blob: ef03aaad4a5d43dc683f122eec1bfba5785a5a57 [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/agc2/input_volume_controller.h"
#include <algorithm>
#include <cmath>
#include "api/array_view.h"
#include "modules/audio_processing/agc2/gain_map_internal.h"
#include "modules/audio_processing/include/audio_frame_view.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_minmax.h"
#include "system_wrappers/include/field_trial.h"
#include "system_wrappers/include/metrics.h"
namespace webrtc {
namespace {
// Amount of error we tolerate in the microphone level (presumably due to OS
// quantization) before we assume the user has manually adjusted the microphone.
constexpr int kLevelQuantizationSlack = 25;
constexpr int kMaxMicLevel = 255;
static_assert(kGainMapSize > kMaxMicLevel, "gain map too small");
constexpr int kMinMicLevel = 12;
// Prevent very large microphone level changes.
constexpr int kMaxResidualGainChange = 15;
using Agc1ClippingPredictorConfig = AudioProcessing::Config::GainController1::
AnalogGainController::ClippingPredictor;
// TODO(webrtc:7494): Hardcode clipping predictor parameters and remove this
// function after no longer needed in the ctor.
Agc1ClippingPredictorConfig CreateClippingPredictorConfig(bool enabled) {
Agc1ClippingPredictorConfig config;
config.enabled = enabled;
return config;
}
// If the "WebRTC-Audio-2ndAgcMinMicLevelExperiment" field trial is specified,
// parses it and returns a value between 0 and 255 depending on the field-trial
// string. Returns an unspecified value if the field trial is not specified, if
// disabled or if it cannot be parsed. Example:
// 'WebRTC-Audio-2ndAgcMinMicLevelExperiment/Enabled-80' => returns 80.
absl::optional<int> GetMinMicLevelOverride() {
constexpr char kMinMicLevelFieldTrial[] =
"WebRTC-Audio-2ndAgcMinMicLevelExperiment";
if (!webrtc::field_trial::IsEnabled(kMinMicLevelFieldTrial)) {
return absl::nullopt;
}
const auto field_trial_string =
webrtc::field_trial::FindFullName(kMinMicLevelFieldTrial);
int min_mic_level = -1;
sscanf(field_trial_string.c_str(), "Enabled-%d", &min_mic_level);
if (min_mic_level >= 0 && min_mic_level <= 255) {
return min_mic_level;
} else {
RTC_LOG(LS_WARNING) << "[agc] Invalid parameter for "
<< kMinMicLevelFieldTrial << ", ignored.";
return absl::nullopt;
}
}
int LevelFromGainError(int gain_error, int level, int min_mic_level) {
RTC_DCHECK_GE(level, 0);
RTC_DCHECK_LE(level, kMaxMicLevel);
if (gain_error == 0) {
return level;
}
int new_level = level;
if (gain_error > 0) {
while (kGainMap[new_level] - kGainMap[level] < gain_error &&
new_level < kMaxMicLevel) {
++new_level;
}
} else {
while (kGainMap[new_level] - kGainMap[level] > gain_error &&
new_level > min_mic_level) {
--new_level;
}
}
return new_level;
}
// Returns the proportion of samples in the buffer which are at full-scale
// (and presumably clipped).
float ComputeClippedRatio(const float* const* audio,
size_t num_channels,
size_t samples_per_channel) {
RTC_DCHECK_GT(samples_per_channel, 0);
int num_clipped = 0;
for (size_t ch = 0; ch < num_channels; ++ch) {
int num_clipped_in_ch = 0;
for (size_t i = 0; i < samples_per_channel; ++i) {
RTC_DCHECK(audio[ch]);
if (audio[ch][i] >= 32767.0f || audio[ch][i] <= -32768.0f) {
++num_clipped_in_ch;
}
}
num_clipped = std::max(num_clipped, num_clipped_in_ch);
}
return static_cast<float>(num_clipped) / (samples_per_channel);
}
void LogClippingMetrics(int clipping_rate) {
RTC_LOG(LS_INFO) << "Input clipping rate: " << clipping_rate << "%";
RTC_HISTOGRAM_COUNTS_LINEAR(/*name=*/"WebRTC.Audio.Agc.InputClippingRate",
/*sample=*/clipping_rate, /*min=*/0, /*max=*/100,
/*bucket_count=*/50);
}
// Computes the speech level error in dB. The value of `speech_level_dbfs` is
// required to be in the range [-90.0f, 30.0f]. Returns a positive value when
// the speech level is below the target range and a negative value when the
// speech level is above the target range.
int GetSpeechLevelErrorDb(float speech_level_dbfs,
int target_range_min_dbfs,
int target_range_max_dbfs) {
constexpr float kMinSpeechLevelDbfs = -90.0f;
constexpr float kMaxSpeechLevelDbfs = 30.0f;
RTC_DCHECK_GE(speech_level_dbfs, kMinSpeechLevelDbfs);
RTC_DCHECK_LE(speech_level_dbfs, kMaxSpeechLevelDbfs);
// Ensure the speech level is in the range [-90.0f, 30.0f].
speech_level_dbfs = rtc::SafeClamp<float>(
speech_level_dbfs, kMinSpeechLevelDbfs, kMaxSpeechLevelDbfs);
// Compute the speech level distance to the target range
// [`target_range_min_dbfs`, `target_range_max_dbfs`].
int rms_error_dbfs = 0;
if (speech_level_dbfs > target_range_max_dbfs) {
rms_error_dbfs = std::round(target_range_max_dbfs - speech_level_dbfs);
} else if (speech_level_dbfs < target_range_min_dbfs) {
rms_error_dbfs = std::round(target_range_min_dbfs - speech_level_dbfs);
}
return rms_error_dbfs;
}
} // namespace
MonoInputVolumeController::MonoInputVolumeController(
int clipped_level_min,
int min_mic_level,
int update_input_volume_wait_frames,
float speech_probability_threshold,
float speech_ratio_threshold)
: min_mic_level_(min_mic_level),
max_level_(kMaxMicLevel),
clipped_level_min_(clipped_level_min),
update_input_volume_wait_frames_(
std::max(update_input_volume_wait_frames, 1)),
speech_probability_threshold_(speech_probability_threshold),
speech_ratio_threshold_(speech_ratio_threshold) {
RTC_DCHECK_GE(clipped_level_min_, 0);
RTC_DCHECK_LE(clipped_level_min_, 255);
RTC_DCHECK_GE(min_mic_level_, 0);
RTC_DCHECK_LE(min_mic_level_, 255);
RTC_DCHECK_GE(update_input_volume_wait_frames_, 0);
RTC_DCHECK_GE(speech_probability_threshold_, 0.0f);
RTC_DCHECK_LE(speech_probability_threshold_, 1.0f);
RTC_DCHECK_GE(speech_ratio_threshold_, 0.0f);
RTC_DCHECK_LE(speech_ratio_threshold_, 1.0f);
}
MonoInputVolumeController::~MonoInputVolumeController() = default;
void MonoInputVolumeController::Initialize() {
max_level_ = kMaxMicLevel;
capture_output_used_ = true;
check_volume_on_next_process_ = true;
frames_since_update_input_volume_ = 0;
speech_frames_since_update_input_volume_ = 0;
is_first_frame_ = true;
}
// A speeh segment is considered active if at least
// `update_input_volume_wait_frames_` new frames have been processed since the
// previous update and the ratio of non-silence frames (i.e., frames with a
// `speech_probability` higher than `speech_probability_threshold_`) is at least
// `speech_ratio_threshold_`.
void MonoInputVolumeController::Process(absl::optional<int> rms_error_dbfs,
float speech_probability) {
if (check_volume_on_next_process_) {
check_volume_on_next_process_ = false;
// We have to wait until the first process call to check the volume,
// because Chromium doesn't guarantee it to be valid any earlier.
CheckVolumeAndReset();
}
// Count frames with a high speech probability as speech.
if (speech_probability >= speech_probability_threshold_) {
++speech_frames_since_update_input_volume_;
}
// Reset the counters and maybe update the input volume.
if (++frames_since_update_input_volume_ >= update_input_volume_wait_frames_) {
const float speech_ratio =
static_cast<float>(speech_frames_since_update_input_volume_) /
static_cast<float>(update_input_volume_wait_frames_);
// Always reset the counters regardless of whether the volume changes or
// not.
frames_since_update_input_volume_ = 0;
speech_frames_since_update_input_volume_ = 0;
// Update the input volume if allowed.
if (!is_first_frame_ && speech_ratio >= speech_ratio_threshold_) {
if (rms_error_dbfs.has_value()) {
UpdateInputVolume(*rms_error_dbfs);
}
}
}
is_first_frame_ = false;
}
void MonoInputVolumeController::HandleClipping(int clipped_level_step) {
RTC_DCHECK_GT(clipped_level_step, 0);
// Always decrease the maximum level, even if the current level is below
// threshold.
SetMaxLevel(std::max(clipped_level_min_, max_level_ - clipped_level_step));
if (log_to_histograms_) {
RTC_HISTOGRAM_BOOLEAN("WebRTC.Audio.AgcClippingAdjustmentAllowed",
level_ - clipped_level_step >= clipped_level_min_);
}
if (level_ > clipped_level_min_) {
// Don't try to adjust the level if we're already below the limit. As
// a consequence, if the user has brought the level above the limit, we
// will still not react until the postproc updates the level.
SetLevel(std::max(clipped_level_min_, level_ - clipped_level_step));
frames_since_update_input_volume_ = 0;
speech_frames_since_update_input_volume_ = 0;
is_first_frame_ = false;
}
}
void MonoInputVolumeController::SetLevel(int new_level) {
int voe_level = recommended_input_volume_;
if (voe_level == 0) {
RTC_DLOG(LS_INFO)
<< "[agc] VolumeCallbacks returned level=0, taking no action.";
return;
}
if (voe_level < 0 || voe_level > kMaxMicLevel) {
RTC_LOG(LS_ERROR) << "VolumeCallbacks returned an invalid level="
<< voe_level;
return;
}
// Detect manual input volume adjustments by checking if the current level
// `voe_level` is outside of the `[level_ - kLevelQuantizationSlack, level_ +
// kLevelQuantizationSlack]` range where `level_` is the last input volume
// known by this gain controller.
if (voe_level > level_ + kLevelQuantizationSlack ||
voe_level < level_ - kLevelQuantizationSlack) {
RTC_DLOG(LS_INFO) << "[agc] Mic volume was manually adjusted. Updating "
"stored level from "
<< level_ << " to " << voe_level;
level_ = voe_level;
// Always allow the user to increase the volume.
if (level_ > max_level_) {
SetMaxLevel(level_);
}
// Take no action in this case, since we can't be sure when the volume
// was manually adjusted.
frames_since_update_input_volume_ = 0;
speech_frames_since_update_input_volume_ = 0;
is_first_frame_ = false;
return;
}
new_level = std::min(new_level, max_level_);
if (new_level == level_) {
return;
}
recommended_input_volume_ = new_level;
RTC_DLOG(LS_INFO) << "[agc] voe_level=" << voe_level << ", level_=" << level_
<< ", new_level=" << new_level;
level_ = new_level;
}
void MonoInputVolumeController::SetMaxLevel(int level) {
RTC_DCHECK_GE(level, clipped_level_min_);
max_level_ = level;
RTC_DLOG(LS_INFO) << "[agc] max_level_=" << max_level_;
}
void MonoInputVolumeController::HandleCaptureOutputUsedChange(
bool capture_output_used) {
if (capture_output_used_ == capture_output_used) {
return;
}
capture_output_used_ = capture_output_used;
if (capture_output_used) {
// When we start using the output, we should reset things to be safe.
check_volume_on_next_process_ = true;
}
}
int MonoInputVolumeController::CheckVolumeAndReset() {
int level = recommended_input_volume_;
// Reasons for taking action at startup:
// 1) A person starting a call is expected to be heard.
// 2) Independent of interpretation of `level` == 0 we should raise it so the
// AGC can do its job properly.
if (level == 0 && !startup_) {
RTC_DLOG(LS_INFO)
<< "[agc] VolumeCallbacks returned level=0, taking no action.";
return 0;
}
if (level < 0 || level > kMaxMicLevel) {
RTC_LOG(LS_ERROR) << "[agc] VolumeCallbacks returned an invalid level="
<< level;
return -1;
}
RTC_DLOG(LS_INFO) << "[agc] Initial GetMicVolume()=" << level;
if (level < min_mic_level_) {
level = min_mic_level_;
RTC_DLOG(LS_INFO) << "[agc] Initial volume too low, raising to " << level;
recommended_input_volume_ = level;
}
level_ = level;
startup_ = false;
frames_since_update_input_volume_ = 0;
speech_frames_since_update_input_volume_ = 0;
is_first_frame_ = true;
return 0;
}
void MonoInputVolumeController::UpdateInputVolume(int rms_error_dbfs) {
const int residual_gain = rtc::SafeClamp(
rms_error_dbfs, -kMaxResidualGainChange, kMaxResidualGainChange);
RTC_DLOG(LS_INFO) << "[agc] rms_error_dbfs=" << rms_error_dbfs
<< ", residual_gain=" << residual_gain;
if (residual_gain == 0) {
return;
}
SetLevel(LevelFromGainError(residual_gain, level_, min_mic_level_));
}
InputVolumeController::InputVolumeController(int num_capture_channels,
const Config& config)
: num_capture_channels_(num_capture_channels),
min_mic_level_override_(GetMinMicLevelOverride()),
capture_output_used_(true),
clipped_level_step_(config.clipped_level_step),
clipped_ratio_threshold_(config.clipped_ratio_threshold),
clipped_wait_frames_(config.clipped_wait_frames),
clipping_predictor_(CreateClippingPredictor(
num_capture_channels,
CreateClippingPredictorConfig(config.enable_clipping_predictor))),
use_clipping_predictor_step_(
!!clipping_predictor_ &&
CreateClippingPredictorConfig(config.enable_clipping_predictor)
.use_predicted_step),
frames_since_clipped_(config.clipped_wait_frames),
clipping_rate_log_counter_(0),
clipping_rate_log_(0.0f),
target_range_max_dbfs_(config.target_range_max_dbfs),
target_range_min_dbfs_(config.target_range_min_dbfs),
channel_controllers_(num_capture_channels) {
const int min_mic_level = min_mic_level_override_.value_or(kMinMicLevel);
RTC_LOG(LS_INFO) << "[agc] Input volume controller enabled";
RTC_LOG(LS_INFO) << "[agc] Min mic level: " << min_mic_level
<< " (overridden: "
<< (min_mic_level_override_.has_value() ? "yes" : "no")
<< ")";
for (auto& controller : channel_controllers_) {
controller = std::make_unique<MonoInputVolumeController>(
config.clipped_level_min, min_mic_level,
config.update_input_volume_wait_frames,
config.speech_probability_threshold, config.speech_ratio_threshold);
}
RTC_DCHECK(!channel_controllers_.empty());
RTC_DCHECK_GT(clipped_level_step_, 0);
RTC_DCHECK_LE(clipped_level_step_, 255);
RTC_DCHECK_GT(clipped_ratio_threshold_, 0.0f);
RTC_DCHECK_LT(clipped_ratio_threshold_, 1.0f);
RTC_DCHECK_GT(clipped_wait_frames_, 0);
channel_controllers_[0]->ActivateLogging();
}
InputVolumeController::~InputVolumeController() {}
void InputVolumeController::Initialize() {
RTC_DLOG(LS_INFO) << "InputVolumeController::Initialize";
for (auto& controller : channel_controllers_) {
controller->Initialize();
}
capture_output_used_ = true;
AggregateChannelLevels();
clipping_rate_log_ = 0.0f;
clipping_rate_log_counter_ = 0;
}
void InputVolumeController::AnalyzePreProcess(const AudioBuffer& audio_buffer) {
const float* const* audio = audio_buffer.channels_const();
size_t samples_per_channel = audio_buffer.num_frames();
RTC_DCHECK(audio);
AggregateChannelLevels();
if (!capture_output_used_) {
return;
}
if (!!clipping_predictor_) {
AudioFrameView<const float> frame = AudioFrameView<const float>(
audio, num_capture_channels_, static_cast<int>(samples_per_channel));
clipping_predictor_->Analyze(frame);
}
// Check for clipped samples. We do this in the preprocessing phase in order
// to catch clipped echo as well.
//
// If we find a sufficiently clipped frame, drop the current microphone level
// and enforce a new maximum level, dropped the same amount from the current
// maximum. This harsh treatment is an effort to avoid repeated clipped echo
// events.
float clipped_ratio =
ComputeClippedRatio(audio, num_capture_channels_, samples_per_channel);
clipping_rate_log_ = std::max(clipped_ratio, clipping_rate_log_);
clipping_rate_log_counter_++;
constexpr int kNumFramesIn30Seconds = 3000;
if (clipping_rate_log_counter_ == kNumFramesIn30Seconds) {
LogClippingMetrics(std::round(100.0f * clipping_rate_log_));
clipping_rate_log_ = 0.0f;
clipping_rate_log_counter_ = 0;
}
if (frames_since_clipped_ < clipped_wait_frames_) {
++frames_since_clipped_;
return;
}
const bool clipping_detected = clipped_ratio > clipped_ratio_threshold_;
bool clipping_predicted = false;
int predicted_step = 0;
if (!!clipping_predictor_) {
for (int channel = 0; channel < num_capture_channels_; ++channel) {
const auto step = clipping_predictor_->EstimateClippedLevelStep(
channel, recommended_input_volume_, clipped_level_step_,
channel_controllers_[channel]->clipped_level_min(), kMaxMicLevel);
if (step.has_value()) {
predicted_step = std::max(predicted_step, step.value());
clipping_predicted = true;
}
}
}
if (clipping_detected) {
RTC_DLOG(LS_INFO) << "[agc] Clipping detected. clipped_ratio="
<< clipped_ratio;
}
int step = clipped_level_step_;
if (clipping_predicted) {
predicted_step = std::max(predicted_step, clipped_level_step_);
RTC_DLOG(LS_INFO) << "[agc] Clipping predicted. step=" << predicted_step;
if (use_clipping_predictor_step_) {
step = predicted_step;
}
}
if (clipping_detected ||
(clipping_predicted && use_clipping_predictor_step_)) {
for (auto& state_ch : channel_controllers_) {
state_ch->HandleClipping(step);
}
frames_since_clipped_ = 0;
if (!!clipping_predictor_) {
clipping_predictor_->Reset();
}
}
AggregateChannelLevels();
}
void InputVolumeController::Process(float speech_probability,
absl::optional<float> speech_level_dbfs) {
AggregateChannelLevels();
if (!capture_output_used_) {
return;
}
absl::optional<int> rms_error_dbfs;
if (speech_level_dbfs.has_value()) {
// Compute the error for all frames (both speech and non-speech frames).
rms_error_dbfs = GetSpeechLevelErrorDb(
*speech_level_dbfs, target_range_min_dbfs_, target_range_max_dbfs_);
}
for (auto& controller : channel_controllers_) {
controller->Process(rms_error_dbfs, speech_probability);
}
AggregateChannelLevels();
}
void InputVolumeController::HandleCaptureOutputUsedChange(
bool capture_output_used) {
for (auto& controller : channel_controllers_) {
controller->HandleCaptureOutputUsedChange(capture_output_used);
}
capture_output_used_ = capture_output_used;
}
void InputVolumeController::set_stream_analog_level(int level) {
for (auto& controller : channel_controllers_) {
controller->set_stream_analog_level(level);
}
AggregateChannelLevels();
}
void InputVolumeController::AggregateChannelLevels() {
int new_recommended_input_volume =
channel_controllers_[0]->recommended_analog_level();
channel_controlling_gain_ = 0;
for (size_t ch = 1; ch < channel_controllers_.size(); ++ch) {
int level = channel_controllers_[ch]->recommended_analog_level();
if (level < new_recommended_input_volume) {
new_recommended_input_volume = level;
channel_controlling_gain_ = static_cast<int>(ch);
}
}
if (min_mic_level_override_.has_value() && new_recommended_input_volume > 0) {
new_recommended_input_volume =
std::max(new_recommended_input_volume, *min_mic_level_override_);
}
recommended_input_volume_ = new_recommended_input_volume;
}
} // namespace webrtc