blob: 2c7d649fc9598723994189ee39f82b26e89c1111 [file] [log] [blame]
/*
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// This file contains the implementation of TaskQueue for Mac and iOS.
// The implementation uses Grand Central Dispatch queues (GCD) to
// do the actual task queuing.
#include "webrtc/base/task_queue.h"
#include <string.h>
#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/task_queue_posix.h"
namespace rtc {
using internal::GetQueuePtrTls;
using internal::AutoSetCurrentQueuePtr;
struct TaskQueue::QueueContext {
explicit QueueContext(TaskQueue* q) : queue(q), is_active(true) {}
static void SetNotActive(void* context) {
QueueContext* qc = static_cast<QueueContext*>(context);
qc->is_active = false;
}
static void DeleteContext(void* context) {
QueueContext* qc = static_cast<QueueContext*>(context);
delete qc;
}
TaskQueue* const queue;
bool is_active;
};
struct TaskQueue::TaskContext {
TaskContext(QueueContext* queue_ctx, std::unique_ptr<QueuedTask> task)
: queue_ctx(queue_ctx), task(std::move(task)) {}
virtual ~TaskContext() {}
static void RunTask(void* context) {
std::unique_ptr<TaskContext> tc(static_cast<TaskContext*>(context));
if (tc->queue_ctx->is_active) {
AutoSetCurrentQueuePtr set_current(tc->queue_ctx->queue);
if (!tc->task->Run())
tc->task.release();
}
}
QueueContext* const queue_ctx;
std::unique_ptr<QueuedTask> task;
};
// Special case context for holding two tasks, a |first_task| + the task
// that's owned by the parent struct, TaskContext, that then becomes the
// second (i.e. 'reply') task.
struct TaskQueue::PostTaskAndReplyContext : public TaskQueue::TaskContext {
explicit PostTaskAndReplyContext(QueueContext* first_queue_ctx,
std::unique_ptr<QueuedTask> first_task,
QueueContext* second_queue_ctx,
std::unique_ptr<QueuedTask> second_task)
: TaskContext(second_queue_ctx, std::move(second_task)),
first_queue_ctx(first_queue_ctx),
first_task(std::move(first_task)) {
// Retain the reply queue for as long as this object lives.
// If we don't, we may have memory leaks and/or failures.
dispatch_retain(first_queue_ctx->queue->queue_);
}
~PostTaskAndReplyContext() override {
dispatch_release(first_queue_ctx->queue->queue_);
}
static void RunTask(void* context) {
auto* rc = static_cast<PostTaskAndReplyContext*>(context);
if (rc->first_queue_ctx->is_active) {
AutoSetCurrentQueuePtr set_current(rc->first_queue_ctx->queue);
if (!rc->first_task->Run())
rc->first_task.release();
}
// Post the reply task. This hands the work over to the parent struct.
// This task will eventually delete |this|.
dispatch_async_f(rc->queue_ctx->queue->queue_, rc, &TaskContext::RunTask);
}
QueueContext* const first_queue_ctx;
std::unique_ptr<QueuedTask> first_task;
};
TaskQueue::TaskQueue(const char* queue_name)
: queue_(dispatch_queue_create(queue_name, DISPATCH_QUEUE_SERIAL)),
context_(new QueueContext(this)) {
RTC_DCHECK(queue_name);
RTC_CHECK(queue_);
dispatch_set_context(queue_, context_);
// Assign a finalizer that will delete the context when the last reference
// to the queue is released. This may run after the TaskQueue object has
// been deleted.
dispatch_set_finalizer_f(queue_, &QueueContext::DeleteContext);
}
TaskQueue::~TaskQueue() {
RTC_DCHECK(!IsCurrent());
// Implementation/behavioral note:
// Dispatch queues are reference counted via calls to dispatch_retain and
// dispatch_release. Pending blocks submitted to a queue also hold a
// reference to the queue until they have finished. Once all references to a
// queue have been released, the queue will be deallocated by the system.
// This is why we check the context before running tasks.
// Use dispatch_sync to set the context to null to guarantee that there's not
// a race between checking the context and using it from a task.
dispatch_sync_f(queue_, context_, &QueueContext::SetNotActive);
dispatch_release(queue_);
}
// static
TaskQueue* TaskQueue::Current() {
return static_cast<TaskQueue*>(pthread_getspecific(GetQueuePtrTls()));
}
// static
bool TaskQueue::IsCurrent(const char* queue_name) {
TaskQueue* current = Current();
return current &&
strcmp(queue_name, dispatch_queue_get_label(current->queue_)) == 0;
}
bool TaskQueue::IsCurrent() const {
RTC_DCHECK(queue_);
return this == Current();
}
void TaskQueue::PostTask(std::unique_ptr<QueuedTask> task) {
auto* context = new TaskContext(context_, std::move(task));
dispatch_async_f(queue_, context, &TaskContext::RunTask);
}
void TaskQueue::PostDelayedTask(std::unique_ptr<QueuedTask> task,
uint32_t milliseconds) {
auto* context = new TaskContext(context_, std::move(task));
dispatch_after_f(
dispatch_time(DISPATCH_TIME_NOW, milliseconds * NSEC_PER_MSEC), queue_,
context, &TaskContext::RunTask);
}
void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply,
TaskQueue* reply_queue) {
auto* context = new PostTaskAndReplyContext(
context_, std::move(task), reply_queue->context_, std::move(reply));
dispatch_async_f(queue_, context, &PostTaskAndReplyContext::RunTask);
}
void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply) {
return PostTaskAndReply(std::move(task), std::move(reply), Current());
}
} // namespace rtc