blob: edb345447bf592187f7da4857ff823cd7ec9039d [file] [log] [blame]
/*
* Copyright 2012 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#if defined(WEBRTC_POSIX)
#include <dirent.h>
#endif
#include <memory>
#include "webrtc/p2p/base/basicpacketsocketfactory.h"
#include "webrtc/p2p/base/p2pconstants.h"
#include "webrtc/p2p/base/portallocator.h"
#include "webrtc/p2p/base/tcpport.h"
#include "webrtc/p2p/base/testturnserver.h"
#include "webrtc/p2p/base/turnport.h"
#include "webrtc/p2p/base/udpport.h"
#include "webrtc/base/asynctcpsocket.h"
#include "webrtc/base/buffer.h"
#include "webrtc/base/dscp.h"
#include "webrtc/base/fakeclock.h"
#include "webrtc/base/firewallsocketserver.h"
#include "webrtc/base/gunit.h"
#include "webrtc/base/helpers.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/physicalsocketserver.h"
#include "webrtc/base/socketaddress.h"
#include "webrtc/base/ssladapter.h"
#include "webrtc/base/thread.h"
#include "webrtc/base/virtualsocketserver.h"
using rtc::SocketAddress;
static const SocketAddress kLocalAddr1("11.11.11.11", 0);
static const SocketAddress kLocalAddr2("22.22.22.22", 0);
static const SocketAddress kLocalIPv6Addr(
"2401:fa00:4:1000:be30:5bff:fee5:c3", 0);
static const SocketAddress kLocalIPv6Addr2(
"2401:fa00:4:2000:be30:5bff:fee5:d4", 0);
static const SocketAddress kTurnUdpIntAddr("99.99.99.3",
cricket::TURN_SERVER_PORT);
static const SocketAddress kTurnTcpIntAddr("99.99.99.4",
cricket::TURN_SERVER_PORT);
static const SocketAddress kTurnUdpExtAddr("99.99.99.5", 0);
static const SocketAddress kTurnAlternateIntAddr("99.99.99.6",
cricket::TURN_SERVER_PORT);
static const SocketAddress kTurnIntAddr("99.99.99.7",
cricket::TURN_SERVER_PORT);
static const SocketAddress kTurnIPv6IntAddr(
"2400:4030:2:2c00:be30:abcd:efab:cdef",
cricket::TURN_SERVER_PORT);
static const SocketAddress kTurnUdpIPv6IntAddr(
"2400:4030:1:2c00:be30:abcd:efab:cdef", cricket::TURN_SERVER_PORT);
static const char kCandidateFoundation[] = "foundation";
static const char kIceUfrag1[] = "TESTICEUFRAG0001";
static const char kIceUfrag2[] = "TESTICEUFRAG0002";
static const char kIcePwd1[] = "TESTICEPWD00000000000001";
static const char kIcePwd2[] = "TESTICEPWD00000000000002";
static const char kTurnUsername[] = "test";
static const char kTurnPassword[] = "test";
static const char kTestOrigin[] = "http://example.com";
// This test configures the virtual socket server to simulate delay so that we
// can verify operations take no more than the expected number of round trips.
static constexpr unsigned int kSimulatedRtt = 50;
// Connection destruction may happen asynchronously, but it should only
// take one simulated clock tick.
static constexpr unsigned int kConnectionDestructionDelay = 1;
// This used to be 1 second, but that's not always enough for getaddrinfo().
// See: https://bugs.chromium.org/p/webrtc/issues/detail?id=5191
static constexpr unsigned int kResolverTimeout = 10000;
static const cricket::ProtocolAddress kTurnUdpProtoAddr(
kTurnUdpIntAddr, cricket::PROTO_UDP);
static const cricket::ProtocolAddress kTurnTcpProtoAddr(
kTurnTcpIntAddr, cricket::PROTO_TCP);
static const cricket::ProtocolAddress kTurnUdpIPv6ProtoAddr(
kTurnUdpIPv6IntAddr, cricket::PROTO_UDP);
static const unsigned int MSG_TESTFINISH = 0;
#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
static int GetFDCount() {
struct dirent *dp;
int fd_count = 0;
DIR *dir = opendir("/proc/self/fd/");
while ((dp = readdir(dir)) != NULL) {
if (dp->d_name[0] == '.')
continue;
++fd_count;
}
closedir(dir);
return fd_count;
}
#endif
namespace cricket {
class TurnPortTestVirtualSocketServer : public rtc::VirtualSocketServer {
public:
explicit TurnPortTestVirtualSocketServer(SocketServer* ss)
: VirtualSocketServer(ss) {
// This configures the virtual socket server to always add a simulated
// delay of exactly half of kSimulatedRtt.
set_delay_mean(kSimulatedRtt / 2);
UpdateDelayDistribution();
}
using rtc::VirtualSocketServer::LookupBinding;
};
class TestConnectionWrapper : public sigslot::has_slots<> {
public:
TestConnectionWrapper(Connection* conn) : connection_(conn) {
conn->SignalDestroyed.connect(
this, &TestConnectionWrapper::OnConnectionDestroyed);
}
Connection* connection() { return connection_; }
private:
void OnConnectionDestroyed(Connection* conn) {
ASSERT_TRUE(conn == connection_);
connection_ = nullptr;
}
Connection* connection_;
};
// Note: This test uses a fake clock with a simulated network round trip
// (between local port and TURN server) of kSimulatedRtt.
class TurnPortTest : public testing::Test,
public sigslot::has_slots<>,
public rtc::MessageHandler {
public:
TurnPortTest()
: main_(rtc::Thread::Current()),
pss_(new rtc::PhysicalSocketServer),
ss_(new TurnPortTestVirtualSocketServer(pss_.get())),
ss_scope_(ss_.get()),
network_("unittest", "unittest", rtc::IPAddress(INADDR_ANY), 32),
socket_factory_(rtc::Thread::Current()),
turn_server_(main_, kTurnUdpIntAddr, kTurnUdpExtAddr),
turn_ready_(false),
turn_error_(false),
turn_unknown_address_(false),
turn_create_permission_success_(false),
udp_ready_(false),
test_finish_(false) {
// Some code uses "last received time == 0" to represent "nothing received
// so far", so we need to start the fake clock at a nonzero time...
// TODO(deadbeef): Fix this.
fake_clock_.AdvanceTime(rtc::TimeDelta::FromSeconds(1));
network_.AddIP(rtc::IPAddress(INADDR_ANY));
}
virtual void OnMessage(rtc::Message* msg) {
ASSERT(msg->message_id == MSG_TESTFINISH);
if (msg->message_id == MSG_TESTFINISH)
test_finish_ = true;
}
void ConnectSignalAddressReadyToSetLocalhostAsAltenertativeLocalAddress() {
rtc::AsyncPacketSocket* socket = turn_port_->socket();
rtc::VirtualSocket* virtual_socket =
ss_->LookupBinding(socket->GetLocalAddress());
virtual_socket->SignalAddressReady.connect(
this, &TurnPortTest::SetLocalhostAsAltenertativeLocalAddress);
}
void SetLocalhostAsAltenertativeLocalAddress(
rtc::VirtualSocket* socket,
const rtc::SocketAddress& address) {
SocketAddress local_address("127.0.0.1", 2000);
socket->SetAlternativeLocalAddress(local_address);
}
void OnTurnPortComplete(Port* port) {
turn_ready_ = true;
}
void OnTurnPortError(Port* port) {
turn_error_ = true;
}
void OnTurnUnknownAddress(PortInterface* port,
const SocketAddress& addr,
ProtocolType proto,
IceMessage* msg,
const std::string& rf,
bool /*port_muxed*/) {
turn_unknown_address_ = true;
}
void OnTurnCreatePermissionResult(TurnPort* port,
const SocketAddress& addr,
int code) {
// Ignoring the address.
turn_create_permission_success_ = (code == 0);
}
void OnTurnRefreshResult(TurnPort* port, int code) {
turn_refresh_success_ = (code == 0);
}
void OnTurnReadPacket(Connection* conn, const char* data, size_t size,
const rtc::PacketTime& packet_time) {
turn_packets_.push_back(rtc::Buffer(data, size));
}
void OnUdpPortComplete(Port* port) {
udp_ready_ = true;
}
void OnUdpReadPacket(Connection* conn, const char* data, size_t size,
const rtc::PacketTime& packet_time) {
udp_packets_.push_back(rtc::Buffer(data, size));
}
void OnSocketReadPacket(rtc::AsyncPacketSocket* socket,
const char* data, size_t size,
const rtc::SocketAddress& remote_addr,
const rtc::PacketTime& packet_time) {
turn_port_->HandleIncomingPacket(socket, data, size, remote_addr,
packet_time);
}
rtc::AsyncSocket* CreateServerSocket(const SocketAddress addr) {
rtc::AsyncSocket* socket = ss_->CreateAsyncSocket(SOCK_STREAM);
EXPECT_GE(socket->Bind(addr), 0);
EXPECT_GE(socket->Listen(5), 0);
return socket;
}
void CreateTurnPort(const std::string& username,
const std::string& password,
const ProtocolAddress& server_address) {
CreateTurnPort(kLocalAddr1, username, password, server_address);
}
void CreateTurnPort(const rtc::SocketAddress& local_address,
const std::string& username,
const std::string& password,
const ProtocolAddress& server_address) {
RelayCredentials credentials(username, password);
turn_port_.reset(TurnPort::Create(main_, &socket_factory_, &network_,
local_address.ipaddr(), 0, 0,
kIceUfrag1, kIcePwd1,
server_address, credentials, 0,
std::string()));
// This TURN port will be the controlling.
turn_port_->SetIceRole(ICEROLE_CONTROLLING);
ConnectSignals();
}
// Should be identical to CreateTurnPort but specifies an origin value
// when creating the instance of TurnPort.
void CreateTurnPortWithOrigin(const rtc::SocketAddress& local_address,
const std::string& username,
const std::string& password,
const ProtocolAddress& server_address,
const std::string& origin) {
RelayCredentials credentials(username, password);
turn_port_.reset(TurnPort::Create(main_, &socket_factory_, &network_,
local_address.ipaddr(), 0, 0,
kIceUfrag1, kIcePwd1,
server_address, credentials, 0,
origin));
// This TURN port will be the controlling.
turn_port_->SetIceRole(ICEROLE_CONTROLLING);
ConnectSignals();
}
void CreateSharedTurnPort(const std::string& username,
const std::string& password,
const ProtocolAddress& server_address) {
ASSERT(server_address.proto == PROTO_UDP);
if (!socket_) {
socket_.reset(socket_factory_.CreateUdpSocket(
rtc::SocketAddress(kLocalAddr1.ipaddr(), 0), 0, 0));
ASSERT_TRUE(socket_ != NULL);
socket_->SignalReadPacket.connect(
this, &TurnPortTest::OnSocketReadPacket);
}
RelayCredentials credentials(username, password);
turn_port_.reset(TurnPort::Create(
main_, &socket_factory_, &network_, socket_.get(), kIceUfrag1, kIcePwd1,
server_address, credentials, 0, std::string()));
// This TURN port will be the controlling.
turn_port_->SetIceRole(ICEROLE_CONTROLLING);
ConnectSignals();
}
void ConnectSignals() {
turn_port_->SignalPortComplete.connect(this,
&TurnPortTest::OnTurnPortComplete);
turn_port_->SignalPortError.connect(this,
&TurnPortTest::OnTurnPortError);
turn_port_->SignalUnknownAddress.connect(this,
&TurnPortTest::OnTurnUnknownAddress);
turn_port_->SignalCreatePermissionResult.connect(this,
&TurnPortTest::OnTurnCreatePermissionResult);
turn_port_->SignalTurnRefreshResult.connect(
this, &TurnPortTest::OnTurnRefreshResult);
}
void CreateUdpPort() { CreateUdpPort(kLocalAddr2); }
void CreateUdpPort(const SocketAddress& address) {
udp_port_.reset(UDPPort::Create(main_, &socket_factory_, &network_,
address.ipaddr(), 0, 0, kIceUfrag2,
kIcePwd2, std::string(), false));
// UDP port will be controlled.
udp_port_->SetIceRole(ICEROLE_CONTROLLED);
udp_port_->SignalPortComplete.connect(
this, &TurnPortTest::OnUdpPortComplete);
}
void PrepareTurnAndUdpPorts(ProtocolType protocol_type) {
// turn_port_ should have been created.
ASSERT_TRUE(turn_port_ != nullptr);
turn_port_->PrepareAddress();
// Two round trips are required to allocate a TURN candidate.
// Plus, an extra round trip is needed for TCP.
ASSERT_TRUE_SIMULATED_WAIT(
turn_ready_,
protocol_type == PROTO_TCP ? kSimulatedRtt * 3 : kSimulatedRtt * 2,
fake_clock_);
CreateUdpPort();
udp_port_->PrepareAddress();
ASSERT_TRUE_SIMULATED_WAIT(udp_ready_, kSimulatedRtt, fake_clock_);
}
bool CheckConnectionFailedAndPruned(Connection* conn) {
return conn && !conn->active() && conn->state() == Connection::STATE_FAILED;
}
// Checks that |turn_port_| has a nonempty set of connections and they are all
// failed and pruned.
bool CheckAllConnectionsFailedAndPruned() {
auto& connections = turn_port_->connections();
if (connections.empty()) {
return false;
}
for (auto kv : connections) {
if (!CheckConnectionFailedAndPruned(kv.second)) {
return false;
}
}
return true;
}
void TestTurnAlternateServer(ProtocolType protocol_type) {
std::vector<rtc::SocketAddress> redirect_addresses;
redirect_addresses.push_back(kTurnAlternateIntAddr);
TestTurnRedirector redirector(redirect_addresses);
turn_server_.AddInternalSocket(kTurnIntAddr, protocol_type);
turn_server_.AddInternalSocket(kTurnAlternateIntAddr, protocol_type);
turn_server_.set_redirect_hook(&redirector);
CreateTurnPort(kTurnUsername, kTurnPassword,
ProtocolAddress(kTurnIntAddr, protocol_type));
// Retrieve the address before we run the state machine.
const SocketAddress old_addr = turn_port_->server_address().address;
turn_port_->PrepareAddress();
// Extra round trip due to "use alternate server" error response.
EXPECT_TRUE_SIMULATED_WAIT(
turn_ready_,
(protocol_type == PROTO_TCP ? kSimulatedRtt * 4 : kSimulatedRtt * 3),
fake_clock_);
// Retrieve the address again, the turn port's address should be
// changed.
const SocketAddress new_addr = turn_port_->server_address().address;
EXPECT_NE(old_addr, new_addr);
ASSERT_EQ(1U, turn_port_->Candidates().size());
EXPECT_EQ(kTurnUdpExtAddr.ipaddr(),
turn_port_->Candidates()[0].address().ipaddr());
EXPECT_NE(0, turn_port_->Candidates()[0].address().port());
}
void TestTurnAlternateServerV4toV6(ProtocolType protocol_type) {
std::vector<rtc::SocketAddress> redirect_addresses;
redirect_addresses.push_back(kTurnIPv6IntAddr);
TestTurnRedirector redirector(redirect_addresses);
turn_server_.AddInternalSocket(kTurnIntAddr, protocol_type);
turn_server_.set_redirect_hook(&redirector);
CreateTurnPort(kTurnUsername, kTurnPassword,
ProtocolAddress(kTurnIntAddr, protocol_type));
turn_port_->PrepareAddress();
EXPECT_TRUE_SIMULATED_WAIT(turn_error_, kSimulatedRtt * 2, fake_clock_);
}
void TestTurnAlternateServerPingPong(ProtocolType protocol_type) {
std::vector<rtc::SocketAddress> redirect_addresses;
redirect_addresses.push_back(kTurnAlternateIntAddr);
redirect_addresses.push_back(kTurnIntAddr);
TestTurnRedirector redirector(redirect_addresses);
turn_server_.AddInternalSocket(kTurnIntAddr, protocol_type);
turn_server_.AddInternalSocket(kTurnAlternateIntAddr, protocol_type);
turn_server_.set_redirect_hook(&redirector);
CreateTurnPort(kTurnUsername, kTurnPassword,
ProtocolAddress(kTurnIntAddr, protocol_type));
turn_port_->PrepareAddress();
// Extra round trip due to "use alternate server" error response.
EXPECT_TRUE_SIMULATED_WAIT(
turn_error_,
(protocol_type == PROTO_TCP ? kSimulatedRtt * 4 : kSimulatedRtt * 3),
fake_clock_);
ASSERT_EQ(0U, turn_port_->Candidates().size());
rtc::SocketAddress address;
// Verify that we have exhausted all alternate servers instead of
// failure caused by other errors.
EXPECT_FALSE(redirector.ShouldRedirect(address, &address));
}
void TestTurnAlternateServerDetectRepetition(ProtocolType protocol_type) {
std::vector<rtc::SocketAddress> redirect_addresses;
redirect_addresses.push_back(kTurnAlternateIntAddr);
redirect_addresses.push_back(kTurnAlternateIntAddr);
TestTurnRedirector redirector(redirect_addresses);
turn_server_.AddInternalSocket(kTurnIntAddr, protocol_type);
turn_server_.AddInternalSocket(kTurnAlternateIntAddr, protocol_type);
turn_server_.set_redirect_hook(&redirector);
CreateTurnPort(kTurnUsername, kTurnPassword,
ProtocolAddress(kTurnIntAddr, protocol_type));
turn_port_->PrepareAddress();
// Extra round trip due to "use alternate server" error response.
EXPECT_TRUE_SIMULATED_WAIT(
turn_error_,
(protocol_type == PROTO_TCP ? kSimulatedRtt * 4 : kSimulatedRtt * 3),
fake_clock_);
ASSERT_EQ(0U, turn_port_->Candidates().size());
}
void TestTurnConnection(ProtocolType protocol_type) {
// Create ports and prepare addresses.
PrepareTurnAndUdpPorts(protocol_type);
// Send ping from UDP to TURN.
Connection* conn1 = udp_port_->CreateConnection(
turn_port_->Candidates()[0], Port::ORIGIN_MESSAGE);
ASSERT_TRUE(conn1 != NULL);
conn1->Ping(0);
SIMULATED_WAIT(!turn_unknown_address_, kSimulatedRtt * 2, fake_clock_);
EXPECT_FALSE(turn_unknown_address_);
EXPECT_FALSE(conn1->receiving());
EXPECT_EQ(Connection::STATE_WRITE_INIT, conn1->write_state());
// Send ping from TURN to UDP.
Connection* conn2 = turn_port_->CreateConnection(
udp_port_->Candidates()[0], Port::ORIGIN_MESSAGE);
ASSERT_TRUE(conn2 != NULL);
ASSERT_TRUE_SIMULATED_WAIT(turn_create_permission_success_, kSimulatedRtt,
fake_clock_);
conn2->Ping(0);
// Two hops from TURN port to UDP port through TURN server, thus two RTTs.
EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE, conn2->write_state(),
kSimulatedRtt * 2, fake_clock_);
EXPECT_TRUE(conn1->receiving());
EXPECT_TRUE(conn2->receiving());
EXPECT_EQ(Connection::STATE_WRITE_INIT, conn1->write_state());
// Send another ping from UDP to TURN.
conn1->Ping(0);
EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE, conn1->write_state(),
kSimulatedRtt * 2, fake_clock_);
EXPECT_TRUE(conn2->receiving());
}
void TestDestroyTurnConnection() {
PrepareTurnAndUdpPorts(PROTO_UDP);
// Create connections on both ends.
Connection* conn1 = udp_port_->CreateConnection(turn_port_->Candidates()[0],
Port::ORIGIN_MESSAGE);
Connection* conn2 = turn_port_->CreateConnection(udp_port_->Candidates()[0],
Port::ORIGIN_MESSAGE);
ASSERT_TRUE(conn2 != NULL);
ASSERT_TRUE_SIMULATED_WAIT(turn_create_permission_success_, kSimulatedRtt,
fake_clock_);
// Make sure turn connection can receive.
conn1->Ping(0);
EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE, conn1->write_state(),
kSimulatedRtt * 2, fake_clock_);
EXPECT_FALSE(turn_unknown_address_);
// Destroy the connection on the TURN port. The TurnEntry still exists, so
// the TURN port should still process a ping from an unknown address.
conn2->Destroy();
conn1->Ping(0);
EXPECT_TRUE_SIMULATED_WAIT(turn_unknown_address_, kSimulatedRtt,
fake_clock_);
// Flush all requests in the invoker to destroy the TurnEntry.
// Expect that it still processes an incoming ping and signals the
// unknown address.
turn_unknown_address_ = false;
turn_port_->invoker()->Flush(rtc::Thread::Current());
conn1->Ping(0);
EXPECT_TRUE_SIMULATED_WAIT(turn_unknown_address_, kSimulatedRtt,
fake_clock_);
// If the connection is created again, it will start to receive pings.
conn2 = turn_port_->CreateConnection(udp_port_->Candidates()[0],
Port::ORIGIN_MESSAGE);
conn1->Ping(0);
EXPECT_TRUE_SIMULATED_WAIT(conn2->receiving(), kSimulatedRtt, fake_clock_);
}
void TestTurnSendData(ProtocolType protocol_type) {
PrepareTurnAndUdpPorts(protocol_type);
// Create connections and send pings.
Connection* conn1 = turn_port_->CreateConnection(
udp_port_->Candidates()[0], Port::ORIGIN_MESSAGE);
Connection* conn2 = udp_port_->CreateConnection(
turn_port_->Candidates()[0], Port::ORIGIN_MESSAGE);
ASSERT_TRUE(conn1 != NULL);
ASSERT_TRUE(conn2 != NULL);
conn1->SignalReadPacket.connect(static_cast<TurnPortTest*>(this),
&TurnPortTest::OnTurnReadPacket);
conn2->SignalReadPacket.connect(static_cast<TurnPortTest*>(this),
&TurnPortTest::OnUdpReadPacket);
conn1->Ping(0);
EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE, conn1->write_state(),
kSimulatedRtt * 2, fake_clock_);
conn2->Ping(0);
EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE, conn2->write_state(),
kSimulatedRtt * 2, fake_clock_);
// Send some data.
size_t num_packets = 256;
for (size_t i = 0; i < num_packets; ++i) {
unsigned char buf[256] = { 0 };
for (size_t j = 0; j < i + 1; ++j) {
buf[j] = 0xFF - static_cast<unsigned char>(j);
}
conn1->Send(buf, i + 1, options);
conn2->Send(buf, i + 1, options);
SIMULATED_WAIT(false, kSimulatedRtt, fake_clock_);
}
// Check the data.
ASSERT_EQ(num_packets, turn_packets_.size());
ASSERT_EQ(num_packets, udp_packets_.size());
for (size_t i = 0; i < num_packets; ++i) {
EXPECT_EQ(i + 1, turn_packets_[i].size());
EXPECT_EQ(i + 1, udp_packets_[i].size());
EXPECT_EQ(turn_packets_[i], udp_packets_[i]);
}
}
protected:
rtc::ScopedFakeClock fake_clock_;
rtc::Thread* main_;
std::unique_ptr<rtc::PhysicalSocketServer> pss_;
std::unique_ptr<TurnPortTestVirtualSocketServer> ss_;
rtc::SocketServerScope ss_scope_;
rtc::Network network_;
rtc::BasicPacketSocketFactory socket_factory_;
std::unique_ptr<rtc::AsyncPacketSocket> socket_;
TestTurnServer turn_server_;
std::unique_ptr<TurnPort> turn_port_;
std::unique_ptr<UDPPort> udp_port_;
bool turn_ready_;
bool turn_error_;
bool turn_unknown_address_;
bool turn_create_permission_success_;
bool udp_ready_;
bool test_finish_;
bool turn_refresh_success_ = false;
std::vector<rtc::Buffer> turn_packets_;
std::vector<rtc::Buffer> udp_packets_;
rtc::PacketOptions options;
};
TEST_F(TurnPortTest, TestTurnPortType) {
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
EXPECT_EQ(cricket::RELAY_PORT_TYPE, turn_port_->Type());
}
// Do a normal TURN allocation.
TEST_F(TurnPortTest, TestTurnAllocate) {
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
EXPECT_EQ(0, turn_port_->SetOption(rtc::Socket::OPT_SNDBUF, 10*1024));
turn_port_->PrepareAddress();
EXPECT_TRUE_SIMULATED_WAIT(turn_ready_, kSimulatedRtt * 2, fake_clock_);
ASSERT_EQ(1U, turn_port_->Candidates().size());
EXPECT_EQ(kTurnUdpExtAddr.ipaddr(),
turn_port_->Candidates()[0].address().ipaddr());
EXPECT_NE(0, turn_port_->Candidates()[0].address().port());
}
// Testing a normal UDP allocation using TCP connection.
TEST_F(TurnPortTest, TestTurnTcpAllocate) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnTcpProtoAddr);
EXPECT_EQ(0, turn_port_->SetOption(rtc::Socket::OPT_SNDBUF, 10*1024));
turn_port_->PrepareAddress();
EXPECT_TRUE_SIMULATED_WAIT(turn_ready_, kSimulatedRtt * 3, fake_clock_);
ASSERT_EQ(1U, turn_port_->Candidates().size());
EXPECT_EQ(kTurnUdpExtAddr.ipaddr(),
turn_port_->Candidates()[0].address().ipaddr());
EXPECT_NE(0, turn_port_->Candidates()[0].address().port());
}
// Test case for WebRTC issue 3927 where a proxy binds to the local host address
// instead the address that TurnPort originally bound to. The candidate pair
// impacted by this behavior should still be used.
TEST_F(TurnPortTest, TestTurnTcpAllocationWhenProxyChangesAddressToLocalHost) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnTcpProtoAddr);
EXPECT_EQ(0, turn_port_->SetOption(rtc::Socket::OPT_SNDBUF, 10 * 1024));
turn_port_->PrepareAddress();
ConnectSignalAddressReadyToSetLocalhostAsAltenertativeLocalAddress();
EXPECT_TRUE_SIMULATED_WAIT(turn_ready_, kSimulatedRtt * 3, fake_clock_);
ASSERT_EQ(1U, turn_port_->Candidates().size());
EXPECT_EQ(kTurnUdpExtAddr.ipaddr(),
turn_port_->Candidates()[0].address().ipaddr());
EXPECT_NE(0, turn_port_->Candidates()[0].address().port());
}
// Testing turn port will attempt to create TCP socket on address resolution
// failure.
TEST_F(TurnPortTest, TestTurnTcpOnAddressResolveFailure) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
CreateTurnPort(kTurnUsername, kTurnPassword,
ProtocolAddress(rtc::SocketAddress("www.google.invalid", 3478),
PROTO_TCP));
turn_port_->PrepareAddress();
EXPECT_TRUE_WAIT(turn_error_, kResolverTimeout);
// As VSS doesn't provide a DNS resolution, name resolve will fail. TurnPort
// will proceed in creating a TCP socket which will fail as there is no
// server on the above domain and error will be set to SOCKET_ERROR.
EXPECT_EQ(SOCKET_ERROR, turn_port_->error());
}
// In case of UDP on address resolve failure, TurnPort will not create socket
// and return allocate failure.
TEST_F(TurnPortTest, TestTurnUdpOnAddressResolveFailure) {
CreateTurnPort(kTurnUsername, kTurnPassword,
ProtocolAddress(rtc::SocketAddress("www.google.invalid", 3478),
PROTO_UDP));
turn_port_->PrepareAddress();
EXPECT_TRUE_WAIT(turn_error_, kResolverTimeout);
// Error from turn port will not be socket error.
EXPECT_NE(SOCKET_ERROR, turn_port_->error());
}
// Try to do a TURN allocation with an invalid password.
TEST_F(TurnPortTest, TestTurnAllocateBadPassword) {
CreateTurnPort(kTurnUsername, "bad", kTurnUdpProtoAddr);
turn_port_->PrepareAddress();
EXPECT_TRUE_SIMULATED_WAIT(turn_error_, kSimulatedRtt * 2, fake_clock_);
ASSERT_EQ(0U, turn_port_->Candidates().size());
}
// Tests that TURN port nonce will be reset when receiving an ALLOCATE MISMATCH
// error.
TEST_F(TurnPortTest, TestTurnAllocateNonceResetAfterAllocateMismatch) {
// Do a normal allocation first.
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
turn_port_->PrepareAddress();
EXPECT_TRUE_SIMULATED_WAIT(turn_ready_, kSimulatedRtt * 2, fake_clock_);
rtc::SocketAddress first_addr(turn_port_->socket()->GetLocalAddress());
// Destroy the turnport while keeping the drop probability to 1 to
// suppress the release of the allocation at the server.
ss_->set_drop_probability(1.0);
turn_port_.reset();
SIMULATED_WAIT(false, kSimulatedRtt, fake_clock_);
ss_->set_drop_probability(0.0);
// Force the socket server to assign the same port.
ss_->SetNextPortForTesting(first_addr.port());
turn_ready_ = false;
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
// It is expected that the turn port will first get a nonce from the server
// using timestamp |ts_before| but then get an allocate mismatch error and
// receive an even newer nonce based on the system clock. |ts_before| is
// chosen so that the two NONCEs generated by the server will be different.
int64_t ts_before = rtc::TimeMillis() - 1;
std::string first_nonce =
turn_server_.server()->SetTimestampForNextNonce(ts_before);
turn_port_->PrepareAddress();
// Four round trips; first we'll get "stale nonce", then
// "allocate mismatch", then "stale nonce" again, then finally it will
// succeed.
EXPECT_TRUE_SIMULATED_WAIT(turn_ready_, kSimulatedRtt * 4, fake_clock_);
EXPECT_NE(first_nonce, turn_port_->nonce());
}
// Tests that a new local address is created after
// STUN_ERROR_ALLOCATION_MISMATCH.
TEST_F(TurnPortTest, TestTurnAllocateMismatch) {
// Do a normal allocation first.
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
turn_port_->PrepareAddress();
EXPECT_TRUE_SIMULATED_WAIT(turn_ready_, kSimulatedRtt * 2, fake_clock_);
rtc::SocketAddress first_addr(turn_port_->socket()->GetLocalAddress());
// Clear connected_ flag on turnport to suppress the release of
// the allocation.
turn_port_->OnSocketClose(turn_port_->socket(), 0);
// Forces the socket server to assign the same port.
ss_->SetNextPortForTesting(first_addr.port());
turn_ready_ = false;
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
turn_port_->PrepareAddress();
// Verifies that the new port has the same address.
EXPECT_EQ(first_addr, turn_port_->socket()->GetLocalAddress());
// Four round trips; first we'll get "stale nonce", then
// "allocate mismatch", then "stale nonce" again, then finally it will
// succeed.
EXPECT_TRUE_SIMULATED_WAIT(turn_ready_, kSimulatedRtt * 4, fake_clock_);
// Verifies that the new port has a different address now.
EXPECT_NE(first_addr, turn_port_->socket()->GetLocalAddress());
// Verify that all packets received from the shared socket are ignored.
std::string test_packet = "Test packet";
EXPECT_FALSE(turn_port_->HandleIncomingPacket(
socket_.get(), test_packet.data(), test_packet.size(),
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0),
rtc::CreatePacketTime(0)));
}
// Tests that a shared-socket-TurnPort creates its own socket after
// STUN_ERROR_ALLOCATION_MISMATCH.
TEST_F(TurnPortTest, TestSharedSocketAllocateMismatch) {
// Do a normal allocation first.
CreateSharedTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
turn_port_->PrepareAddress();
EXPECT_TRUE_SIMULATED_WAIT(turn_ready_, kSimulatedRtt * 2, fake_clock_);
rtc::SocketAddress first_addr(turn_port_->socket()->GetLocalAddress());
// Clear connected_ flag on turnport to suppress the release of
// the allocation.
turn_port_->OnSocketClose(turn_port_->socket(), 0);
turn_ready_ = false;
CreateSharedTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
// Verifies that the new port has the same address.
EXPECT_EQ(first_addr, turn_port_->socket()->GetLocalAddress());
EXPECT_TRUE(turn_port_->SharedSocket());
turn_port_->PrepareAddress();
// Extra 2 round trips due to allocate mismatch.
EXPECT_TRUE_SIMULATED_WAIT(turn_ready_, kSimulatedRtt * 4, fake_clock_);
// Verifies that the new port has a different address now.
EXPECT_NE(first_addr, turn_port_->socket()->GetLocalAddress());
EXPECT_FALSE(turn_port_->SharedSocket());
}
TEST_F(TurnPortTest, TestTurnTcpAllocateMismatch) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnTcpProtoAddr);
// Do a normal allocation first.
turn_port_->PrepareAddress();
EXPECT_TRUE_SIMULATED_WAIT(turn_ready_, kSimulatedRtt * 3, fake_clock_);
rtc::SocketAddress first_addr(turn_port_->socket()->GetLocalAddress());
// Clear connected_ flag on turnport to suppress the release of
// the allocation.
turn_port_->OnSocketClose(turn_port_->socket(), 0);
// Forces the socket server to assign the same port.
ss_->SetNextPortForTesting(first_addr.port());
turn_ready_ = false;
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnTcpProtoAddr);
turn_port_->PrepareAddress();
// Verifies that the new port has the same address.
EXPECT_EQ(first_addr, turn_port_->socket()->GetLocalAddress());
// Extra 2 round trips due to allocate mismatch.
EXPECT_TRUE_SIMULATED_WAIT(turn_ready_, kSimulatedRtt * 5, fake_clock_);
// Verifies that the new port has a different address now.
EXPECT_NE(first_addr, turn_port_->socket()->GetLocalAddress());
}
TEST_F(TurnPortTest, TestRefreshRequestGetsErrorResponse) {
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
PrepareTurnAndUdpPorts(PROTO_UDP);
turn_port_->CreateConnection(udp_port_->Candidates()[0],
Port::ORIGIN_MESSAGE);
// Set bad credentials.
RelayCredentials bad_credentials("bad_user", "bad_pwd");
turn_port_->set_credentials(bad_credentials);
turn_refresh_success_ = false;
// This sends out the first RefreshRequest with correct credentials.
// When this succeeds, it will schedule a new RefreshRequest with the bad
// credential.
turn_port_->FlushRequests(TURN_REFRESH_REQUEST);
EXPECT_TRUE_SIMULATED_WAIT(turn_refresh_success_, kSimulatedRtt, fake_clock_);
// Flush it again, it will receive a bad response.
turn_port_->FlushRequests(TURN_REFRESH_REQUEST);
EXPECT_TRUE_SIMULATED_WAIT(!turn_refresh_success_, kSimulatedRtt,
fake_clock_);
EXPECT_FALSE(turn_port_->connected());
EXPECT_TRUE(CheckAllConnectionsFailedAndPruned());
EXPECT_FALSE(turn_port_->HasRequests());
}
// Test that TurnPort will not handle any incoming packets once it has been
// closed.
TEST_F(TurnPortTest, TestStopProcessingPacketsAfterClosed) {
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
PrepareTurnAndUdpPorts(PROTO_UDP);
Connection* conn1 = turn_port_->CreateConnection(udp_port_->Candidates()[0],
Port::ORIGIN_MESSAGE);
Connection* conn2 = udp_port_->CreateConnection(turn_port_->Candidates()[0],
Port::ORIGIN_MESSAGE);
ASSERT_TRUE(conn1 != NULL);
ASSERT_TRUE(conn2 != NULL);
// Make sure conn2 is writable.
conn2->Ping(0);
EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE, conn2->write_state(),
kSimulatedRtt * 2, fake_clock_);
turn_port_->Close();
SIMULATED_WAIT(false, kSimulatedRtt, fake_clock_);
turn_unknown_address_ = false;
conn2->Ping(0);
SIMULATED_WAIT(false, kSimulatedRtt, fake_clock_);
// Since the turn port does not handle packets any more, it should not
// SignalUnknownAddress.
EXPECT_FALSE(turn_unknown_address_);
}
// Test that CreateConnection will return null if port becomes disconnected.
TEST_F(TurnPortTest, TestCreateConnectionWhenSocketClosed) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnTcpProtoAddr);
PrepareTurnAndUdpPorts(PROTO_TCP);
// Create a connection.
Connection* conn1 = turn_port_->CreateConnection(udp_port_->Candidates()[0],
Port::ORIGIN_MESSAGE);
ASSERT_TRUE(conn1 != NULL);
// Close the socket and create a connection again.
turn_port_->OnSocketClose(turn_port_->socket(), 1);
conn1 = turn_port_->CreateConnection(udp_port_->Candidates()[0],
Port::ORIGIN_MESSAGE);
ASSERT_TRUE(conn1 == NULL);
}
// Tests that when a TCP socket is closed, the respective TURN connection will
// be destroyed.
TEST_F(TurnPortTest, TestSocketCloseWillDestroyConnection) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnTcpProtoAddr);
PrepareTurnAndUdpPorts(PROTO_TCP);
Connection* conn = turn_port_->CreateConnection(udp_port_->Candidates()[0],
Port::ORIGIN_MESSAGE);
EXPECT_NE(nullptr, conn);
EXPECT_TRUE(!turn_port_->connections().empty());
turn_port_->socket()->SignalClose(turn_port_->socket(), 1);
EXPECT_TRUE_SIMULATED_WAIT(turn_port_->connections().empty(),
kConnectionDestructionDelay, fake_clock_);
}
// Test try-alternate-server feature.
TEST_F(TurnPortTest, TestTurnAlternateServerUDP) {
TestTurnAlternateServer(PROTO_UDP);
}
TEST_F(TurnPortTest, TestTurnAlternateServerTCP) {
TestTurnAlternateServer(PROTO_TCP);
}
// Test that we fail when we redirect to an address different from
// current IP family.
TEST_F(TurnPortTest, TestTurnAlternateServerV4toV6UDP) {
TestTurnAlternateServerV4toV6(PROTO_UDP);
}
TEST_F(TurnPortTest, TestTurnAlternateServerV4toV6TCP) {
TestTurnAlternateServerV4toV6(PROTO_TCP);
}
// Test try-alternate-server catches the case of pingpong.
TEST_F(TurnPortTest, TestTurnAlternateServerPingPongUDP) {
TestTurnAlternateServerPingPong(PROTO_UDP);
}
TEST_F(TurnPortTest, TestTurnAlternateServerPingPongTCP) {
TestTurnAlternateServerPingPong(PROTO_TCP);
}
// Test try-alternate-server catch the case of repeated server.
TEST_F(TurnPortTest, TestTurnAlternateServerDetectRepetitionUDP) {
TestTurnAlternateServerDetectRepetition(PROTO_UDP);
}
TEST_F(TurnPortTest, TestTurnAlternateServerDetectRepetitionTCP) {
TestTurnAlternateServerDetectRepetition(PROTO_TCP);
}
// Do a TURN allocation and try to send a packet to it from the outside.
// The packet should be dropped. Then, try to send a packet from TURN to the
// outside. It should reach its destination. Finally, try again from the
// outside. It should now work as well.
TEST_F(TurnPortTest, TestTurnConnection) {
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
TestTurnConnection(PROTO_UDP);
}
// Similar to above, except that this test will use the shared socket.
TEST_F(TurnPortTest, TestTurnConnectionUsingSharedSocket) {
CreateSharedTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
TestTurnConnection(PROTO_UDP);
}
// Test that we can establish a TCP connection with TURN server.
TEST_F(TurnPortTest, TestTurnTcpConnection) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnTcpProtoAddr);
TestTurnConnection(PROTO_TCP);
}
// Test that if a connection on a TURN port is destroyed, the TURN port can
// still receive ping on that connection as if it is from an unknown address.
// If the connection is created again, it will be used to receive ping.
TEST_F(TurnPortTest, TestDestroyTurnConnection) {
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
TestDestroyTurnConnection();
}
// Similar to above, except that this test will use the shared socket.
TEST_F(TurnPortTest, TestDestroyTurnConnectionUsingSharedSocket) {
CreateSharedTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
TestDestroyTurnConnection();
}
// Test that we fail to create a connection when we want to use TLS over TCP.
// This test should be removed once we have TLS support.
TEST_F(TurnPortTest, TestTurnTlsTcpConnectionFails) {
ProtocolAddress secure_addr(kTurnTcpProtoAddr.address,
kTurnTcpProtoAddr.proto, true);
CreateTurnPort(kTurnUsername, kTurnPassword, secure_addr);
turn_port_->PrepareAddress();
EXPECT_TRUE_SIMULATED_WAIT(turn_error_, kSimulatedRtt * 2, fake_clock_);
ASSERT_EQ(0U, turn_port_->Candidates().size());
}
// Run TurnConnectionTest with one-time-use nonce feature.
// Here server will send a 438 STALE_NONCE error message for
// every TURN transaction.
TEST_F(TurnPortTest, TestTurnConnectionUsingOTUNonce) {
turn_server_.set_enable_otu_nonce(true);
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
TestTurnConnection(PROTO_UDP);
}
// Test that CreatePermissionRequest will be scheduled after the success
// of the first create permission request and the request will get an
// ErrorResponse if the ufrag and pwd are incorrect.
TEST_F(TurnPortTest, TestRefreshCreatePermissionRequest) {
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
PrepareTurnAndUdpPorts(PROTO_UDP);
Connection* conn = turn_port_->CreateConnection(udp_port_->Candidates()[0],
Port::ORIGIN_MESSAGE);
ASSERT_TRUE(conn != NULL);
EXPECT_TRUE_SIMULATED_WAIT(turn_create_permission_success_, kSimulatedRtt,
fake_clock_);
turn_create_permission_success_ = false;
// A create-permission-request should be pending.
// After the next create-permission-response is received, it will schedule
// another request with bad_ufrag and bad_pwd.
RelayCredentials bad_credentials("bad_user", "bad_pwd");
turn_port_->set_credentials(bad_credentials);
turn_port_->FlushRequests(kAllRequests);
EXPECT_TRUE_SIMULATED_WAIT(turn_create_permission_success_, kSimulatedRtt,
fake_clock_);
// Flush the requests again; the create-permission-request will fail.
turn_port_->FlushRequests(kAllRequests);
EXPECT_TRUE_SIMULATED_WAIT(!turn_create_permission_success_, kSimulatedRtt,
fake_clock_);
EXPECT_TRUE(CheckConnectionFailedAndPruned(conn));
}
TEST_F(TurnPortTest, TestChannelBindGetErrorResponse) {
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
PrepareTurnAndUdpPorts(PROTO_UDP);
Connection* conn1 = turn_port_->CreateConnection(udp_port_->Candidates()[0],
Port::ORIGIN_MESSAGE);
ASSERT_TRUE(conn1 != nullptr);
Connection* conn2 = udp_port_->CreateConnection(turn_port_->Candidates()[0],
Port::ORIGIN_MESSAGE);
ASSERT_TRUE(conn2 != nullptr);
conn1->Ping(0);
EXPECT_TRUE_SIMULATED_WAIT(conn1->writable(), kSimulatedRtt * 2, fake_clock_);
// TODO(deadbeef): SetEntryChannelId should not be a public method.
// Instead we should set an option on the fake TURN server to force it to
// send a channel bind errors.
ASSERT_TRUE(
turn_port_->SetEntryChannelId(udp_port_->Candidates()[0].address(), -1));
std::string data = "ABC";
conn1->Send(data.data(), data.length(), options);
EXPECT_TRUE_SIMULATED_WAIT(CheckConnectionFailedAndPruned(conn1),
kSimulatedRtt, fake_clock_);
// Verify that packets are allowed to be sent after a bind request error.
// They'll just use a send indication instead.
conn2->SignalReadPacket.connect(static_cast<TurnPortTest*>(this),
&TurnPortTest::OnUdpReadPacket);
conn1->Send(data.data(), data.length(), options);
EXPECT_TRUE_SIMULATED_WAIT(!udp_packets_.empty(), kSimulatedRtt, fake_clock_);
}
// Do a TURN allocation, establish a UDP connection, and send some data.
TEST_F(TurnPortTest, TestTurnSendDataTurnUdpToUdp) {
// Create ports and prepare addresses.
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
TestTurnSendData(PROTO_UDP);
EXPECT_EQ(UDP_PROTOCOL_NAME, turn_port_->Candidates()[0].relay_protocol());
}
// Do a TURN allocation, establish a TCP connection, and send some data.
TEST_F(TurnPortTest, TestTurnSendDataTurnTcpToUdp) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
// Create ports and prepare addresses.
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnTcpProtoAddr);
TestTurnSendData(PROTO_TCP);
EXPECT_EQ(TCP_PROTOCOL_NAME, turn_port_->Candidates()[0].relay_protocol());
}
// Test TURN fails to make a connection from IPv6 address to a server which has
// IPv4 address.
TEST_F(TurnPortTest, TestTurnLocalIPv6AddressServerIPv4) {
turn_server_.AddInternalSocket(kTurnUdpIPv6IntAddr, PROTO_UDP);
CreateTurnPort(kLocalIPv6Addr, kTurnUsername, kTurnPassword,
kTurnUdpProtoAddr);
turn_port_->PrepareAddress();
ASSERT_TRUE_SIMULATED_WAIT(turn_error_, kSimulatedRtt, fake_clock_);
EXPECT_TRUE(turn_port_->Candidates().empty());
}
// Test TURN make a connection from IPv6 address to a server which has
// IPv6 intenal address. But in this test external address is a IPv4 address,
// hence allocated address will be a IPv4 address.
TEST_F(TurnPortTest, TestTurnLocalIPv6AddressServerIPv6ExtenalIPv4) {
turn_server_.AddInternalSocket(kTurnUdpIPv6IntAddr, PROTO_UDP);
CreateTurnPort(kLocalIPv6Addr, kTurnUsername, kTurnPassword,
kTurnUdpIPv6ProtoAddr);
turn_port_->PrepareAddress();
EXPECT_TRUE_SIMULATED_WAIT(turn_ready_, kSimulatedRtt * 2, fake_clock_);
ASSERT_EQ(1U, turn_port_->Candidates().size());
EXPECT_EQ(kTurnUdpExtAddr.ipaddr(),
turn_port_->Candidates()[0].address().ipaddr());
EXPECT_NE(0, turn_port_->Candidates()[0].address().port());
}
// Tests that the local and remote candidate address families should match when
// a connection is created. Specifically, if a TURN port has an IPv6 address,
// its local candidate will still be an IPv4 address and it can only create
// connections with IPv4 remote candidates.
TEST_F(TurnPortTest, TestCandidateAddressFamilyMatch) {
turn_server_.AddInternalSocket(kTurnUdpIPv6IntAddr, PROTO_UDP);
CreateTurnPort(kLocalIPv6Addr, kTurnUsername, kTurnPassword,
kTurnUdpIPv6ProtoAddr);
turn_port_->PrepareAddress();
EXPECT_TRUE_SIMULATED_WAIT(turn_ready_, kSimulatedRtt * 2, fake_clock_);
ASSERT_EQ(1U, turn_port_->Candidates().size());
// Create an IPv4 candidate. It will match the TURN candidate.
Candidate remote_candidate(ICE_CANDIDATE_COMPONENT_RTP, "udp", kLocalAddr2, 0,
"", "", "local", 0, kCandidateFoundation);
remote_candidate.set_address(kLocalAddr2);
Connection* conn =
turn_port_->CreateConnection(remote_candidate, Port::ORIGIN_MESSAGE);
EXPECT_NE(nullptr, conn);
// Set the candidate address family to IPv6. It won't match the TURN
// candidate.
remote_candidate.set_address(kLocalIPv6Addr2);
conn = turn_port_->CreateConnection(remote_candidate, Port::ORIGIN_MESSAGE);
EXPECT_EQ(nullptr, conn);
}
TEST_F(TurnPortTest, TestOriginHeader) {
CreateTurnPortWithOrigin(kLocalAddr1, kTurnUsername, kTurnPassword,
kTurnUdpProtoAddr, kTestOrigin);
turn_port_->PrepareAddress();
EXPECT_TRUE_SIMULATED_WAIT(turn_ready_, kSimulatedRtt * 2, fake_clock_);
ASSERT_GT(turn_server_.server()->allocations().size(), 0U);
SocketAddress local_address = turn_port_->GetLocalAddress();
ASSERT_TRUE(turn_server_.FindAllocation(local_address) != NULL);
EXPECT_EQ(kTestOrigin, turn_server_.FindAllocation(local_address)->origin());
}
// Test that a CreatePermission failure will result in the connection being
// pruned and failed.
TEST_F(TurnPortTest, TestConnectionFailedAndPrunedOnCreatePermissionFailure) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
turn_server_.server()->set_reject_private_addresses(true);
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnTcpProtoAddr);
turn_port_->PrepareAddress();
EXPECT_TRUE_SIMULATED_WAIT(turn_ready_, kSimulatedRtt * 3, fake_clock_);
CreateUdpPort(SocketAddress("10.0.0.10", 0));
udp_port_->PrepareAddress();
EXPECT_TRUE_SIMULATED_WAIT(udp_ready_, kSimulatedRtt, fake_clock_);
// Create a connection.
TestConnectionWrapper conn(turn_port_->CreateConnection(
udp_port_->Candidates()[0], Port::ORIGIN_MESSAGE));
EXPECT_TRUE(conn.connection() != nullptr);
// Asynchronously, CreatePermission request should be sent and fail, which
// will make the connection pruned and failed.
EXPECT_TRUE_SIMULATED_WAIT(CheckConnectionFailedAndPruned(conn.connection()),
kSimulatedRtt, fake_clock_);
EXPECT_TRUE_SIMULATED_WAIT(!turn_create_permission_success_, kSimulatedRtt,
fake_clock_);
// Check that the connection is not deleted asynchronously.
SIMULATED_WAIT(conn.connection() == nullptr, kConnectionDestructionDelay,
fake_clock_);
EXPECT_NE(nullptr, conn.connection());
}
// Test that a TURN allocation is released when the port is closed.
TEST_F(TurnPortTest, TestTurnReleaseAllocation) {
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
turn_port_->PrepareAddress();
EXPECT_TRUE_SIMULATED_WAIT(turn_ready_, kSimulatedRtt * 2, fake_clock_);
ASSERT_GT(turn_server_.server()->allocations().size(), 0U);
turn_port_.reset();
EXPECT_EQ_SIMULATED_WAIT(0U, turn_server_.server()->allocations().size(),
kSimulatedRtt, fake_clock_);
}
// Test that a TURN TCP allocation is released when the port is closed.
TEST_F(TurnPortTest, TestTurnTCPReleaseAllocation) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnTcpProtoAddr);
turn_port_->PrepareAddress();
EXPECT_TRUE_SIMULATED_WAIT(turn_ready_, kSimulatedRtt * 3, fake_clock_);
ASSERT_GT(turn_server_.server()->allocations().size(), 0U);
turn_port_.reset();
EXPECT_EQ_SIMULATED_WAIT(0U, turn_server_.server()->allocations().size(),
kSimulatedRtt, fake_clock_);
}
// This test verifies any FD's are not leaked after TurnPort is destroyed.
// https://code.google.com/p/webrtc/issues/detail?id=2651
#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
TEST_F(TurnPortTest, TestResolverShutdown) {
turn_server_.AddInternalSocket(kTurnUdpIPv6IntAddr, PROTO_UDP);
int last_fd_count = GetFDCount();
// Need to supply unresolved address to kick off resolver.
CreateTurnPort(kLocalIPv6Addr, kTurnUsername, kTurnPassword,
ProtocolAddress(rtc::SocketAddress("www.google.invalid", 3478),
PROTO_UDP));
turn_port_->PrepareAddress();
ASSERT_TRUE_WAIT(turn_error_, kResolverTimeout);
EXPECT_TRUE(turn_port_->Candidates().empty());
turn_port_.reset();
rtc::Thread::Current()->Post(RTC_FROM_HERE, this, MSG_TESTFINISH);
// Waiting for above message to be processed.
ASSERT_TRUE_SIMULATED_WAIT(test_finish_, 1, fake_clock_);
EXPECT_EQ(last_fd_count, GetFDCount());
}
#endif
} // namespace cricket