blob: 91fd719319c119914c52d8b131a1292faf888d5c [file] [log] [blame]
/*
* Copyright 2021 The WebRTC project authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/congestion_controller/goog_cc/loss_based_bwe_v2.h"
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <limits>
#include <utility>
#include <vector>
#include "absl/algorithm/container.h"
#include "absl/types/optional.h"
#include "api/array_view.h"
#include "api/transport/network_types.h"
#include "api/transport/webrtc_key_value_config.h"
#include "api/units/data_rate.h"
#include "api/units/data_size.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "rtc_base/experiments/field_trial_list.h"
#include "rtc_base/experiments/field_trial_parser.h"
#include "rtc_base/logging.h"
namespace webrtc {
namespace {
bool IsValid(DataRate datarate) {
return datarate.IsFinite();
}
bool IsValid(Timestamp timestamp) {
return timestamp.IsFinite();
}
struct PacketResultsSummary {
int num_packets = 0;
int num_lost_packets = 0;
DataSize total_size = DataSize::Zero();
Timestamp first_send_time = Timestamp::PlusInfinity();
Timestamp last_send_time = Timestamp::MinusInfinity();
};
// Returns a `PacketResultsSummary` where `first_send_time` is `PlusInfinity,
// and `last_send_time` is `MinusInfinity`, if `packet_results` is empty.
PacketResultsSummary GetPacketResultsSummary(
rtc::ArrayView<const PacketResult> packet_results) {
PacketResultsSummary packet_results_summary;
packet_results_summary.num_packets = packet_results.size();
for (const PacketResult& packet : packet_results) {
if (!packet.IsReceived()) {
packet_results_summary.num_lost_packets++;
}
packet_results_summary.total_size += packet.sent_packet.size;
packet_results_summary.first_send_time = std::min(
packet_results_summary.first_send_time, packet.sent_packet.send_time);
packet_results_summary.last_send_time = std::max(
packet_results_summary.last_send_time, packet.sent_packet.send_time);
}
return packet_results_summary;
}
double GetLossProbability(double inherent_loss,
DataRate loss_limited_bandwidth,
DataRate sending_rate) {
if (inherent_loss < 0.0 || inherent_loss > 1.0) {
RTC_LOG(LS_WARNING) << "The inherent loss must be in [0,1]: "
<< inherent_loss;
inherent_loss = std::min(std::max(inherent_loss, 0.0), 1.0);
}
if (!sending_rate.IsFinite()) {
RTC_LOG(LS_WARNING) << "The sending rate must be finite: "
<< ToString(sending_rate);
}
if (!loss_limited_bandwidth.IsFinite()) {
RTC_LOG(LS_WARNING) << "The loss limited bandwidth must be finite: "
<< ToString(loss_limited_bandwidth);
}
// We approximate the loss model
// loss_probability = inherent_loss + (1 - inherent_loss) *
// max(0, sending_rate - bandwidth) / sending_rate
// by
// loss_probability = inherent_loss +
// max(0, sending_rate - bandwidth) / sending_rate
// as it allows for simpler calculations and makes little difference in
// practice.
double loss_probability = inherent_loss;
if (IsValid(sending_rate) && IsValid(loss_limited_bandwidth) &&
(sending_rate > loss_limited_bandwidth)) {
loss_probability += (sending_rate - loss_limited_bandwidth) / sending_rate;
}
return std::min(std::max(loss_probability, 1.0e-6), 1.0 - 1.0e-6);
}
} // namespace
LossBasedBweV2::LossBasedBweV2(const WebRtcKeyValueConfig* key_value_config)
: config_(CreateConfig(key_value_config)) {
if (!config_.has_value()) {
RTC_LOG(LS_VERBOSE) << "The configuration does not specify that the "
"estimator should be enabled, disabling it.";
return;
}
if (!IsConfigValid()) {
RTC_LOG(LS_WARNING)
<< "The configuration is not valid, disabling the estimator.";
config_.reset();
return;
}
current_estimate_.inherent_loss = config_->initial_inherent_loss_estimate;
observations_.resize(config_->observation_window_size);
temporal_weights_.resize(config_->observation_window_size);
instant_upper_bound_temporal_weights_.resize(
config_->observation_window_size);
CalculateTemporalWeights();
}
bool LossBasedBweV2::IsEnabled() const {
return config_.has_value();
}
bool LossBasedBweV2::IsReady() const {
return IsEnabled() && IsValid(current_estimate_.loss_limited_bandwidth) &&
num_observations_ > 0;
}
DataRate LossBasedBweV2::GetBandwidthEstimate() const {
if (!IsReady()) {
if (!IsEnabled()) {
RTC_LOG(LS_WARNING)
<< "The estimator must be enabled before it can be used.";
} else {
if (!IsValid(current_estimate_.loss_limited_bandwidth)) {
RTC_LOG(LS_WARNING)
<< "The estimator must be initialized before it can be used.";
}
if (num_observations_ <= 0) {
RTC_LOG(LS_WARNING) << "The estimator must receive enough loss "
"statistics before it can be used.";
}
}
return DataRate::PlusInfinity();
}
return std::min(current_estimate_.loss_limited_bandwidth,
GetInstantUpperBound());
}
void LossBasedBweV2::SetAcknowledgedBitrate(DataRate acknowledged_bitrate) {
if (IsValid(acknowledged_bitrate)) {
acknowledged_bitrate_ = acknowledged_bitrate;
} else {
RTC_LOG(LS_WARNING) << "The acknowledged bitrate must be finite: "
<< ToString(acknowledged_bitrate);
}
}
void LossBasedBweV2::SetBandwidthEstimate(DataRate bandwidth_estimate) {
if (IsValid(bandwidth_estimate)) {
current_estimate_.loss_limited_bandwidth = bandwidth_estimate;
} else {
RTC_LOG(LS_WARNING) << "The bandwidth estimate must be finite: "
<< ToString(bandwidth_estimate);
}
}
void LossBasedBweV2::UpdateBandwidthEstimate(
rtc::ArrayView<const PacketResult> packet_results,
DataRate delay_based_estimate) {
if (!IsEnabled()) {
RTC_LOG(LS_WARNING)
<< "The estimator must be enabled before it can be used.";
return;
}
if (packet_results.empty()) {
RTC_LOG(LS_VERBOSE)
<< "The estimate cannot be updated without any loss statistics.";
return;
}
if (!PushBackObservation(packet_results)) {
return;
}
if (!IsValid(current_estimate_.loss_limited_bandwidth)) {
RTC_LOG(LS_VERBOSE)
<< "The estimator must be initialized before it can be used.";
return;
}
ChannelParameters best_candidate = current_estimate_;
double objective_max = std::numeric_limits<double>::lowest();
for (ChannelParameters candidate : GetCandidates(delay_based_estimate)) {
NewtonsMethodUpdate(candidate);
const double candidate_objective = GetObjective(candidate);
if (candidate_objective > objective_max) {
objective_max = candidate_objective;
best_candidate = candidate;
}
}
if (best_candidate.loss_limited_bandwidth <
current_estimate_.loss_limited_bandwidth) {
last_time_estimate_reduced_ = last_send_time_most_recent_observation_;
}
current_estimate_ = best_candidate;
}
// Returns a `LossBasedBweV2::Config` iff the `key_value_config` specifies a
// configuration for the `LossBasedBweV2` which is explicitly enabled.
absl::optional<LossBasedBweV2::Config> LossBasedBweV2::CreateConfig(
const WebRtcKeyValueConfig* key_value_config) {
FieldTrialParameter<bool> enabled("Enabled", false);
FieldTrialParameter<double> bandwidth_rampup_upper_bound_factor(
"BwRampupUpperBoundFactor", 1.1);
FieldTrialParameter<double> rampup_acceleration_max_factor(
"BwRampupAccelMaxFactor", 0.0);
FieldTrialParameter<TimeDelta> rampup_acceleration_maxout_time(
"BwRampupAccelMaxoutTime", TimeDelta::Seconds(60));
FieldTrialList<double> candidate_factors("CandidateFactors",
{1.05, 1.0, 0.95});
FieldTrialParameter<double> higher_bandwidth_bias_factor("HigherBwBiasFactor",
0.00001);
FieldTrialParameter<double> higher_log_bandwidth_bias_factor(
"HigherLogBwBiasFactor", 0.001);
FieldTrialParameter<double> inherent_loss_lower_bound(
"InherentLossLowerBound", 1.0e-3);
FieldTrialParameter<DataRate> inherent_loss_upper_bound_bandwidth_balance(
"InherentLossUpperBoundBwBalance", DataRate::KilobitsPerSec(15.0));
FieldTrialParameter<double> inherent_loss_upper_bound_offset(
"InherentLossUpperBoundOffset", 0.05);
FieldTrialParameter<double> initial_inherent_loss_estimate(
"InitialInherentLossEstimate", 0.01);
FieldTrialParameter<int> newton_iterations("NewtonIterations", 1);
FieldTrialParameter<double> newton_step_size("NewtonStepSize", 0.5);
FieldTrialParameter<bool> append_acknowledged_rate_candidate(
"AckedRateCandidate", true);
FieldTrialParameter<bool> append_delay_based_estimate_candidate(
"DelayBasedCandidate", false);
FieldTrialParameter<TimeDelta> observation_duration_lower_bound(
"ObservationDurationLowerBound", TimeDelta::Seconds(1));
FieldTrialParameter<int> observation_window_size("ObservationWindowSize", 20);
FieldTrialParameter<double> sending_rate_smoothing_factor(
"SendingRateSmoothingFactor", 0.0);
FieldTrialParameter<double> instant_upper_bound_temporal_weight_factor(
"InstantUpperBoundTemporalWeightFactor", 0.99);
FieldTrialParameter<DataRate> instant_upper_bound_bandwidth_balance(
"InstantUpperBoundBwBalance", DataRate::KilobitsPerSec(15.0));
FieldTrialParameter<double> instant_upper_bound_loss_offset(
"InstantUpperBoundLossOffset", 0.05);
FieldTrialParameter<double> temporal_weight_factor("TemporalWeightFactor",
0.99);
if (key_value_config) {
ParseFieldTrial({&enabled,
&bandwidth_rampup_upper_bound_factor,
&rampup_acceleration_max_factor,
&rampup_acceleration_maxout_time,
&candidate_factors,
&higher_bandwidth_bias_factor,
&higher_log_bandwidth_bias_factor,
&inherent_loss_lower_bound,
&inherent_loss_upper_bound_bandwidth_balance,
&inherent_loss_upper_bound_offset,
&initial_inherent_loss_estimate,
&newton_iterations,
&newton_step_size,
&append_acknowledged_rate_candidate,
&append_delay_based_estimate_candidate,
&observation_duration_lower_bound,
&observation_window_size,
&sending_rate_smoothing_factor,
&instant_upper_bound_temporal_weight_factor,
&instant_upper_bound_bandwidth_balance,
&instant_upper_bound_loss_offset,
&temporal_weight_factor},
key_value_config->Lookup("WebRTC-Bwe-LossBasedBweV2"));
}
absl::optional<Config> config;
if (!enabled.Get()) {
return config;
}
config.emplace();
config->bandwidth_rampup_upper_bound_factor =
bandwidth_rampup_upper_bound_factor.Get();
config->rampup_acceleration_max_factor = rampup_acceleration_max_factor.Get();
config->rampup_acceleration_maxout_time =
rampup_acceleration_maxout_time.Get();
config->candidate_factors = candidate_factors.Get();
config->higher_bandwidth_bias_factor = higher_bandwidth_bias_factor.Get();
config->higher_log_bandwidth_bias_factor =
higher_log_bandwidth_bias_factor.Get();
config->inherent_loss_lower_bound = inherent_loss_lower_bound.Get();
config->inherent_loss_upper_bound_bandwidth_balance =
inherent_loss_upper_bound_bandwidth_balance.Get();
config->inherent_loss_upper_bound_offset =
inherent_loss_upper_bound_offset.Get();
config->initial_inherent_loss_estimate = initial_inherent_loss_estimate.Get();
config->newton_iterations = newton_iterations.Get();
config->newton_step_size = newton_step_size.Get();
config->append_acknowledged_rate_candidate =
append_acknowledged_rate_candidate.Get();
config->append_delay_based_estimate_candidate =
append_delay_based_estimate_candidate.Get();
config->observation_duration_lower_bound =
observation_duration_lower_bound.Get();
config->observation_window_size = observation_window_size.Get();
config->sending_rate_smoothing_factor = sending_rate_smoothing_factor.Get();
config->instant_upper_bound_temporal_weight_factor =
instant_upper_bound_temporal_weight_factor.Get();
config->instant_upper_bound_bandwidth_balance =
instant_upper_bound_bandwidth_balance.Get();
config->instant_upper_bound_loss_offset =
instant_upper_bound_loss_offset.Get();
config->temporal_weight_factor = temporal_weight_factor.Get();
return config;
}
bool LossBasedBweV2::IsConfigValid() const {
if (!config_.has_value()) {
return false;
}
bool valid = true;
if (config_->bandwidth_rampup_upper_bound_factor <= 1.0) {
RTC_LOG(LS_WARNING)
<< "The bandwidth rampup upper bound factor must be greater than 1: "
<< config_->bandwidth_rampup_upper_bound_factor;
valid = false;
}
if (config_->rampup_acceleration_max_factor < 0.0) {
RTC_LOG(LS_WARNING)
<< "The rampup acceleration max factor must be non-negative.: "
<< config_->rampup_acceleration_max_factor;
valid = false;
}
if (config_->rampup_acceleration_maxout_time <= TimeDelta::Zero()) {
RTC_LOG(LS_WARNING)
<< "The rampup acceleration maxout time must be above zero: "
<< config_->rampup_acceleration_maxout_time.seconds();
valid = false;
}
if (config_->higher_bandwidth_bias_factor < 0.0) {
RTC_LOG(LS_WARNING)
<< "The higher bandwidth bias factor must be non-negative: "
<< config_->higher_bandwidth_bias_factor;
valid = false;
}
if (config_->inherent_loss_lower_bound < 0.0 ||
config_->inherent_loss_lower_bound >= 1.0) {
RTC_LOG(LS_WARNING) << "The inherent loss lower bound must be in [0, 1): "
<< config_->inherent_loss_lower_bound;
valid = false;
}
if (config_->inherent_loss_upper_bound_bandwidth_balance <=
DataRate::Zero()) {
RTC_LOG(LS_WARNING)
<< "The inherent loss upper bound bandwidth balance "
"must be positive: "
<< ToString(config_->inherent_loss_upper_bound_bandwidth_balance);
valid = false;
}
if (config_->inherent_loss_upper_bound_offset <
config_->inherent_loss_lower_bound ||
config_->inherent_loss_upper_bound_offset >= 1.0) {
RTC_LOG(LS_WARNING) << "The inherent loss upper bound must be greater "
"than or equal to the inherent "
"loss lower bound, which is "
<< config_->inherent_loss_lower_bound
<< ", and less than 1: "
<< config_->inherent_loss_upper_bound_offset;
valid = false;
}
if (config_->initial_inherent_loss_estimate < 0.0 ||
config_->initial_inherent_loss_estimate >= 1.0) {
RTC_LOG(LS_WARNING)
<< "The initial inherent loss estimate must be in [0, 1): "
<< config_->initial_inherent_loss_estimate;
valid = false;
}
if (config_->newton_iterations <= 0) {
RTC_LOG(LS_WARNING) << "The number of Newton iterations must be positive: "
<< config_->newton_iterations;
valid = false;
}
if (config_->newton_step_size <= 0.0) {
RTC_LOG(LS_WARNING) << "The Newton step size must be positive: "
<< config_->newton_step_size;
valid = false;
}
if (config_->observation_duration_lower_bound <= TimeDelta::Zero()) {
RTC_LOG(LS_WARNING)
<< "The observation duration lower bound must be positive: "
<< ToString(config_->observation_duration_lower_bound);
valid = false;
}
if (config_->observation_window_size < 2) {
RTC_LOG(LS_WARNING) << "The observation window size must be at least 2: "
<< config_->observation_window_size;
valid = false;
}
if (config_->sending_rate_smoothing_factor < 0.0 ||
config_->sending_rate_smoothing_factor >= 1.0) {
RTC_LOG(LS_WARNING)
<< "The sending rate smoothing factor must be in [0, 1): "
<< config_->sending_rate_smoothing_factor;
valid = false;
}
if (config_->instant_upper_bound_temporal_weight_factor <= 0.0 ||
config_->instant_upper_bound_temporal_weight_factor > 1.0) {
RTC_LOG(LS_WARNING)
<< "The instant upper bound temporal weight factor must be in (0, 1]"
<< config_->instant_upper_bound_temporal_weight_factor;
valid = false;
}
if (config_->instant_upper_bound_bandwidth_balance <= DataRate::Zero()) {
RTC_LOG(LS_WARNING)
<< "The instant upper bound bandwidth balance must be positive: "
<< ToString(config_->instant_upper_bound_bandwidth_balance);
valid = false;
}
if (config_->instant_upper_bound_loss_offset < 0.0 ||
config_->instant_upper_bound_loss_offset >= 1.0) {
RTC_LOG(LS_WARNING)
<< "The instant upper bound loss offset must be in [0, 1): "
<< config_->instant_upper_bound_loss_offset;
valid = false;
}
if (config_->temporal_weight_factor <= 0.0 ||
config_->temporal_weight_factor > 1.0) {
RTC_LOG(LS_WARNING) << "The temporal weight factor must be in (0, 1]: "
<< config_->temporal_weight_factor;
valid = false;
}
return valid;
}
double LossBasedBweV2::GetAverageReportedLossRatio() const {
if (num_observations_ <= 0) {
return 0.0;
}
int num_packets = 0;
int num_lost_packets = 0;
for (const Observation& observation : observations_) {
if (!observation.IsInitialized()) {
continue;
}
double instant_temporal_weight =
instant_upper_bound_temporal_weights_[(num_observations_ - 1) -
observation.id];
num_packets += instant_temporal_weight * observation.num_packets;
num_lost_packets += instant_temporal_weight * observation.num_lost_packets;
}
return static_cast<double>(num_lost_packets) / num_packets;
}
DataRate LossBasedBweV2::GetCandidateBandwidthUpperBound() const {
if (!acknowledged_bitrate_.has_value())
return DataRate::PlusInfinity();
DataRate candidate_bandwidth_upper_bound =
config_->bandwidth_rampup_upper_bound_factor * (*acknowledged_bitrate_);
if (config_->rampup_acceleration_max_factor > 0.0) {
const TimeDelta time_since_bandwidth_reduced = std::min(
config_->rampup_acceleration_maxout_time,
std::max(TimeDelta::Zero(), last_send_time_most_recent_observation_ -
last_time_estimate_reduced_));
const double rampup_acceleration = config_->rampup_acceleration_max_factor *
time_since_bandwidth_reduced /
config_->rampup_acceleration_maxout_time;
candidate_bandwidth_upper_bound +=
rampup_acceleration * (*acknowledged_bitrate_);
}
return candidate_bandwidth_upper_bound;
}
std::vector<LossBasedBweV2::ChannelParameters> LossBasedBweV2::GetCandidates(
DataRate delay_based_estimate) const {
std::vector<DataRate> bandwidths;
for (double candidate_factor : config_->candidate_factors) {
bandwidths.push_back(candidate_factor *
current_estimate_.loss_limited_bandwidth);
}
if (acknowledged_bitrate_.has_value() &&
config_->append_acknowledged_rate_candidate) {
bandwidths.push_back(*acknowledged_bitrate_);
}
if (IsValid(delay_based_estimate) &&
config_->append_delay_based_estimate_candidate) {
bandwidths.push_back(delay_based_estimate);
}
const DataRate candidate_bandwidth_upper_bound =
GetCandidateBandwidthUpperBound();
std::vector<ChannelParameters> candidates;
candidates.resize(bandwidths.size());
for (size_t i = 0; i < bandwidths.size(); ++i) {
ChannelParameters candidate = current_estimate_;
candidate.loss_limited_bandwidth = std::min(
bandwidths[i], std::max(current_estimate_.loss_limited_bandwidth,
candidate_bandwidth_upper_bound));
candidate.inherent_loss = GetFeasibleInherentLoss(candidate);
candidates[i] = candidate;
}
return candidates;
}
LossBasedBweV2::Derivatives LossBasedBweV2::GetDerivatives(
const ChannelParameters& channel_parameters) const {
Derivatives derivatives;
for (const Observation& observation : observations_) {
if (!observation.IsInitialized()) {
continue;
}
double loss_probability = GetLossProbability(
channel_parameters.inherent_loss,
channel_parameters.loss_limited_bandwidth, observation.sending_rate);
double temporal_weight =
temporal_weights_[(num_observations_ - 1) - observation.id];
derivatives.first +=
temporal_weight *
((observation.num_lost_packets / loss_probability) -
(observation.num_received_packets / (1.0 - loss_probability)));
derivatives.second -=
temporal_weight *
((observation.num_lost_packets / std::pow(loss_probability, 2)) +
(observation.num_received_packets /
std::pow(1.0 - loss_probability, 2)));
}
if (derivatives.second >= 0.0) {
RTC_LOG(LS_ERROR) << "The second derivative is mathematically guaranteed "
"to be negative but is "
<< derivatives.second << ".";
derivatives.second = -1.0e-6;
}
return derivatives;
}
double LossBasedBweV2::GetFeasibleInherentLoss(
const ChannelParameters& channel_parameters) const {
return std::min(
std::max(channel_parameters.inherent_loss,
config_->inherent_loss_lower_bound),
GetInherentLossUpperBound(channel_parameters.loss_limited_bandwidth));
}
double LossBasedBweV2::GetInherentLossUpperBound(DataRate bandwidth) const {
if (bandwidth.IsZero()) {
return 1.0;
}
double inherent_loss_upper_bound =
config_->inherent_loss_upper_bound_offset +
config_->inherent_loss_upper_bound_bandwidth_balance / bandwidth;
return std::min(inherent_loss_upper_bound, 1.0);
}
double LossBasedBweV2::GetHighBandwidthBias(DataRate bandwidth) const {
if (IsValid(bandwidth)) {
return config_->higher_bandwidth_bias_factor * bandwidth.kbps() +
config_->higher_log_bandwidth_bias_factor *
std::log(1.0 + bandwidth.kbps());
}
return 0.0;
}
double LossBasedBweV2::GetObjective(
const ChannelParameters& channel_parameters) const {
double objective = 0.0;
const double high_bandwidth_bias =
GetHighBandwidthBias(channel_parameters.loss_limited_bandwidth);
for (const Observation& observation : observations_) {
if (!observation.IsInitialized()) {
continue;
}
double loss_probability = GetLossProbability(
channel_parameters.inherent_loss,
channel_parameters.loss_limited_bandwidth, observation.sending_rate);
double temporal_weight =
temporal_weights_[(num_observations_ - 1) - observation.id];
objective +=
temporal_weight *
((observation.num_lost_packets * std::log(loss_probability)) +
(observation.num_received_packets * std::log(1.0 - loss_probability)));
objective +=
temporal_weight * high_bandwidth_bias * observation.num_packets;
}
return objective;
}
DataRate LossBasedBweV2::GetSendingRate(
DataRate instantaneous_sending_rate) const {
if (num_observations_ <= 0) {
return instantaneous_sending_rate;
}
const int most_recent_observation_idx =
(num_observations_ - 1) % config_->observation_window_size;
const Observation& most_recent_observation =
observations_[most_recent_observation_idx];
DataRate sending_rate_previous_observation =
most_recent_observation.sending_rate;
return config_->sending_rate_smoothing_factor *
sending_rate_previous_observation +
(1.0 - config_->sending_rate_smoothing_factor) *
instantaneous_sending_rate;
}
DataRate LossBasedBweV2::GetInstantUpperBound() const {
return cached_instant_upper_bound_.value_or(DataRate::PlusInfinity());
}
void LossBasedBweV2::CalculateInstantUpperBound() {
DataRate instant_limit = DataRate::PlusInfinity();
const double average_reported_loss_ratio = GetAverageReportedLossRatio();
if (average_reported_loss_ratio > config_->instant_upper_bound_loss_offset) {
instant_limit = config_->instant_upper_bound_bandwidth_balance /
(average_reported_loss_ratio -
config_->instant_upper_bound_loss_offset);
}
cached_instant_upper_bound_ = instant_limit;
}
void LossBasedBweV2::CalculateTemporalWeights() {
for (int i = 0; i < config_->observation_window_size; ++i) {
temporal_weights_[i] = std::pow(config_->temporal_weight_factor, i);
instant_upper_bound_temporal_weights_[i] =
std::pow(config_->instant_upper_bound_temporal_weight_factor, i);
}
}
void LossBasedBweV2::NewtonsMethodUpdate(
ChannelParameters& channel_parameters) const {
if (num_observations_ <= 0) {
return;
}
for (int i = 0; i < config_->newton_iterations; ++i) {
const Derivatives derivatives = GetDerivatives(channel_parameters);
channel_parameters.inherent_loss -=
config_->newton_step_size * derivatives.first / derivatives.second;
channel_parameters.inherent_loss =
GetFeasibleInherentLoss(channel_parameters);
}
}
bool LossBasedBweV2::PushBackObservation(
rtc::ArrayView<const PacketResult> packet_results) {
if (packet_results.empty()) {
return false;
}
PacketResultsSummary packet_results_summary =
GetPacketResultsSummary(packet_results);
partial_observation_.num_packets += packet_results_summary.num_packets;
partial_observation_.num_lost_packets +=
packet_results_summary.num_lost_packets;
partial_observation_.size += packet_results_summary.total_size;
// This is the first packet report we have received.
if (!IsValid(last_send_time_most_recent_observation_)) {
last_send_time_most_recent_observation_ =
packet_results_summary.first_send_time;
}
const Timestamp last_send_time = packet_results_summary.last_send_time;
const TimeDelta observation_duration =
last_send_time - last_send_time_most_recent_observation_;
// Too small to be meaningful.
if (observation_duration < config_->observation_duration_lower_bound) {
return false;
}
last_send_time_most_recent_observation_ = last_send_time;
Observation observation;
observation.num_packets = partial_observation_.num_packets;
observation.num_lost_packets = partial_observation_.num_lost_packets;
observation.num_received_packets =
observation.num_packets - observation.num_lost_packets;
observation.sending_rate =
GetSendingRate(partial_observation_.size / observation_duration);
observation.id = num_observations_++;
observations_[observation.id % config_->observation_window_size] =
observation;
partial_observation_ = PartialObservation();
CalculateInstantUpperBound();
return true;
}
} // namespace webrtc