blob: 73fc23400b237cda4317d3d324152462f63ed72d [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/utility/source/process_thread_impl.h"
#include <string>
#include "modules/include/module.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/time_utils.h"
#include "rtc_base/trace_event.h"
namespace webrtc {
namespace {
// We use this constant internally to signal that a module has requested
// a callback right away. When this is set, no call to TimeUntilNextProcess
// should be made, but Process() should be called directly.
const int64_t kCallProcessImmediately = -1;
int64_t GetNextCallbackTime(Module* module, int64_t time_now) {
int64_t interval = module->TimeUntilNextProcess();
if (interval < 0) {
// Falling behind, we should call the callback now.
return time_now;
}
return time_now + interval;
}
} // namespace
ProcessThread::~ProcessThread() {}
// static
std::unique_ptr<ProcessThread> ProcessThread::Create(const char* thread_name) {
return std::unique_ptr<ProcessThread>(new ProcessThreadImpl(thread_name));
}
ProcessThreadImpl::ProcessThreadImpl(const char* thread_name)
: stop_(false), thread_name_(thread_name) {}
ProcessThreadImpl::~ProcessThreadImpl() {
RTC_DCHECK(thread_checker_.IsCurrent());
RTC_DCHECK(!stop_);
while (!delayed_tasks_.empty()) {
delete delayed_tasks_.top().task;
delayed_tasks_.pop();
}
while (!queue_.empty()) {
delete queue_.front();
queue_.pop();
}
}
void ProcessThreadImpl::Delete() {
RTC_LOG(LS_WARNING) << "Process thread " << thread_name_
<< " is destroyed as a TaskQueue.";
Stop();
delete this;
}
// Doesn't need locking, because the contending thread isn't running.
void ProcessThreadImpl::Start() RTC_NO_THREAD_SAFETY_ANALYSIS {
RTC_DCHECK(thread_checker_.IsCurrent());
RTC_DCHECK(thread_.empty());
if (!thread_.empty())
return;
RTC_DCHECK(!stop_);
for (ModuleCallback& m : modules_)
m.module->ProcessThreadAttached(this);
thread_ = rtc::PlatformThread::SpawnJoinable(
[this] {
CurrentTaskQueueSetter set_current(this);
while (Process()) {
}
},
thread_name_);
}
void ProcessThreadImpl::Stop() {
RTC_DCHECK(thread_checker_.IsCurrent());
if (thread_.empty())
return;
{
// Need to take lock, for synchronization with `thread_`.
MutexLock lock(&mutex_);
stop_ = true;
}
wake_up_.Set();
thread_.Finalize();
StopNoLocks();
}
// No locking needed, since this is called after the contending thread is
// stopped.
void ProcessThreadImpl::StopNoLocks() RTC_NO_THREAD_SAFETY_ANALYSIS {
RTC_DCHECK(thread_.empty());
stop_ = false;
for (ModuleCallback& m : modules_)
m.module->ProcessThreadAttached(nullptr);
}
void ProcessThreadImpl::WakeUp(Module* module) {
// Allowed to be called on any thread.
auto holds_mutex = [this] {
if (!IsCurrent()) {
return false;
}
RTC_DCHECK_RUN_ON(this);
return holds_mutex_;
};
if (holds_mutex()) {
// Avoid locking if called on the ProcessThread, via a module's Process),
WakeUpNoLocks(module);
} else {
MutexLock lock(&mutex_);
WakeUpInternal(module);
}
wake_up_.Set();
}
// Must be called only indirectly from Process, which already holds the lock.
void ProcessThreadImpl::WakeUpNoLocks(Module* module)
RTC_NO_THREAD_SAFETY_ANALYSIS {
RTC_DCHECK_RUN_ON(this);
WakeUpInternal(module);
}
void ProcessThreadImpl::WakeUpInternal(Module* module) {
for (ModuleCallback& m : modules_) {
if (m.module == module)
m.next_callback = kCallProcessImmediately;
}
}
void ProcessThreadImpl::PostTask(std::unique_ptr<QueuedTask> task) {
// Allowed to be called on any thread, except from a module's Process method.
if (IsCurrent()) {
RTC_DCHECK_RUN_ON(this);
RTC_DCHECK(!holds_mutex_) << "Calling ProcessThread::PostTask from "
"Module::Process is not supported";
}
{
MutexLock lock(&mutex_);
queue_.push(task.release());
}
wake_up_.Set();
}
void ProcessThreadImpl::PostDelayedTask(std::unique_ptr<QueuedTask> task,
uint32_t milliseconds) {
int64_t run_at_ms = rtc::TimeMillis() + milliseconds;
bool recalculate_wakeup_time;
{
MutexLock lock(&mutex_);
recalculate_wakeup_time =
delayed_tasks_.empty() || run_at_ms < delayed_tasks_.top().run_at_ms;
delayed_tasks_.emplace(run_at_ms, std::move(task));
}
if (recalculate_wakeup_time) {
wake_up_.Set();
}
}
void ProcessThreadImpl::RegisterModule(Module* module,
const rtc::Location& from) {
TRACE_EVENT0("webrtc", "ProcessThreadImpl::RegisterModule");
RTC_DCHECK(thread_checker_.IsCurrent());
RTC_DCHECK(module) << from.ToString();
#if RTC_DCHECK_IS_ON
{
// Catch programmer error.
MutexLock lock(&mutex_);
for (const ModuleCallback& mc : modules_) {
RTC_DCHECK(mc.module != module)
<< "Already registered here: " << mc.location.ToString()
<< "\n"
"Now attempting from here: "
<< from.ToString();
}
}
#endif
// Now that we know the module isn't in the list, we'll call out to notify
// the module that it's attached to the worker thread. We don't hold
// the lock while we make this call.
if (!thread_.empty())
module->ProcessThreadAttached(this);
{
MutexLock lock(&mutex_);
modules_.push_back(ModuleCallback(module, from));
}
// Wake the thread calling ProcessThreadImpl::Process() to update the
// waiting time. The waiting time for the just registered module may be
// shorter than all other registered modules.
wake_up_.Set();
}
void ProcessThreadImpl::DeRegisterModule(Module* module) {
RTC_DCHECK(thread_checker_.IsCurrent());
RTC_DCHECK(module);
{
MutexLock lock(&mutex_);
modules_.remove_if(
[&module](const ModuleCallback& m) { return m.module == module; });
}
// Notify the module that it's been detached.
module->ProcessThreadAttached(nullptr);
}
bool ProcessThreadImpl::Process() {
TRACE_EVENT1("webrtc", "ProcessThreadImpl", "name", thread_name_);
int64_t now = rtc::TimeMillis();
int64_t next_checkpoint = now + (1000 * 60);
RTC_DCHECK_RUN_ON(this);
{
MutexLock lock(&mutex_);
if (stop_)
return false;
for (ModuleCallback& m : modules_) {
// TODO(tommi): Would be good to measure the time TimeUntilNextProcess
// takes and dcheck if it takes too long (e.g. >=10ms). Ideally this
// operation should not require taking a lock, so querying all modules
// should run in a matter of nanoseconds.
if (m.next_callback == 0)
m.next_callback = GetNextCallbackTime(m.module, now);
// Set to true for the duration of the calls to modules' Process().
holds_mutex_ = true;
if (m.next_callback <= now ||
m.next_callback == kCallProcessImmediately) {
{
TRACE_EVENT2("webrtc", "ModuleProcess", "function",
m.location.function_name(), "file",
m.location.file_name());
m.module->Process();
}
// Use a new 'now' reference to calculate when the next callback
// should occur. We'll continue to use 'now' above for the baseline
// of calculating how long we should wait, to reduce variance.
int64_t new_now = rtc::TimeMillis();
m.next_callback = GetNextCallbackTime(m.module, new_now);
}
holds_mutex_ = false;
if (m.next_callback < next_checkpoint)
next_checkpoint = m.next_callback;
}
while (!delayed_tasks_.empty() && delayed_tasks_.top().run_at_ms <= now) {
queue_.push(delayed_tasks_.top().task);
delayed_tasks_.pop();
}
if (!delayed_tasks_.empty()) {
next_checkpoint =
std::min(next_checkpoint, delayed_tasks_.top().run_at_ms);
}
while (!queue_.empty()) {
QueuedTask* task = queue_.front();
queue_.pop();
mutex_.Unlock();
if (task->Run()) {
delete task;
}
mutex_.Lock();
}
}
int64_t time_to_wait = next_checkpoint - rtc::TimeMillis();
if (time_to_wait > 0)
wake_up_.Wait(static_cast<int>(time_to_wait));
return true;
}
} // namespace webrtc