blob: 03ef06614b5653dfc280a092b5e9e680ce65ce2d [file] [log] [blame]
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/alignment_mixer.h"
#include <string>
#include "api/array_view.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "rtc_base/strings/string_builder.h"
#include "test/gmock.h"
#include "test/gtest.h"
using ::testing::AllOf;
using ::testing::Each;
namespace webrtc {
namespace {
std::string ProduceDebugText(bool initial_silence,
bool huge_activity_threshold,
bool prefer_first_two_channels,
int num_channels,
int strongest_ch) {
rtc::StringBuilder ss;
ss << ", Initial silence: " << initial_silence;
ss << ", Huge activity threshold: " << huge_activity_threshold;
ss << ", Prefer first two channels: " << prefer_first_two_channels;
ss << ", Number of channels: " << num_channels;
ss << ", Strongest channel: " << strongest_ch;
return ss.Release();
}
} // namespace
TEST(AlignmentMixer, GeneralAdaptiveMode) {
constexpr int kChannelOffset = 100;
constexpr int kMaxChannelsToTest = 8;
constexpr float kStrongestSignalScaling =
kMaxChannelsToTest * kChannelOffset * 100;
for (bool initial_silence : {false, true}) {
for (bool huge_activity_threshold : {false, true}) {
for (bool prefer_first_two_channels : {false, true}) {
for (int num_channels = 2; num_channels < 8; ++num_channels) {
for (int strongest_ch = 0; strongest_ch < num_channels;
++strongest_ch) {
SCOPED_TRACE(ProduceDebugText(
initial_silence, huge_activity_threshold,
prefer_first_two_channels, num_channels, strongest_ch));
const float excitation_limit =
huge_activity_threshold ? 1000000000.f : 0.001f;
AlignmentMixer am(num_channels, /*downmix*/ false,
/*adaptive_selection*/ true, excitation_limit,
prefer_first_two_channels);
std::vector<std::vector<float>> x(
num_channels, std::vector<float>(kBlockSize, 0.f));
if (initial_silence) {
for (int ch = 0; ch < num_channels; ++ch) {
std::fill(x[ch].begin(), x[ch].end(), 0.f);
}
std::array<float, kBlockSize> y;
for (int frame = 0; frame < 10 * kNumBlocksPerSecond; ++frame) {
am.ProduceOutput(x, y);
}
}
for (int frame = 0; frame < 2 * kNumBlocksPerSecond; ++frame) {
const auto channel_value = [&](int frame_index,
int channel_index) {
return static_cast<float>(frame_index +
channel_index * kChannelOffset);
};
for (int ch = 0; ch < num_channels; ++ch) {
float scaling =
ch == strongest_ch ? kStrongestSignalScaling : 1.f;
std::fill(x[ch].begin(), x[ch].end(),
channel_value(frame, ch) * scaling);
}
std::array<float, kBlockSize> y;
y.fill(-1.f);
am.ProduceOutput(x, y);
if (frame > 1 * kNumBlocksPerSecond) {
if (!prefer_first_two_channels || huge_activity_threshold) {
EXPECT_THAT(y, AllOf(Each(x[strongest_ch][0])));
} else {
bool left_or_right_chosen;
for (int ch = 0; ch < 2; ++ch) {
left_or_right_chosen = true;
for (size_t k = 0; k < kBlockSize; ++k) {
if (y[k] != x[ch][k]) {
left_or_right_chosen = false;
break;
}
}
if (left_or_right_chosen) {
break;
}
}
EXPECT_TRUE(left_or_right_chosen);
}
}
}
}
}
}
}
}
}
TEST(AlignmentMixer, DownmixMode) {
for (int num_channels = 1; num_channels < 8; ++num_channels) {
AlignmentMixer am(num_channels, /*downmix*/ true,
/*adaptive_selection*/ false, /*excitation_limit*/ 1.f,
/*prefer_first_two_channels*/ false);
std::vector<std::vector<float>> x(num_channels,
std::vector<float>(kBlockSize, 0.f));
const auto channel_value = [](int frame_index, int channel_index) {
return static_cast<float>(frame_index + channel_index);
};
for (int frame = 0; frame < 10; ++frame) {
for (int ch = 0; ch < num_channels; ++ch) {
std::fill(x[ch].begin(), x[ch].end(), channel_value(frame, ch));
}
std::array<float, kBlockSize> y;
y.fill(-1.f);
am.ProduceOutput(x, y);
float expected_mixed_value = 0.f;
for (int ch = 0; ch < num_channels; ++ch) {
expected_mixed_value += channel_value(frame, ch);
}
expected_mixed_value *= 1.f / num_channels;
EXPECT_THAT(y, AllOf(Each(expected_mixed_value)));
}
}
}
TEST(AlignmentMixer, FixedMode) {
for (int num_channels = 1; num_channels < 8; ++num_channels) {
AlignmentMixer am(num_channels, /*downmix*/ false,
/*adaptive_selection*/ false, /*excitation_limit*/ 1.f,
/*prefer_first_two_channels*/ false);
std::vector<std::vector<float>> x(num_channels,
std::vector<float>(kBlockSize, 0.f));
const auto channel_value = [](int frame_index, int channel_index) {
return static_cast<float>(frame_index + channel_index);
};
for (int frame = 0; frame < 10; ++frame) {
for (int ch = 0; ch < num_channels; ++ch) {
std::fill(x[ch].begin(), x[ch].end(), channel_value(frame, ch));
}
std::array<float, kBlockSize> y;
y.fill(-1.f);
am.ProduceOutput(x, y);
EXPECT_THAT(y, AllOf(Each(x[0][0])));
}
}
}
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
TEST(AlignmentMixerDeathTest, ZeroNumChannels) {
EXPECT_DEATH(
AlignmentMixer(/*num_channels*/ 0, /*downmix*/ false,
/*adaptive_selection*/ false, /*excitation_limit*/ 1.f,
/*prefer_first_two_channels*/ false);
, "");
}
TEST(AlignmentMixerDeathTest, IncorrectVariant) {
EXPECT_DEATH(
AlignmentMixer(/*num_channels*/ 1, /*downmix*/ true,
/*adaptive_selection*/ true, /*excitation_limit*/ 1.f,
/*prefer_first_two_channels*/ false);
, "");
}
#endif
} // namespace webrtc