedFilterTest, TestAvx2Optimizations) { |
| bool use_avx2 = (GetCPUInfo(kAVX2) != 0); |
| const bool kComputeAccumulatederror = GetParam(); |
| if (use_avx2) { |
| Random random_generator(42U); |
| constexpr float kSmoothing = 0.7f; |
| for (auto down_sampling_factor : kDownSamplingFactors) { |
| const size_t sub_block_size = kBlockSize / down_sampling_factor; |
| std::vector<float> x(2000); |
| RandomizeSampleVector(&random_generator, x); |
| std::vector<float> y(sub_block_size); |
| std::vector<float> h_AVX2(512); |
| std::vector<float> h(512); |
| std::vector<float> accumulated_error(512 / 4); |
| std::vector<float> accumulated_error_AVX2(512 / 4); |
| std::vector<float> scratch_memory(512); |
| int x_index = 0; |
| for (int k = 0; k < 1000; ++k) { |
| RandomizeSampleVector(&random_generator, y); |
| bool filters_updated = false; |
| float error_sum = 0.f; |
| bool filters_updated_AVX2 = false; |
| float error_sum_AVX2 = 0.f; |
| MatchedFilterCore_AVX2(x_index, h.size() * 150.f * 150.f, kSmoothing, x, |
| y, h_AVX2, &filters_updated_AVX2, |
| &error_sum_AVX2, kComputeAccumulatederror, |
| accumulated_error_AVX2, scratch_memory); |
| MatchedFilterCore(x_index, h.size() * 150.f * 150.f, kSmoothing, x, y, |
| h, &filters_updated, &error_sum, |
| kComputeAccumulatederror, accumulated_error); |
| EXPECT_EQ(filters_updated, filters_updated_AVX2); |
| EXPECT_NEAR(error_sum, error_sum_AVX2, error_sum / 100000.f); |
| for (size_t j = 0; j < h.size(); ++j) { |
| EXPECT_NEAR(h[j], h_AVX2[j], 0.00001f); |
| } |
| for (size_t j = 0; j < accumulated_error.size(); j += 4) { |
| float difference = |
| std::abs(accumulated_error[j] - accumulated_error_AVX2[j]); |
| float relative_difference = accumulated_error[j] > 0 |
| ? difference / accumulated_error[j] |
| : difference; |
| EXPECT_NEAR(relative_difference, 0.0f, 0.00001f); |
| } |
| x_index = (x_index + sub_block_size) % x.size(); |
| } |
| } |
| } |
| } |
| |
| #endif |
| |
| // Verifies that the (optimized) function MaxSquarePeakIndex() produces output |
| // equal to the corresponding std-functions. |
| TEST(MatchedFilter, MaxSquarePeakIndex) { |
| Random random_generator(42U); |
| constexpr int kMaxLength = 128; |
| constexpr int kNumIterationsPerLength = 256; |
| for (int length = 1; length < kMaxLength; ++length) { |
| std::vector<float> y(length); |
| for (int i = 0; i < kNumIterationsPerLength; ++i) { |
| RandomizeSampleVector(&random_generator, y); |
| |
| size_t lag_from_function = MaxSquarePeakIndex(y); |
| size_t lag_from_std = std::distance( |
| y.begin(), |
| std::max_element(y.begin(), y.end(), [](float a, float b) -> bool { |
| return a * a < b * b; |
| })); |
| EXPECT_EQ(lag_from_function, lag_from_std); |
| } |
| } |
| } |
| |
| // Verifies that the matched filter produces proper lag estimates for |
| // artificially delayed signals. |
| TEST_P(MatchedFilterTest, LagEstimation) { |
| const bool kDetectPreEcho = GetParam(); |
| Random random_generator(42U); |
| constexpr size_t kNumChannels = 1; |
| constexpr int kSampleRateHz = 48000; |
| constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz); |
| |
| for (auto down_sampling_factor : kDownSamplingFactors) { |
| const size_t sub_block_size = kBlockSize / down_sampling_factor; |
| |
| Block render(kNumBands, kNumChannels); |
| std::vector<std::vector<float>> capture( |
| 1, std::vector<float>(kBlockSize, 0.f)); |
| ApmDataDumper data_dumper(0); |
| for (size_t delay_samples : {5, 64, 150, 200, 800, 1000}) { |
| SCOPED_TRACE(ProduceDebugText(delay_samples, down_sampling_factor)); |
| EchoCanceller3Config config; |
| config.delay.down_sampling_factor = down_sampling_factor; |
| config.delay.num_filters = kNumMatchedFilters; |
| Decimator capture_decimator(down_sampling_factor); |
| DelayBuffer<float> signal_delay_buffer(down_sampling_factor * |
| delay_samples); |
| MatchedFilter filter( |
| &data_dumper, DetectOptimization(), sub_block_size, |
| kWindowSizeSubBlocks, kNumMatchedFilters, kAlignmentShiftSubBlocks, |
| 150, config.delay.delay_estimate_smoothing, |
| config.delay.delay_estimate_smoothing_delay_found, |
| config.delay.delay_candidate_detection_threshold, kDetectPreEcho); |
| |
| std::unique_ptr<RenderDelayBuffer> render_delay_buffer( |
| RenderDelayBuffer::Create(config, kSampleRateHz, kNumChannels)); |
| |
| // Analyze the correlation between render and capture. |
| for (size_t k = 0; k < (600 + delay_samples / sub_block_size); ++k) { |
| for (size_t band = 0; band < kNumBands; ++band) { |
| for (size_t channel = 0; channel < kNumChannels; ++channel) { |
| RandomizeSampleVector(&random_generator, |
| render.View(band, channel)); |
| } |
| } |
| signal_delay_buffer.Delay(render.View(/*band=*/0, /*channel=*/0), |
| capture[0]); |
| render_delay_buffer->Insert(render); |
| |
| if (k == 0) { |
| render_delay_buffer->Reset(); |
| } |
| |
| render_delay_buffer->PrepareCaptureProcessing(); |
| std::array<float, kBlockSize> downsampled_capture_data; |
| rtc::ArrayView<float> downsampled_capture( |
| downsampled_capture_data.data(), sub_block_size); |
| capture_decimator.Decimate(capture[0], downsampled_capture); |
| filter.Update(render_delay_buffer->GetDownsampledRenderBuffer(), |
| downsampled_capture, /*use_slow_smoothing=*/false); |
| } |
| |
| // Obtain the lag estimates. |
| auto lag_estimate = filter.GetBestLagEstimate(); |
| EXPECT_TRUE(lag_estimate.has_value()); |
| |
| // Verify that the expected most accurate lag estimate is correct. |
| if (lag_estimate.has_value()) { |
| EXPECT_EQ(delay_samples, lag_estimate->lag); |
| EXPECT_EQ(delay_samples, lag_estimate->pre_echo_lag); |
| } |
| } |
| } |
| } |
| |
| // Test the pre echo estimation. |
| TEST_P(MatchedFilterTest, PreEchoEstimation) { |
| const bool kDetectPreEcho = GetParam(); |
| Random random_generator(42U); |
| constexpr size_t kNumChannels = 1; |
| constexpr int kSampleRateHz = 48000; |
| constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz); |
| |
| for (auto down_sampling_factor : kDownSamplingFactors) { |
| const size_t sub_block_size = kBlockSize / down_sampling_factor; |
| |
| Block render(kNumBands, kNumChannels); |
| std::vector<std::vector<float>> capture( |
| 1, std::vector<float>(kBlockSize, 0.f)); |
| std::vector<float> capture_with_pre_echo(kBlockSize, 0.f); |
| ApmDataDumper data_dumper(0); |
| // data_dumper.SetActivated(true); |
| size_t pre_echo_delay_samples = 20e-3 * 16000 / down_sampling_factor; |
| size_t echo_delay_samples = 50e-3 * 16000 / down_sampling_factor; |
| EchoCanceller3Config config; |
| config.delay.down_sampling_factor = down_sampling_factor; |
| config.delay.num_filters = kNumMatchedFilters; |
| Decimator capture_decimator(down_sampling_factor); |
| DelayBuffer<float> signal_echo_delay_buffer(down_sampling_factor * |
| echo_delay_samples); |
| DelayBuffer<float> signal_pre_echo_delay_buffer(down_sampling_factor * |
| pre_echo_delay_samples); |
| MatchedFilter filter( |
| &data_dumper, DetectOptimization(), sub_block_size, |
| kWindowSizeSubBlocks, kNumMatchedFilters, kAlignmentShiftSubBlocks, 150, |
| config.delay.delay_estimate_smoothing, |
| config.delay.delay_estimate_smoothing_delay_found, |
| config.delay.delay_candidate_detection_threshold, kDetectPreEcho); |
| std::unique_ptr<RenderDelayBuffer> render_delay_buffer( |
| RenderDelayBuffer::Create(config, kSampleRateHz, kNumChannels)); |
| // Analyze the correlation between render and capture. |
| for (size_t k = 0; k < (600 + echo_delay_samples / sub_block_size); ++k) { |
| for (size_t band = 0; band < kNumBands; ++band) { |
| for (size_t channel = 0; channel < kNumChannels; ++channel) { |
| RandomizeSampleVector(&random_generator, render.View(band, channel)); |
| } |
| } |
| signal_echo_delay_buffer.Delay(render.View(0, 0), capture[0]); |
| signal_pre_echo_delay_buffer.Delay(render.View(0, 0), |
| capture_with_pre_echo); |
| for (size_t k = 0; k < capture[0].size(); ++k) { |
| constexpr float gain_pre_echo = 0.8f; |
| capture[0][k] += gain_pre_echo * capture_with_pre_echo[k]; |
| } |
| render_delay_buffer->Insert(render); |
| if (k == 0) { |
| render_delay_buffer->Reset(); |
| } |
| render_delay_buffer->PrepareCaptureProcessing(); |
| std::array<float, kBlockSize> downsampled_capture_data; |
| rtc::ArrayView<float> downsampled_capture(downsampled_capture_data.data(), |
| sub_block_size); |
| capture_decimator.Decimate(capture[0], downsampled_capture); |
| filter.Update(render_delay_buffer->GetDownsampledRenderBuffer(), |
| downsampled_capture, /*use_slow_smoothing=*/false); |
| } |
| // Obtain the lag estimates. |
| auto lag_estimate = filter.GetBestLagEstimate(); |
| EXPECT_TRUE(lag_estimate.has_value()); |
| // Verify that the expected most accurate lag estimate is correct. |
| if (lag_estimate.has_value()) { |
| EXPECT_EQ(echo_delay_samples, lag_estimate->lag); |
| if (kDetectPreEcho) { |
| // The pre echo delay is estimated in a subsampled domain and a larger |
| // error is allowed. |
| EXPECT_NEAR(pre_echo_delay_samples, lag_estimate->pre_echo_lag, 4); |
| } else { |
| // The pre echo delay fallback to the highest mached filter peak when |
| // its detection is disabled. |
| EXPECT_EQ(echo_delay_samples, lag_estimate->pre_echo_lag); |
| } |
| } |
| } |
| } |
| |
| // Verifies that the matched filter does not produce reliable and accurate |
| // estimates for uncorrelated render and capture signals. |
| TEST_P(MatchedFilterTest, LagNotReliableForUncorrelatedRenderAndCapture) { |
| const bool kDetectPreEcho = GetParam(); |
| constexpr size_t kNumChannels = 1; |
| constexpr int kSampleRateHz = 48000; |
| constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz); |
| Random random_generator(42U); |
| for (auto down_sampling_factor : kDownSamplingFactors) { |
| EchoCanceller3Config config; |
| config.delay.down_sampling_factor = down_sampling_factor; |
| config.delay.num_filters = kNumMatchedFilters; |
| const size_t sub_block_size = kBlockSize / down_sampling_factor; |
| |
| Block render(kNumBands, kNumChannels); |
| std::array<float, kBlockSize> capture_data; |
| rtc::ArrayView<float> capture(capture_data.data(), sub_block_size); |
| std::fill(capture.begin(), capture.end(), 0.f); |
| ApmDataDumper data_dumper(0); |
| std::unique_ptr<RenderDelayBuffer> render_delay_buffer( |
| RenderDelayBuffer::Create(config, kSampleRateHz, kNumChannels)); |
| MatchedFilter filter( |
| &data_dumper, DetectOptimization(), sub_block_size, |
| kWindowSizeSubBlocks, kNumMatchedFilters, kAlignmentShiftSubBlocks, 150, |
| config.delay.delay_estimate_smoothing, |
| config.delay.delay_estimate_smoothing_delay_found, |
| config.delay.delay_candidate_detection_threshold, kDetectPreEcho); |
| |
| // Analyze the correlation between render and capture. |
| for (size_t k = 0; k < 100; ++k) { |
| RandomizeSampleVector(&random_generator, |
| render.View(/*band=*/0, /*channel=*/0)); |
| RandomizeSampleVector(&random_generator, capture); |
| render_delay_buffer->Insert(render); |
| filter.Update(render_delay_buffer->GetDownsampledRenderBuffer(), capture, |
| false); |
| } |
| |
| // Obtain the best lag estimate and Verify that no lag estimates are |
| // reliable. |
| auto best_lag_estimates = filter.GetBestLagEstimate(); |
| EXPECT_FALSE(best_lag_estimates.has_value()); |
| } |
| } |
| |
| // Verifies that the matched filter does not produce updated lag estimates for |
| // render signals of low level. |
| TEST_P(MatchedFilterTest, LagNotUpdatedForLowLevelRender) { |
| const bool kDetectPreEcho = GetParam(); |
| Random random_generator(42U); |
| constexpr size_t kNumChannels = 1; |
| constexpr int kSampleRateHz = 48000; |
| constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz); |
| |
| for (auto down_sampling_factor : kDownSamplingFactors) { |
| const size_t sub_block_size = kBlockSize / down_sampling_factor; |
| |
| Block render(kNumBands, kNumChannels); |
| std::vector<std::vector<float>> capture( |
| 1, std::vector<float>(kBlockSize, 0.f)); |
| ApmDataDumper data_dumper(0); |
| EchoCanceller3Config config; |
| MatchedFilter filter( |
| &data_dumper, DetectOptimization(), sub_block_size, |
| kWindowSizeSubBlocks, kNumMatchedFilters, kAlignmentShiftSubBlocks, 150, |
| config.delay.delay_estimate_smoothing, |
| config.delay.delay_estimate_smoothing_delay_found, |
| config.delay.delay_candidate_detection_threshold, kDetectPreEcho); |
| std::unique_ptr<RenderDelayBuffer> render_delay_buffer( |
| RenderDelayBuffer::Create(EchoCanceller3Config(), kSampleRateHz, |
| kNumChannels)); |
| Decimator capture_decimator(down_sampling_factor); |
| |
| // Analyze the correlation between render and capture. |
| for (size_t k = 0; k < 100; ++k) { |
| RandomizeSampleVector(&random_generator, render.View(0, 0)); |
| for (auto& render_k : render.View(0, 0)) { |
| render_k *= 149.f / 32767.f; |
| } |
| std::copy(render.begin(0, 0), render.end(0, 0), capture[0].begin()); |
| std::array<float, kBlockSize> downsampled_capture_data; |
| rtc::ArrayView<float> downsampled_capture(downsampled_capture_data.data(), |
| sub_block_size); |
| capture_decimator.Decimate(capture[0], downsampled_capture); |
| filter.Update(render_delay_buffer->GetDownsampledRenderBuffer(), |
| downsampled_capture, false); |
| } |
| |
| // Verify that no lag estimate has been produced. |
| auto lag_estimate = filter.GetBestLagEstimate(); |
| EXPECT_FALSE(lag_estimate.has_value()); |
| } |
| } |
| |
| INSTANTIATE_TEST_SUITE_P(_, MatchedFilterTest, testing::Values(true, false)); |
| |
| #if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID) |
| |
| class MatchedFilterDeathTest : public ::testing::TestWithParam<bool> {}; |
| |
| // Verifies the check for non-zero windows size. |
| TEST_P(MatchedFilterDeathTest, ZeroWindowSize) { |
| const bool kDetectPreEcho = GetParam(); |
| ApmDataDumper data_dumper(0); |
| EchoCanceller3Config config; |
| EXPECT_DEATH(MatchedFilter(&data_dumper, DetectOptimization(), 16, 0, 1, 1, |
| 150, config.delay.delay_estimate_smoothing, |
| config.delay.delay_estimate_smoothing_delay_found, |
| config.delay.delay_candidate_detection_threshold, |
| kDetectPreEcho), |
| ""); |
| } |
| |
| // Verifies the check for non-null data dumper. |
| TEST_P(MatchedFilterDeathTest, NullDataDumper) { |
| const bool kDetectPreEcho = GetParam(); |
| EchoCanceller3Config config; |
| EXPECT_DEATH(MatchedFilter(nullptr, DetectOptimization(), 16, 1, 1, 1, 150, |
| config.delay.delay_estimate_smoothing, |
| config.delay.delay_estimate_smoothing_delay_found, |
| config.delay.delay_candidate_detection_threshold, |
| kDetectPreEcho), |
| ""); |
| } |
| |
| // Verifies the check for that the sub block size is a multiple of 4. |
| // TODO(peah): Activate the unittest once the required code has been landed. |
| TEST_P(MatchedFilterDeathTest, DISABLED_BlockSizeMultipleOf4) { |
| const bool kDetectPreEcho = GetParam(); |
| ApmDataDumper data_dumper(0); |
| EchoCanceller3Config config; |
| EXPECT_DEATH(MatchedFilter(&data_dumper, DetectOptimization(), 15, 1, 1, 1, |
| 150, config.delay.delay_estimate_smoothing, |
| config.delay.delay_estimate_smoothing_delay_found, |
| config.delay.delay_candidate_detection_threshold, |
| kDetectPreEcho), |
| ""); |
| } |
| |
| // Verifies the check for that there is an integer number of sub blocks that add |
| // up to a block size. |
| // TODO(peah): Activate the unittest once the required code has been landed. |
| TEST_P(MatchedFilterDeathTest, DISABLED_SubBlockSizeAddsUpToBlockSize) { |
| const bool kDetectPreEcho = GetParam(); |
| ApmDataDumper data_dumper(0); |
| EchoCanceller3Config config; |
| EXPECT_DEATH(MatchedFilter(&data_dumper, DetectOptimization(), 12, 1, 1, 1, |
| 150, config.delay.delay_estimate_smoothing, |
| config.delay.delay_estimate_smoothing_delay_found, |
| config.delay.delay_candidate_detection_threshold, |
| kDetectPreEcho), |
| ""); |
| } |
| |
| INSTANTIATE_TEST_SUITE_P(_, |
| MatchedFilterDeathTest, |
| testing::Values(true, false)); |
| |
| #endif |
| |
| } // namespace aec3 |
| } // namespace webrtc |