blob: 10742150ecabf2b11a8b181d3fe0d26752cc83de [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/frame_buffer2.h"
#include <algorithm>
#include <cstdlib>
#include <iterator>
#include <queue>
#include <utility>
#include <vector>
#include "absl/memory/memory.h"
#include "api/video/encoded_image.h"
#include "api/video/video_timing.h"
#include "modules/video_coding/include/video_coding_defines.h"
#include "modules/video_coding/jitter_estimator.h"
#include "modules/video_coding/timing.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/rtt_mult_experiment.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/sequence_number_util.h"
#include "rtc_base/trace_event.h"
#include "system_wrappers/include/clock.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace video_coding {
namespace {
// Max number of frames the buffer will hold.
constexpr size_t kMaxFramesBuffered = 800;
// Max number of decoded frame info that will be saved.
constexpr int kMaxFramesHistory = 1 << 13;
// The time it's allowed for a frame to be late to its rendering prediction and
// still be rendered.
constexpr int kMaxAllowedFrameDelayMs = 5;
constexpr int64_t kLogNonDecodedIntervalMs = 5000;
} // namespace
FrameBuffer::FrameBuffer(Clock* clock,
VCMTiming* timing,
VCMReceiveStatisticsCallback* stats_callback)
: decoded_frames_history_(kMaxFramesHistory),
clock_(clock),
callback_queue_(nullptr),
jitter_estimator_(clock),
timing_(timing),
inter_frame_delay_(clock_->TimeInMilliseconds()),
stopped_(false),
protection_mode_(kProtectionNack),
stats_callback_(stats_callback),
last_log_non_decoded_ms_(-kLogNonDecodedIntervalMs),
add_rtt_to_playout_delay_(
webrtc::field_trial::IsEnabled("WebRTC-AddRttToPlayoutDelay")),
rtt_mult_settings_(RttMultExperiment::GetRttMultValue()) {}
FrameBuffer::~FrameBuffer() {}
void FrameBuffer::NextFrame(
int64_t max_wait_time_ms,
bool keyframe_required,
rtc::TaskQueue* callback_queue,
std::function<void(std::unique_ptr<EncodedFrame>, ReturnReason)> handler) {
RTC_DCHECK_RUN_ON(callback_queue);
TRACE_EVENT0("webrtc", "FrameBuffer::NextFrame");
int64_t latest_return_time_ms =
clock_->TimeInMilliseconds() + max_wait_time_ms;
rtc::CritScope lock(&crit_);
if (stopped_) {
return;
}
latest_return_time_ms_ = latest_return_time_ms;
keyframe_required_ = keyframe_required;
frame_handler_ = handler;
callback_queue_ = callback_queue;
StartWaitForNextFrameOnQueue();
}
void FrameBuffer::StartWaitForNextFrameOnQueue() {
RTC_DCHECK(callback_queue_);
RTC_DCHECK(!callback_task_.Running());
int64_t wait_ms = FindNextFrame(clock_->TimeInMilliseconds());
callback_task_ = RepeatingTaskHandle::DelayedStart(
callback_queue_->Get(), TimeDelta::ms(wait_ms), [this] {
// If this task has not been cancelled, we did not get any new frames
// while waiting. Continue with frame delivery.
rtc::CritScope lock(&crit_);
if (!frames_to_decode_.empty()) {
// We have frames, deliver!
frame_handler_(absl::WrapUnique(GetNextFrame()), kFrameFound);
CancelCallback();
return TimeDelta::Zero(); // Ignored.
} else if (clock_->TimeInMilliseconds() >= latest_return_time_ms_) {
// We have timed out, signal this and stop repeating.
frame_handler_(nullptr, kTimeout);
CancelCallback();
return TimeDelta::Zero(); // Ignored.
} else {
// If there's no frames to decode and there is still time left, it
// means that the frame buffer was cleared between creation and
// execution of this task. Continue waiting for the remaining time.
int64_t wait_ms = FindNextFrame(clock_->TimeInMilliseconds());
return TimeDelta::ms(wait_ms);
}
});
}
FrameBuffer::ReturnReason FrameBuffer::NextFrame(
int64_t max_wait_time_ms,
std::unique_ptr<EncodedFrame>* frame_out,
bool keyframe_required) {
TRACE_EVENT0("webrtc", "FrameBuffer::NextFrame");
int64_t latest_return_time_ms =
clock_->TimeInMilliseconds() + max_wait_time_ms;
int64_t wait_ms = max_wait_time_ms;
int64_t now_ms = 0;
do {
now_ms = clock_->TimeInMilliseconds();
{
rtc::CritScope lock(&crit_);
new_continuous_frame_event_.Reset();
if (stopped_)
return kStopped;
keyframe_required_ = keyframe_required;
latest_return_time_ms_ = latest_return_time_ms;
wait_ms = FindNextFrame(now_ms);
}
} while (new_continuous_frame_event_.Wait(wait_ms));
{
rtc::CritScope lock(&crit_);
if (!frames_to_decode_.empty()) {
frame_out->reset(GetNextFrame());
return kFrameFound;
}
}
if (latest_return_time_ms - clock_->TimeInMilliseconds() > 0) {
// If |next_frame_it_ == frames_.end()| and there is still time left, it
// means that the frame buffer was cleared as the thread in this function
// was waiting to acquire |crit_| in order to return. Wait for the
// remaining time and then return.
return NextFrame(latest_return_time_ms - now_ms, frame_out,
keyframe_required);
}
return kTimeout;
}
int64_t FrameBuffer::FindNextFrame(int64_t now_ms) {
int64_t wait_ms = latest_return_time_ms_ - now_ms;
frames_to_decode_.clear();
// |last_continuous_frame_| may be empty below, but nullopt is smaller
// than everything else and loop will immediately terminate as expected.
for (auto frame_it = frames_.begin();
frame_it != frames_.end() && frame_it->first <= last_continuous_frame_;
++frame_it) {
if (!frame_it->second.continuous ||
frame_it->second.num_missing_decodable > 0) {
continue;
}
EncodedFrame* frame = frame_it->second.frame.get();
if (keyframe_required_ && !frame->is_keyframe())
continue;
auto last_decoded_frame_timestamp =
decoded_frames_history_.GetLastDecodedFrameTimestamp();
// TODO(https://bugs.webrtc.org/9974): consider removing this check
// as it may make a stream undecodable after a very long delay between
// frames.
if (last_decoded_frame_timestamp &&
AheadOf(*last_decoded_frame_timestamp, frame->Timestamp())) {
continue;
}
// Only ever return all parts of a superframe. Therefore skip this
// frame if it's not a beginning of a superframe.
if (frame->inter_layer_predicted) {
continue;
}
// Gather all remaining frames for the same superframe.
std::vector<FrameMap::iterator> current_superframe;
current_superframe.push_back(frame_it);
bool last_layer_completed = frame_it->second.frame->is_last_spatial_layer;
FrameMap::iterator next_frame_it = frame_it;
while (true) {
++next_frame_it;
if (next_frame_it == frames_.end() ||
next_frame_it->first.picture_id != frame->id.picture_id ||
!next_frame_it->second.continuous) {
break;
}
// Check if the next frame has some undecoded references other than
// the previous frame in the same superframe.
size_t num_allowed_undecoded_refs =
(next_frame_it->second.frame->inter_layer_predicted) ? 1 : 0;
if (next_frame_it->second.num_missing_decodable >
num_allowed_undecoded_refs) {
break;
}
// All frames in the superframe should have the same timestamp.
if (frame->Timestamp() != next_frame_it->second.frame->Timestamp()) {
RTC_LOG(LS_WARNING) << "Frames in a single superframe have different"
" timestamps. Skipping undecodable superframe.";
break;
}
current_superframe.push_back(next_frame_it);
last_layer_completed = next_frame_it->second.frame->is_last_spatial_layer;
}
// Check if the current superframe is complete.
// TODO(bugs.webrtc.org/10064): consider returning all available to
// decode frames even if the superframe is not complete yet.
if (!last_layer_completed) {
continue;
}
frames_to_decode_ = std::move(current_superframe);
if (frame->RenderTime() == -1) {
frame->SetRenderTime(timing_->RenderTimeMs(frame->Timestamp(), now_ms));
}
wait_ms = timing_->MaxWaitingTime(frame->RenderTime(), now_ms);
// This will cause the frame buffer to prefer high framerate rather
// than high resolution in the case of the decoder not decoding fast
// enough and the stream has multiple spatial and temporal layers.
// For multiple temporal layers it may cause non-base layer frames to be
// skipped if they are late.
if (wait_ms < -kMaxAllowedFrameDelayMs)
continue;
break;
}
wait_ms = std::min<int64_t>(wait_ms, latest_return_time_ms_ - now_ms);
wait_ms = std::max<int64_t>(wait_ms, 0);
return wait_ms;
}
EncodedFrame* FrameBuffer::GetNextFrame() {
int64_t now_ms = clock_->TimeInMilliseconds();
// TODO(ilnik): remove |frames_out| use frames_to_decode_ directly.
std::vector<EncodedFrame*> frames_out;
RTC_DCHECK(!frames_to_decode_.empty());
bool superframe_delayed_by_retransmission = false;
size_t superframe_size = 0;
EncodedFrame* first_frame = frames_to_decode_[0]->second.frame.get();
int64_t render_time_ms = first_frame->RenderTime();
int64_t receive_time_ms = first_frame->ReceivedTime();
// Gracefully handle bad RTP timestamps and render time issues.
if (HasBadRenderTiming(*first_frame, now_ms)) {
jitter_estimator_.Reset();
timing_->Reset();
render_time_ms = timing_->RenderTimeMs(first_frame->Timestamp(), now_ms);
}
for (FrameMap::iterator& frame_it : frames_to_decode_) {
RTC_DCHECK(frame_it != frames_.end());
EncodedFrame* frame = frame_it->second.frame.release();
frame->SetRenderTime(render_time_ms);
superframe_delayed_by_retransmission |= frame->delayed_by_retransmission();
receive_time_ms = std::max(receive_time_ms, frame->ReceivedTime());
superframe_size += frame->size();
PropagateDecodability(frame_it->second);
decoded_frames_history_.InsertDecoded(frame_it->first, frame->Timestamp());
// Remove decoded frame and all undecoded frames before it.
if (stats_callback_) {
unsigned int dropped_frames = std::count_if(
frames_.begin(), frame_it,
[](const std::pair<const VideoLayerFrameId, FrameInfo>& frame) {
return frame.second.frame != nullptr;
});
if (dropped_frames > 0) {
stats_callback_->OnDroppedFrames(dropped_frames);
}
}
frames_.erase(frames_.begin(), ++frame_it);
frames_out.push_back(frame);
}
if (!superframe_delayed_by_retransmission) {
int64_t frame_delay;
if (inter_frame_delay_.CalculateDelay(first_frame->Timestamp(),
&frame_delay, receive_time_ms)) {
jitter_estimator_.UpdateEstimate(frame_delay, superframe_size);
}
float rtt_mult = protection_mode_ == kProtectionNackFEC ? 0.0 : 1.0;
absl::optional<float> rtt_mult_add_cap_ms = absl::nullopt;
if (rtt_mult_settings_.has_value()) {
rtt_mult = rtt_mult_settings_->rtt_mult_setting;
rtt_mult_add_cap_ms = rtt_mult_settings_->rtt_mult_add_cap_ms;
}
timing_->SetJitterDelay(
jitter_estimator_.GetJitterEstimate(rtt_mult, rtt_mult_add_cap_ms));
timing_->UpdateCurrentDelay(render_time_ms, now_ms);
} else {
if (RttMultExperiment::RttMultEnabled() || add_rtt_to_playout_delay_)
jitter_estimator_.FrameNacked();
}
UpdateJitterDelay();
UpdateTimingFrameInfo();
if (frames_out.size() == 1) {
return frames_out[0];
} else {
return CombineAndDeleteFrames(frames_out);
}
}
bool FrameBuffer::HasBadRenderTiming(const EncodedFrame& frame,
int64_t now_ms) {
// Assume that render timing errors are due to changes in the video stream.
int64_t render_time_ms = frame.RenderTimeMs();
// Zero render time means render immediately.
if (render_time_ms == 0) {
return false;
}
if (render_time_ms < 0) {
return true;
}
const int64_t kMaxVideoDelayMs = 10000;
if (std::abs(render_time_ms - now_ms) > kMaxVideoDelayMs) {
int frame_delay = static_cast<int>(std::abs(render_time_ms - now_ms));
RTC_LOG(LS_WARNING)
<< "A frame about to be decoded is out of the configured "
"delay bounds ("
<< frame_delay << " > " << kMaxVideoDelayMs
<< "). Resetting the video jitter buffer.";
return true;
}
if (static_cast<int>(timing_->TargetVideoDelay()) > kMaxVideoDelayMs) {
RTC_LOG(LS_WARNING) << "The video target delay has grown larger than "
<< kMaxVideoDelayMs << " ms.";
return true;
}
return false;
}
void FrameBuffer::SetProtectionMode(VCMVideoProtection mode) {
TRACE_EVENT0("webrtc", "FrameBuffer::SetProtectionMode");
rtc::CritScope lock(&crit_);
protection_mode_ = mode;
}
void FrameBuffer::Start() {
TRACE_EVENT0("webrtc", "FrameBuffer::Start");
rtc::CritScope lock(&crit_);
stopped_ = false;
}
void FrameBuffer::Stop() {
TRACE_EVENT0("webrtc", "FrameBuffer::Stop");
rtc::CritScope lock(&crit_);
stopped_ = true;
new_continuous_frame_event_.Set();
CancelCallback();
}
void FrameBuffer::Clear() {
rtc::CritScope lock(&crit_);
ClearFramesAndHistory();
}
void FrameBuffer::UpdateRtt(int64_t rtt_ms) {
rtc::CritScope lock(&crit_);
jitter_estimator_.UpdateRtt(rtt_ms);
}
bool FrameBuffer::ValidReferences(const EncodedFrame& frame) const {
for (size_t i = 0; i < frame.num_references; ++i) {
if (frame.references[i] >= frame.id.picture_id)
return false;
for (size_t j = i + 1; j < frame.num_references; ++j) {
if (frame.references[i] == frame.references[j])
return false;
}
}
if (frame.inter_layer_predicted && frame.id.spatial_layer == 0)
return false;
return true;
}
void FrameBuffer::CancelCallback() {
frame_handler_ = {};
callback_task_.Stop();
callback_queue_ = nullptr;
}
bool FrameBuffer::IsCompleteSuperFrame(const EncodedFrame& frame) {
if (frame.inter_layer_predicted) {
// Check that all previous spatial layers are already inserted.
VideoLayerFrameId id = frame.id;
RTC_DCHECK_GT(id.spatial_layer, 0);
--id.spatial_layer;
FrameMap::iterator prev_frame = frames_.find(id);
if (prev_frame == frames_.end() || !prev_frame->second.frame)
return false;
while (prev_frame->second.frame->inter_layer_predicted) {
if (prev_frame == frames_.begin())
return false;
--prev_frame;
--id.spatial_layer;
if (!prev_frame->second.frame ||
prev_frame->first.picture_id != id.picture_id ||
prev_frame->first.spatial_layer != id.spatial_layer) {
return false;
}
}
}
if (!frame.is_last_spatial_layer) {
// Check that all following spatial layers are already inserted.
VideoLayerFrameId id = frame.id;
++id.spatial_layer;
FrameMap::iterator next_frame = frames_.find(id);
if (next_frame == frames_.end() || !next_frame->second.frame)
return false;
while (!next_frame->second.frame->is_last_spatial_layer) {
++next_frame;
++id.spatial_layer;
if (next_frame == frames_.end() || !next_frame->second.frame ||
next_frame->first.picture_id != id.picture_id ||
next_frame->first.spatial_layer != id.spatial_layer) {
return false;
}
}
}
return true;
}
int64_t FrameBuffer::InsertFrame(std::unique_ptr<EncodedFrame> frame) {
TRACE_EVENT0("webrtc", "FrameBuffer::InsertFrame");
RTC_DCHECK(frame);
rtc::CritScope lock(&crit_);
const VideoLayerFrameId& id = frame->id;
int64_t last_continuous_picture_id =
!last_continuous_frame_ ? -1 : last_continuous_frame_->picture_id;
if (!ValidReferences(*frame)) {
RTC_LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) ("
<< id.picture_id << ":"
<< static_cast<int>(id.spatial_layer)
<< ") has invalid frame references, dropping frame.";
return last_continuous_picture_id;
}
if (frames_.size() >= kMaxFramesBuffered) {
if (frame->is_keyframe()) {
RTC_LOG(LS_WARNING) << "Inserting keyframe (picture_id:spatial_id) ("
<< id.picture_id << ":"
<< static_cast<int>(id.spatial_layer)
<< ") but buffer is full, clearing"
" buffer and inserting the frame.";
ClearFramesAndHistory();
} else {
RTC_LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) ("
<< id.picture_id << ":"
<< static_cast<int>(id.spatial_layer)
<< ") could not be inserted due to the frame "
"buffer being full, dropping frame.";
return last_continuous_picture_id;
}
}
auto last_decoded_frame = decoded_frames_history_.GetLastDecodedFrameId();
auto last_decoded_frame_timestamp =
decoded_frames_history_.GetLastDecodedFrameTimestamp();
if (last_decoded_frame && id <= *last_decoded_frame) {
if (AheadOf(frame->Timestamp(), *last_decoded_frame_timestamp) &&
frame->is_keyframe()) {
// If this frame has a newer timestamp but an earlier picture id then we
// assume there has been a jump in the picture id due to some encoder
// reconfiguration or some other reason. Even though this is not according
// to spec we can still continue to decode from this frame if it is a
// keyframe.
RTC_LOG(LS_WARNING)
<< "A jump in picture id was detected, clearing buffer.";
ClearFramesAndHistory();
last_continuous_picture_id = -1;
} else {
RTC_LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) ("
<< id.picture_id << ":"
<< static_cast<int>(id.spatial_layer)
<< ") inserted after frame ("
<< last_decoded_frame->picture_id << ":"
<< static_cast<int>(last_decoded_frame->spatial_layer)
<< ") was handed off for decoding, dropping frame.";
return last_continuous_picture_id;
}
}
// Test if inserting this frame would cause the order of the frames to become
// ambiguous (covering more than half the interval of 2^16). This can happen
// when the picture id make large jumps mid stream.
if (!frames_.empty() && id < frames_.begin()->first &&
frames_.rbegin()->first < id) {
RTC_LOG(LS_WARNING)
<< "A jump in picture id was detected, clearing buffer.";
ClearFramesAndHistory();
last_continuous_picture_id = -1;
}
auto info = frames_.emplace(id, FrameInfo()).first;
if (info->second.frame) {
RTC_LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) ("
<< id.picture_id << ":"
<< static_cast<int>(id.spatial_layer)
<< ") already inserted, dropping frame.";
return last_continuous_picture_id;
}
if (!UpdateFrameInfoWithIncomingFrame(*frame, info))
return last_continuous_picture_id;
if (!frame->delayed_by_retransmission())
timing_->IncomingTimestamp(frame->Timestamp(), frame->ReceivedTime());
if (stats_callback_ && IsCompleteSuperFrame(*frame)) {
stats_callback_->OnCompleteFrame(frame->is_keyframe(), frame->size(),
frame->contentType());
}
info->second.frame = std::move(frame);
if (info->second.num_missing_continuous == 0) {
info->second.continuous = true;
PropagateContinuity(info);
last_continuous_picture_id = last_continuous_frame_->picture_id;
// Since we now have new continuous frames there might be a better frame
// to return from NextFrame.
new_continuous_frame_event_.Set();
if (callback_queue_) {
callback_queue_->PostTask([this] {
rtc::CritScope lock(&crit_);
if (!callback_task_.Running())
return;
RTC_CHECK(frame_handler_);
callback_task_.Stop();
StartWaitForNextFrameOnQueue();
});
}
}
return last_continuous_picture_id;
}
void FrameBuffer::PropagateContinuity(FrameMap::iterator start) {
TRACE_EVENT0("webrtc", "FrameBuffer::PropagateContinuity");
RTC_DCHECK(start->second.continuous);
std::queue<FrameMap::iterator> continuous_frames;
continuous_frames.push(start);
// A simple BFS to traverse continuous frames.
while (!continuous_frames.empty()) {
auto frame = continuous_frames.front();
continuous_frames.pop();
if (!last_continuous_frame_ || *last_continuous_frame_ < frame->first) {
last_continuous_frame_ = frame->first;
}
// Loop through all dependent frames, and if that frame no longer has
// any unfulfilled dependencies then that frame is continuous as well.
for (size_t d = 0; d < frame->second.dependent_frames.size(); ++d) {
auto frame_ref = frames_.find(frame->second.dependent_frames[d]);
RTC_DCHECK(frame_ref != frames_.end());
// TODO(philipel): Look into why we've seen this happen.
if (frame_ref != frames_.end()) {
--frame_ref->second.num_missing_continuous;
if (frame_ref->second.num_missing_continuous == 0) {
frame_ref->second.continuous = true;
continuous_frames.push(frame_ref);
}
}
}
}
}
void FrameBuffer::PropagateDecodability(const FrameInfo& info) {
TRACE_EVENT0("webrtc", "FrameBuffer::PropagateDecodability");
for (size_t d = 0; d < info.dependent_frames.size(); ++d) {
auto ref_info = frames_.find(info.dependent_frames[d]);
RTC_DCHECK(ref_info != frames_.end());
// TODO(philipel): Look into why we've seen this happen.
if (ref_info != frames_.end()) {
RTC_DCHECK_GT(ref_info->second.num_missing_decodable, 0U);
--ref_info->second.num_missing_decodable;
}
}
}
bool FrameBuffer::UpdateFrameInfoWithIncomingFrame(const EncodedFrame& frame,
FrameMap::iterator info) {
TRACE_EVENT0("webrtc", "FrameBuffer::UpdateFrameInfoWithIncomingFrame");
const VideoLayerFrameId& id = frame.id;
auto last_decoded_frame = decoded_frames_history_.GetLastDecodedFrameId();
RTC_DCHECK(!last_decoded_frame || *last_decoded_frame < info->first);
// In this function we determine how many missing dependencies this |frame|
// has to become continuous/decodable. If a frame that this |frame| depend
// on has already been decoded then we can ignore that dependency since it has
// already been fulfilled.
//
// For all other frames we will register a backwards reference to this |frame|
// so that |num_missing_continuous| and |num_missing_decodable| can be
// decremented as frames become continuous/are decoded.
struct Dependency {
VideoLayerFrameId id;
bool continuous;
};
std::vector<Dependency> not_yet_fulfilled_dependencies;
// Find all dependencies that have not yet been fulfilled.
for (size_t i = 0; i < frame.num_references; ++i) {
VideoLayerFrameId ref_key(frame.references[i], frame.id.spatial_layer);
// Does |frame| depend on a frame earlier than the last decoded one?
if (last_decoded_frame && ref_key <= *last_decoded_frame) {
// Was that frame decoded? If not, this |frame| will never become
// decodable.
if (!decoded_frames_history_.WasDecoded(ref_key)) {
int64_t now_ms = clock_->TimeInMilliseconds();
if (last_log_non_decoded_ms_ + kLogNonDecodedIntervalMs < now_ms) {
RTC_LOG(LS_WARNING)
<< "Frame with (picture_id:spatial_id) (" << id.picture_id << ":"
<< static_cast<int>(id.spatial_layer)
<< ") depends on a non-decoded frame more previous than"
" the last decoded frame, dropping frame.";
last_log_non_decoded_ms_ = now_ms;
}
return false;
}
} else {
auto ref_info = frames_.find(ref_key);
bool ref_continuous =
ref_info != frames_.end() && ref_info->second.continuous;
not_yet_fulfilled_dependencies.push_back({ref_key, ref_continuous});
}
}
// Does |frame| depend on the lower spatial layer?
if (frame.inter_layer_predicted) {
VideoLayerFrameId ref_key(frame.id.picture_id, frame.id.spatial_layer - 1);
auto ref_info = frames_.find(ref_key);
bool lower_layer_decoded =
last_decoded_frame && *last_decoded_frame == ref_key;
bool lower_layer_continuous =
lower_layer_decoded ||
(ref_info != frames_.end() && ref_info->second.continuous);
if (!lower_layer_continuous || !lower_layer_decoded) {
not_yet_fulfilled_dependencies.push_back(
{ref_key, lower_layer_continuous});
}
}
info->second.num_missing_continuous = not_yet_fulfilled_dependencies.size();
info->second.num_missing_decodable = not_yet_fulfilled_dependencies.size();
for (const Dependency& dep : not_yet_fulfilled_dependencies) {
if (dep.continuous)
--info->second.num_missing_continuous;
frames_[dep.id].dependent_frames.push_back(id);
}
return true;
}
void FrameBuffer::UpdateJitterDelay() {
TRACE_EVENT0("webrtc", "FrameBuffer::UpdateJitterDelay");
if (!stats_callback_)
return;
int max_decode_ms;
int current_delay_ms;
int target_delay_ms;
int jitter_buffer_ms;
int min_playout_delay_ms;
int render_delay_ms;
if (timing_->GetTimings(&max_decode_ms, &current_delay_ms, &target_delay_ms,
&jitter_buffer_ms, &min_playout_delay_ms,
&render_delay_ms)) {
stats_callback_->OnFrameBufferTimingsUpdated(
max_decode_ms, current_delay_ms, target_delay_ms, jitter_buffer_ms,
min_playout_delay_ms, render_delay_ms);
}
}
void FrameBuffer::UpdateTimingFrameInfo() {
TRACE_EVENT0("webrtc", "FrameBuffer::UpdateTimingFrameInfo");
absl::optional<TimingFrameInfo> info = timing_->GetTimingFrameInfo();
if (info && stats_callback_)
stats_callback_->OnTimingFrameInfoUpdated(*info);
}
void FrameBuffer::ClearFramesAndHistory() {
TRACE_EVENT0("webrtc", "FrameBuffer::ClearFramesAndHistory");
if (stats_callback_) {
unsigned int dropped_frames = std::count_if(
frames_.begin(), frames_.end(),
[](const std::pair<const VideoLayerFrameId, FrameInfo>& frame) {
return frame.second.frame != nullptr;
});
if (dropped_frames > 0) {
stats_callback_->OnDroppedFrames(dropped_frames);
}
}
frames_.clear();
last_continuous_frame_.reset();
frames_to_decode_.clear();
decoded_frames_history_.Clear();
}
// TODO(philipel): Avoid the concatenation of frames here, by replacing
// NextFrame and GetNextFrame with methods returning multiple frames.
EncodedFrame* FrameBuffer::CombineAndDeleteFrames(
const std::vector<EncodedFrame*>& frames) const {
RTC_DCHECK(!frames.empty());
EncodedFrame* first_frame = frames[0];
EncodedFrame* last_frame = frames.back();
size_t total_length = 0;
for (size_t i = 0; i < frames.size(); ++i) {
total_length += frames[i]->size();
}
auto encoded_image_buffer = EncodedImageBuffer::Create(total_length);
uint8_t* buffer = encoded_image_buffer->data();
first_frame->SetSpatialLayerFrameSize(first_frame->id.spatial_layer,
first_frame->size());
memcpy(buffer, first_frame->data(), first_frame->size());
buffer += first_frame->size();
// Spatial index of combined frame is set equal to spatial index of its top
// spatial layer.
first_frame->SetSpatialIndex(last_frame->id.spatial_layer);
first_frame->id.spatial_layer = last_frame->id.spatial_layer;
first_frame->video_timing_mutable()->network2_timestamp_ms =
last_frame->video_timing().network2_timestamp_ms;
first_frame->video_timing_mutable()->receive_finish_ms =
last_frame->video_timing().receive_finish_ms;
// Append all remaining frames to the first one.
for (size_t i = 1; i < frames.size(); ++i) {
EncodedFrame* next_frame = frames[i];
first_frame->SetSpatialLayerFrameSize(next_frame->id.spatial_layer,
next_frame->size());
memcpy(buffer, next_frame->data(), next_frame->size());
buffer += next_frame->size();
delete next_frame;
}
first_frame->SetEncodedData(encoded_image_buffer);
return first_frame;
}
FrameBuffer::FrameInfo::FrameInfo() = default;
FrameBuffer::FrameInfo::FrameInfo(FrameInfo&&) = default;
FrameBuffer::FrameInfo::~FrameInfo() = default;
} // namespace video_coding
} // namespace webrtc