| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/aec3/adaptive_fir_filter.h" |
| |
| // Defines WEBRTC_ARCH_X86_FAMILY, used below. |
| #include "rtc_base/system/arch.h" |
| |
| #if defined(WEBRTC_HAS_NEON) |
| #include <arm_neon.h> |
| #endif |
| #if defined(WEBRTC_ARCH_X86_FAMILY) |
| #include <emmintrin.h> |
| #endif |
| #include <math.h> |
| |
| #include <algorithm> |
| #include <functional> |
| |
| #include "modules/audio_processing/aec3/fft_data.h" |
| #include "rtc_base/checks.h" |
| |
| namespace webrtc { |
| |
| namespace aec3 { |
| |
| // Computes and stores the frequency response of the filter. |
| void ComputeFrequencyResponse( |
| size_t num_partitions, |
| const std::vector<std::vector<FftData>>& H, |
| std::vector<std::array<float, kFftLengthBy2Plus1>>* H2) { |
| for (auto& H2_ch : *H2) { |
| H2_ch.fill(0.f); |
| } |
| |
| const size_t num_render_channels = H[0].size(); |
| RTC_DCHECK_EQ(H.size(), H2->capacity()); |
| for (size_t p = 0; p < num_partitions; ++p) { |
| RTC_DCHECK_EQ(kFftLengthBy2Plus1, (*H2)[p].size()); |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| for (size_t j = 0; j < kFftLengthBy2Plus1; ++j) { |
| float tmp = |
| H[p][ch].re[j] * H[p][ch].re[j] + H[p][ch].im[j] * H[p][ch].im[j]; |
| (*H2)[p][j] = std::max((*H2)[p][j], tmp); |
| } |
| } |
| } |
| } |
| |
| #if defined(WEBRTC_HAS_NEON) |
| // Computes and stores the frequency response of the filter. |
| void ComputeFrequencyResponse_Neon( |
| size_t num_partitions, |
| const std::vector<std::vector<FftData>>& H, |
| std::vector<std::array<float, kFftLengthBy2Plus1>>* H2) { |
| for (auto& H2_ch : *H2) { |
| H2_ch.fill(0.f); |
| } |
| |
| const size_t num_render_channels = H[0].size(); |
| RTC_DCHECK_EQ(H.size(), H2->capacity()); |
| for (size_t p = 0; p < num_partitions; ++p) { |
| RTC_DCHECK_EQ(kFftLengthBy2Plus1, (*H2)[p].size()); |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| for (size_t j = 0; j < kFftLengthBy2; j += 4) { |
| const float32x4_t re = vld1q_f32(&H[p][ch].re[j]); |
| const float32x4_t im = vld1q_f32(&H[p][ch].im[j]); |
| float32x4_t H2_new = vmulq_f32(re, re); |
| H2_new = vmlaq_f32(H2_new, im, im); |
| float32x4_t H2_p_j = vld1q_f32(&(*H2)[p][j]); |
| H2_p_j = vmaxq_f32(H2_p_j, H2_new); |
| vst1q_f32(&(*H2)[p][j], H2_p_j); |
| } |
| float H2_new = H[p][ch].re[kFftLengthBy2] * H[p][ch].re[kFftLengthBy2] + |
| H[p][ch].im[kFftLengthBy2] * H[p][ch].im[kFftLengthBy2]; |
| (*H2)[p][kFftLengthBy2] = std::max((*H2)[p][kFftLengthBy2], H2_new); |
| } |
| } |
| } |
| #endif |
| |
| #if defined(WEBRTC_ARCH_X86_FAMILY) |
| // Computes and stores the frequency response of the filter. |
| void ComputeFrequencyResponse_Sse2( |
| size_t num_partitions, |
| const std::vector<std::vector<FftData>>& H, |
| std::vector<std::array<float, kFftLengthBy2Plus1>>* H2) { |
| for (auto& H2_ch : *H2) { |
| H2_ch.fill(0.f); |
| } |
| |
| const size_t num_render_channels = H[0].size(); |
| RTC_DCHECK_EQ(H.size(), H2->capacity()); |
| // constexpr __mmmask8 kMaxMask = static_cast<__mmmask8>(256u); |
| for (size_t p = 0; p < num_partitions; ++p) { |
| RTC_DCHECK_EQ(kFftLengthBy2Plus1, (*H2)[p].size()); |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| for (size_t j = 0; j < kFftLengthBy2; j += 4) { |
| const __m128 re = _mm_loadu_ps(&H[p][ch].re[j]); |
| const __m128 re2 = _mm_mul_ps(re, re); |
| const __m128 im = _mm_loadu_ps(&H[p][ch].im[j]); |
| const __m128 im2 = _mm_mul_ps(im, im); |
| const __m128 H2_new = _mm_add_ps(re2, im2); |
| __m128 H2_k_j = _mm_loadu_ps(&(*H2)[p][j]); |
| H2_k_j = _mm_max_ps(H2_k_j, H2_new); |
| _mm_storeu_ps(&(*H2)[p][j], H2_k_j); |
| } |
| float H2_new = H[p][ch].re[kFftLengthBy2] * H[p][ch].re[kFftLengthBy2] + |
| H[p][ch].im[kFftLengthBy2] * H[p][ch].im[kFftLengthBy2]; |
| (*H2)[p][kFftLengthBy2] = std::max((*H2)[p][kFftLengthBy2], H2_new); |
| } |
| } |
| } |
| #endif |
| |
| // Adapts the filter partitions as H(t+1)=H(t)+G(t)*conj(X(t)). |
| void AdaptPartitions(const RenderBuffer& render_buffer, |
| const FftData& G, |
| size_t num_partitions, |
| std::vector<std::vector<FftData>>* H) { |
| rtc::ArrayView<const std::vector<FftData>> render_buffer_data = |
| render_buffer.GetFftBuffer(); |
| size_t index = render_buffer.Position(); |
| const size_t num_render_channels = render_buffer_data[index].size(); |
| for (size_t p = 0; p < num_partitions; ++p) { |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| const FftData& X_p_ch = render_buffer_data[index][ch]; |
| FftData& H_p_ch = (*H)[p][ch]; |
| for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) { |
| H_p_ch.re[k] += X_p_ch.re[k] * G.re[k] + X_p_ch.im[k] * G.im[k]; |
| H_p_ch.im[k] += X_p_ch.re[k] * G.im[k] - X_p_ch.im[k] * G.re[k]; |
| } |
| } |
| index = index < (render_buffer_data.size() - 1) ? index + 1 : 0; |
| } |
| } |
| |
| #if defined(WEBRTC_HAS_NEON) |
| // Adapts the filter partitions. (Neon variant) |
| void AdaptPartitions_Neon(const RenderBuffer& render_buffer, |
| const FftData& G, |
| size_t num_partitions, |
| std::vector<std::vector<FftData>>* H) { |
| rtc::ArrayView<const std::vector<FftData>> render_buffer_data = |
| render_buffer.GetFftBuffer(); |
| const size_t num_render_channels = render_buffer_data[0].size(); |
| const size_t lim1 = std::min( |
| render_buffer_data.size() - render_buffer.Position(), num_partitions); |
| const size_t lim2 = num_partitions; |
| constexpr size_t kNumFourBinBands = kFftLengthBy2 / 4; |
| |
| size_t X_partition = render_buffer.Position(); |
| size_t limit = lim1; |
| size_t p = 0; |
| do { |
| for (; p < limit; ++p, ++X_partition) { |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| FftData& H_p_ch = (*H)[p][ch]; |
| const FftData& X = render_buffer_data[X_partition][ch]; |
| for (size_t k = 0, n = 0; n < kNumFourBinBands; ++n, k += 4) { |
| const float32x4_t G_re = vld1q_f32(&G.re[k]); |
| const float32x4_t G_im = vld1q_f32(&G.im[k]); |
| const float32x4_t X_re = vld1q_f32(&X.re[k]); |
| const float32x4_t X_im = vld1q_f32(&X.im[k]); |
| const float32x4_t H_re = vld1q_f32(&H_p_ch.re[k]); |
| const float32x4_t H_im = vld1q_f32(&H_p_ch.im[k]); |
| const float32x4_t a = vmulq_f32(X_re, G_re); |
| const float32x4_t e = vmlaq_f32(a, X_im, G_im); |
| const float32x4_t c = vmulq_f32(X_re, G_im); |
| const float32x4_t f = vmlsq_f32(c, X_im, G_re); |
| const float32x4_t g = vaddq_f32(H_re, e); |
| const float32x4_t h = vaddq_f32(H_im, f); |
| vst1q_f32(&H_p_ch.re[k], g); |
| vst1q_f32(&H_p_ch.im[k], h); |
| } |
| } |
| } |
| |
| X_partition = 0; |
| limit = lim2; |
| } while (p < lim2); |
| |
| X_partition = render_buffer.Position(); |
| limit = lim1; |
| p = 0; |
| do { |
| for (; p < limit; ++p, ++X_partition) { |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| FftData& H_p_ch = (*H)[p][ch]; |
| const FftData& X = render_buffer_data[X_partition][ch]; |
| |
| H_p_ch.re[kFftLengthBy2] += X.re[kFftLengthBy2] * G.re[kFftLengthBy2] + |
| X.im[kFftLengthBy2] * G.im[kFftLengthBy2]; |
| H_p_ch.im[kFftLengthBy2] += X.re[kFftLengthBy2] * G.im[kFftLengthBy2] - |
| X.im[kFftLengthBy2] * G.re[kFftLengthBy2]; |
| } |
| } |
| X_partition = 0; |
| limit = lim2; |
| } while (p < lim2); |
| } |
| #endif |
| |
| #if defined(WEBRTC_ARCH_X86_FAMILY) |
| // Adapts the filter partitions. (SSE2 variant) |
| void AdaptPartitions_Sse2(const RenderBuffer& render_buffer, |
| const FftData& G, |
| size_t num_partitions, |
| std::vector<std::vector<FftData>>* H) { |
| rtc::ArrayView<const std::vector<FftData>> render_buffer_data = |
| render_buffer.GetFftBuffer(); |
| const size_t num_render_channels = render_buffer_data[0].size(); |
| const size_t lim1 = std::min( |
| render_buffer_data.size() - render_buffer.Position(), num_partitions); |
| const size_t lim2 = num_partitions; |
| constexpr size_t kNumFourBinBands = kFftLengthBy2 / 4; |
| |
| size_t X_partition = render_buffer.Position(); |
| size_t limit = lim1; |
| size_t p = 0; |
| do { |
| for (; p < limit; ++p, ++X_partition) { |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| FftData& H_p_ch = (*H)[p][ch]; |
| const FftData& X = render_buffer_data[X_partition][ch]; |
| |
| for (size_t k = 0, n = 0; n < kNumFourBinBands; ++n, k += 4) { |
| const __m128 G_re = _mm_loadu_ps(&G.re[k]); |
| const __m128 G_im = _mm_loadu_ps(&G.im[k]); |
| const __m128 X_re = _mm_loadu_ps(&X.re[k]); |
| const __m128 X_im = _mm_loadu_ps(&X.im[k]); |
| const __m128 H_re = _mm_loadu_ps(&H_p_ch.re[k]); |
| const __m128 H_im = _mm_loadu_ps(&H_p_ch.im[k]); |
| const __m128 a = _mm_mul_ps(X_re, G_re); |
| const __m128 b = _mm_mul_ps(X_im, G_im); |
| const __m128 c = _mm_mul_ps(X_re, G_im); |
| const __m128 d = _mm_mul_ps(X_im, G_re); |
| const __m128 e = _mm_add_ps(a, b); |
| const __m128 f = _mm_sub_ps(c, d); |
| const __m128 g = _mm_add_ps(H_re, e); |
| const __m128 h = _mm_add_ps(H_im, f); |
| _mm_storeu_ps(&H_p_ch.re[k], g); |
| _mm_storeu_ps(&H_p_ch.im[k], h); |
| } |
| } |
| } |
| X_partition = 0; |
| limit = lim2; |
| } while (p < lim2); |
| |
| X_partition = render_buffer.Position(); |
| limit = lim1; |
| p = 0; |
| do { |
| for (; p < limit; ++p, ++X_partition) { |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| FftData& H_p_ch = (*H)[p][ch]; |
| const FftData& X = render_buffer_data[X_partition][ch]; |
| |
| H_p_ch.re[kFftLengthBy2] += X.re[kFftLengthBy2] * G.re[kFftLengthBy2] + |
| X.im[kFftLengthBy2] * G.im[kFftLengthBy2]; |
| H_p_ch.im[kFftLengthBy2] += X.re[kFftLengthBy2] * G.im[kFftLengthBy2] - |
| X.im[kFftLengthBy2] * G.re[kFftLengthBy2]; |
| } |
| } |
| |
| X_partition = 0; |
| limit = lim2; |
| } while (p < lim2); |
| } |
| #endif |
| |
| // Produces the filter output. |
| void ApplyFilter(const RenderBuffer& render_buffer, |
| size_t num_partitions, |
| const std::vector<std::vector<FftData>>& H, |
| FftData* S) { |
| S->re.fill(0.f); |
| S->im.fill(0.f); |
| |
| rtc::ArrayView<const std::vector<FftData>> render_buffer_data = |
| render_buffer.GetFftBuffer(); |
| size_t index = render_buffer.Position(); |
| const size_t num_render_channels = render_buffer_data[index].size(); |
| for (size_t p = 0; p < num_partitions; ++p) { |
| RTC_DCHECK_EQ(num_render_channels, H[p].size()); |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| const FftData& X_p_ch = render_buffer_data[index][ch]; |
| const FftData& H_p_ch = H[p][ch]; |
| for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) { |
| S->re[k] += X_p_ch.re[k] * H_p_ch.re[k] - X_p_ch.im[k] * H_p_ch.im[k]; |
| S->im[k] += X_p_ch.re[k] * H_p_ch.im[k] + X_p_ch.im[k] * H_p_ch.re[k]; |
| } |
| } |
| index = index < (render_buffer_data.size() - 1) ? index + 1 : 0; |
| } |
| } |
| |
| #if defined(WEBRTC_HAS_NEON) |
| // Produces the filter output (Neon variant). |
| void ApplyFilter_Neon(const RenderBuffer& render_buffer, |
| size_t num_partitions, |
| const std::vector<std::vector<FftData>>& H, |
| FftData* S) { |
| // const RenderBuffer& render_buffer, |
| // rtc::ArrayView<const FftData> H, |
| // FftData* S) { |
| RTC_DCHECK_GE(H.size(), H.size() - 1); |
| S->Clear(); |
| |
| rtc::ArrayView<const std::vector<FftData>> render_buffer_data = |
| render_buffer.GetFftBuffer(); |
| const size_t num_render_channels = render_buffer_data[0].size(); |
| const size_t lim1 = std::min( |
| render_buffer_data.size() - render_buffer.Position(), num_partitions); |
| const size_t lim2 = num_partitions; |
| constexpr size_t kNumFourBinBands = kFftLengthBy2 / 4; |
| |
| size_t X_partition = render_buffer.Position(); |
| size_t p = 0; |
| size_t limit = lim1; |
| do { |
| for (; p < limit; ++p, ++X_partition) { |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| const FftData& H_p_ch = H[p][ch]; |
| const FftData& X = render_buffer_data[X_partition][ch]; |
| for (size_t k = 0, n = 0; n < kNumFourBinBands; ++n, k += 4) { |
| const float32x4_t X_re = vld1q_f32(&X.re[k]); |
| const float32x4_t X_im = vld1q_f32(&X.im[k]); |
| const float32x4_t H_re = vld1q_f32(&H_p_ch.re[k]); |
| const float32x4_t H_im = vld1q_f32(&H_p_ch.im[k]); |
| const float32x4_t S_re = vld1q_f32(&S->re[k]); |
| const float32x4_t S_im = vld1q_f32(&S->im[k]); |
| const float32x4_t a = vmulq_f32(X_re, H_re); |
| const float32x4_t e = vmlsq_f32(a, X_im, H_im); |
| const float32x4_t c = vmulq_f32(X_re, H_im); |
| const float32x4_t f = vmlaq_f32(c, X_im, H_re); |
| const float32x4_t g = vaddq_f32(S_re, e); |
| const float32x4_t h = vaddq_f32(S_im, f); |
| vst1q_f32(&S->re[k], g); |
| vst1q_f32(&S->im[k], h); |
| } |
| } |
| } |
| limit = lim2; |
| X_partition = 0; |
| } while (p < lim2); |
| |
| X_partition = render_buffer.Position(); |
| p = 0; |
| limit = lim1; |
| do { |
| for (; p < limit; ++p, ++X_partition) { |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| const FftData& H_p_ch = H[p][ch]; |
| const FftData& X = render_buffer_data[X_partition][ch]; |
| S->re[kFftLengthBy2] += X.re[kFftLengthBy2] * H_p_ch.re[kFftLengthBy2] - |
| X.im[kFftLengthBy2] * H_p_ch.im[kFftLengthBy2]; |
| S->im[kFftLengthBy2] += X.re[kFftLengthBy2] * H_p_ch.im[kFftLengthBy2] + |
| X.im[kFftLengthBy2] * H_p_ch.re[kFftLengthBy2]; |
| } |
| } |
| limit = lim2; |
| X_partition = 0; |
| } while (p < lim2); |
| } |
| #endif |
| |
| #if defined(WEBRTC_ARCH_X86_FAMILY) |
| // Produces the filter output (SSE2 variant). |
| void ApplyFilter_Sse2(const RenderBuffer& render_buffer, |
| size_t num_partitions, |
| const std::vector<std::vector<FftData>>& H, |
| FftData* S) { |
| // const RenderBuffer& render_buffer, |
| // rtc::ArrayView<const FftData> H, |
| // FftData* S) { |
| RTC_DCHECK_GE(H.size(), H.size() - 1); |
| S->re.fill(0.f); |
| S->im.fill(0.f); |
| |
| rtc::ArrayView<const std::vector<FftData>> render_buffer_data = |
| render_buffer.GetFftBuffer(); |
| const size_t num_render_channels = render_buffer_data[0].size(); |
| const size_t lim1 = std::min( |
| render_buffer_data.size() - render_buffer.Position(), num_partitions); |
| const size_t lim2 = num_partitions; |
| constexpr size_t kNumFourBinBands = kFftLengthBy2 / 4; |
| |
| size_t X_partition = render_buffer.Position(); |
| size_t p = 0; |
| size_t limit = lim1; |
| do { |
| for (; p < limit; ++p, ++X_partition) { |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| const FftData& H_p_ch = H[p][ch]; |
| const FftData& X = render_buffer_data[X_partition][ch]; |
| for (size_t k = 0, n = 0; n < kNumFourBinBands; ++n, k += 4) { |
| const __m128 X_re = _mm_loadu_ps(&X.re[k]); |
| const __m128 X_im = _mm_loadu_ps(&X.im[k]); |
| const __m128 H_re = _mm_loadu_ps(&H_p_ch.re[k]); |
| const __m128 H_im = _mm_loadu_ps(&H_p_ch.im[k]); |
| const __m128 S_re = _mm_loadu_ps(&S->re[k]); |
| const __m128 S_im = _mm_loadu_ps(&S->im[k]); |
| const __m128 a = _mm_mul_ps(X_re, H_re); |
| const __m128 b = _mm_mul_ps(X_im, H_im); |
| const __m128 c = _mm_mul_ps(X_re, H_im); |
| const __m128 d = _mm_mul_ps(X_im, H_re); |
| const __m128 e = _mm_sub_ps(a, b); |
| const __m128 f = _mm_add_ps(c, d); |
| const __m128 g = _mm_add_ps(S_re, e); |
| const __m128 h = _mm_add_ps(S_im, f); |
| _mm_storeu_ps(&S->re[k], g); |
| _mm_storeu_ps(&S->im[k], h); |
| } |
| } |
| } |
| limit = lim2; |
| X_partition = 0; |
| } while (p < lim2); |
| |
| X_partition = render_buffer.Position(); |
| p = 0; |
| limit = lim1; |
| do { |
| for (; p < limit; ++p, ++X_partition) { |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| const FftData& H_p_ch = H[p][ch]; |
| const FftData& X = render_buffer_data[X_partition][ch]; |
| S->re[kFftLengthBy2] += X.re[kFftLengthBy2] * H_p_ch.re[kFftLengthBy2] - |
| X.im[kFftLengthBy2] * H_p_ch.im[kFftLengthBy2]; |
| S->im[kFftLengthBy2] += X.re[kFftLengthBy2] * H_p_ch.im[kFftLengthBy2] + |
| X.im[kFftLengthBy2] * H_p_ch.re[kFftLengthBy2]; |
| } |
| } |
| limit = lim2; |
| X_partition = 0; |
| } while (p < lim2); |
| } |
| #endif |
| |
| } // namespace aec3 |
| |
| namespace { |
| |
| // Ensures that the newly added filter partitions after a size increase are set |
| // to zero. |
| void ZeroFilter(size_t old_size, |
| size_t new_size, |
| std::vector<std::vector<FftData>>* H) { |
| RTC_DCHECK_GE(H->size(), old_size); |
| RTC_DCHECK_GE(H->size(), new_size); |
| |
| for (size_t p = old_size; p < new_size; ++p) { |
| RTC_DCHECK_EQ((*H)[p].size(), (*H)[0].size()); |
| for (size_t ch = 0; ch < (*H)[0].size(); ++ch) { |
| (*H)[p][ch].Clear(); |
| } |
| } |
| } |
| |
| } // namespace |
| |
| AdaptiveFirFilter::AdaptiveFirFilter(size_t max_size_partitions, |
| size_t initial_size_partitions, |
| size_t size_change_duration_blocks, |
| size_t num_render_channels, |
| Aec3Optimization optimization, |
| ApmDataDumper* data_dumper) |
| : data_dumper_(data_dumper), |
| fft_(), |
| optimization_(optimization), |
| num_render_channels_(num_render_channels), |
| max_size_partitions_(max_size_partitions), |
| size_change_duration_blocks_( |
| static_cast<int>(size_change_duration_blocks)), |
| current_size_partitions_(initial_size_partitions), |
| target_size_partitions_(initial_size_partitions), |
| old_target_size_partitions_(initial_size_partitions), |
| H_(max_size_partitions_, std::vector<FftData>(num_render_channels_)) { |
| RTC_DCHECK(data_dumper_); |
| RTC_DCHECK_GE(max_size_partitions, initial_size_partitions); |
| |
| RTC_DCHECK_LT(0, size_change_duration_blocks_); |
| one_by_size_change_duration_blocks_ = 1.f / size_change_duration_blocks_; |
| |
| ZeroFilter(0, max_size_partitions_, &H_); |
| |
| SetSizePartitions(current_size_partitions_, true); |
| } |
| |
| AdaptiveFirFilter::~AdaptiveFirFilter() = default; |
| |
| void AdaptiveFirFilter::HandleEchoPathChange() { |
| // TODO(peah): Check the value and purpose of the code below. |
| ZeroFilter(current_size_partitions_, max_size_partitions_, &H_); |
| } |
| |
| void AdaptiveFirFilter::SetSizePartitions(size_t size, bool immediate_effect) { |
| RTC_DCHECK_EQ(max_size_partitions_, H_.capacity()); |
| RTC_DCHECK_LE(size, max_size_partitions_); |
| |
| target_size_partitions_ = std::min(max_size_partitions_, size); |
| if (immediate_effect) { |
| size_t old_size_partitions_ = current_size_partitions_; |
| current_size_partitions_ = old_target_size_partitions_ = |
| target_size_partitions_; |
| ZeroFilter(old_size_partitions_, current_size_partitions_, &H_); |
| |
| partition_to_constrain_ = |
| std::min(partition_to_constrain_, current_size_partitions_ - 1); |
| size_change_counter_ = 0; |
| } else { |
| size_change_counter_ = size_change_duration_blocks_; |
| } |
| } |
| |
| void AdaptiveFirFilter::UpdateSize() { |
| RTC_DCHECK_GE(size_change_duration_blocks_, size_change_counter_); |
| size_t old_size_partitions_ = current_size_partitions_; |
| if (size_change_counter_ > 0) { |
| --size_change_counter_; |
| |
| auto average = [](float from, float to, float from_weight) { |
| return from * from_weight + to * (1.f - from_weight); |
| }; |
| |
| float change_factor = |
| size_change_counter_ * one_by_size_change_duration_blocks_; |
| |
| current_size_partitions_ = average(old_target_size_partitions_, |
| target_size_partitions_, change_factor); |
| |
| partition_to_constrain_ = |
| std::min(partition_to_constrain_, current_size_partitions_ - 1); |
| } else { |
| current_size_partitions_ = old_target_size_partitions_ = |
| target_size_partitions_; |
| } |
| ZeroFilter(old_size_partitions_, current_size_partitions_, &H_); |
| RTC_DCHECK_LE(0, size_change_counter_); |
| } |
| |
| void AdaptiveFirFilter::Filter(const RenderBuffer& render_buffer, |
| FftData* S) const { |
| RTC_DCHECK(S); |
| switch (optimization_) { |
| #if defined(WEBRTC_ARCH_X86_FAMILY) |
| case Aec3Optimization::kSse2: |
| aec3::ApplyFilter_Sse2(render_buffer, current_size_partitions_, H_, S); |
| break; |
| case Aec3Optimization::kAvx2: |
| aec3::ApplyFilter_Avx2(render_buffer, current_size_partitions_, H_, S); |
| break; |
| #endif |
| #if defined(WEBRTC_HAS_NEON) |
| case Aec3Optimization::kNeon: |
| aec3::ApplyFilter_Neon(render_buffer, current_size_partitions_, H_, S); |
| break; |
| #endif |
| default: |
| aec3::ApplyFilter(render_buffer, current_size_partitions_, H_, S); |
| } |
| } |
| |
| void AdaptiveFirFilter::Adapt(const RenderBuffer& render_buffer, |
| const FftData& G) { |
| // Adapt the filter and update the filter size. |
| AdaptAndUpdateSize(render_buffer, G); |
| |
| // Constrain the filter partitions in a cyclic manner. |
| Constrain(); |
| } |
| |
| void AdaptiveFirFilter::Adapt(const RenderBuffer& render_buffer, |
| const FftData& G, |
| std::vector<float>* impulse_response) { |
| // Adapt the filter and update the filter size. |
| AdaptAndUpdateSize(render_buffer, G); |
| |
| // Constrain the filter partitions in a cyclic manner. |
| ConstrainAndUpdateImpulseResponse(impulse_response); |
| } |
| |
| void AdaptiveFirFilter::ComputeFrequencyResponse( |
| std::vector<std::array<float, kFftLengthBy2Plus1>>* H2) const { |
| RTC_DCHECK_GE(max_size_partitions_, H2->capacity()); |
| |
| H2->resize(current_size_partitions_); |
| |
| switch (optimization_) { |
| #if defined(WEBRTC_ARCH_X86_FAMILY) |
| case Aec3Optimization::kSse2: |
| aec3::ComputeFrequencyResponse_Sse2(current_size_partitions_, H_, H2); |
| break; |
| case Aec3Optimization::kAvx2: |
| aec3::ComputeFrequencyResponse_Avx2(current_size_partitions_, H_, H2); |
| break; |
| #endif |
| #if defined(WEBRTC_HAS_NEON) |
| case Aec3Optimization::kNeon: |
| aec3::ComputeFrequencyResponse_Neon(current_size_partitions_, H_, H2); |
| break; |
| #endif |
| default: |
| aec3::ComputeFrequencyResponse(current_size_partitions_, H_, H2); |
| } |
| } |
| |
| void AdaptiveFirFilter::AdaptAndUpdateSize(const RenderBuffer& render_buffer, |
| const FftData& G) { |
| // Update the filter size if needed. |
| UpdateSize(); |
| |
| // Adapt the filter. |
| switch (optimization_) { |
| #if defined(WEBRTC_ARCH_X86_FAMILY) |
| case Aec3Optimization::kSse2: |
| aec3::AdaptPartitions_Sse2(render_buffer, G, current_size_partitions_, |
| &H_); |
| break; |
| case Aec3Optimization::kAvx2: |
| aec3::AdaptPartitions_Avx2(render_buffer, G, current_size_partitions_, |
| &H_); |
| break; |
| #endif |
| #if defined(WEBRTC_HAS_NEON) |
| case Aec3Optimization::kNeon: |
| aec3::AdaptPartitions_Neon(render_buffer, G, current_size_partitions_, |
| &H_); |
| break; |
| #endif |
| default: |
| aec3::AdaptPartitions(render_buffer, G, current_size_partitions_, &H_); |
| } |
| } |
| |
| // Constrains the partition of the frequency domain filter to be limited in |
| // time via setting the relevant time-domain coefficients to zero and updates |
| // the corresponding values in an externally stored impulse response estimate. |
| void AdaptiveFirFilter::ConstrainAndUpdateImpulseResponse( |
| std::vector<float>* impulse_response) { |
| RTC_DCHECK_EQ(GetTimeDomainLength(max_size_partitions_), |
| impulse_response->capacity()); |
| impulse_response->resize(GetTimeDomainLength(current_size_partitions_)); |
| std::array<float, kFftLength> h; |
| impulse_response->resize(GetTimeDomainLength(current_size_partitions_)); |
| std::fill( |
| impulse_response->begin() + partition_to_constrain_ * kFftLengthBy2, |
| impulse_response->begin() + (partition_to_constrain_ + 1) * kFftLengthBy2, |
| 0.f); |
| |
| for (size_t ch = 0; ch < num_render_channels_; ++ch) { |
| fft_.Ifft(H_[partition_to_constrain_][ch], &h); |
| |
| static constexpr float kScale = 1.0f / kFftLengthBy2; |
| std::for_each(h.begin(), h.begin() + kFftLengthBy2, |
| [](float& a) { a *= kScale; }); |
| std::fill(h.begin() + kFftLengthBy2, h.end(), 0.f); |
| |
| if (ch == 0) { |
| std::copy( |
| h.begin(), h.begin() + kFftLengthBy2, |
| impulse_response->begin() + partition_to_constrain_ * kFftLengthBy2); |
| } else { |
| for (size_t k = 0, j = partition_to_constrain_ * kFftLengthBy2; |
| k < kFftLengthBy2; ++k, ++j) { |
| if (fabsf((*impulse_response)[j]) < fabsf(h[k])) { |
| (*impulse_response)[j] = h[k]; |
| } |
| } |
| } |
| |
| fft_.Fft(&h, &H_[partition_to_constrain_][ch]); |
| } |
| |
| partition_to_constrain_ = |
| partition_to_constrain_ < (current_size_partitions_ - 1) |
| ? partition_to_constrain_ + 1 |
| : 0; |
| } |
| |
| // Constrains the a partiton of the frequency domain filter to be limited in |
| // time via setting the relevant time-domain coefficients to zero. |
| void AdaptiveFirFilter::Constrain() { |
| std::array<float, kFftLength> h; |
| for (size_t ch = 0; ch < num_render_channels_; ++ch) { |
| fft_.Ifft(H_[partition_to_constrain_][ch], &h); |
| |
| static constexpr float kScale = 1.0f / kFftLengthBy2; |
| std::for_each(h.begin(), h.begin() + kFftLengthBy2, |
| [](float& a) { a *= kScale; }); |
| std::fill(h.begin() + kFftLengthBy2, h.end(), 0.f); |
| |
| fft_.Fft(&h, &H_[partition_to_constrain_][ch]); |
| } |
| |
| partition_to_constrain_ = |
| partition_to_constrain_ < (current_size_partitions_ - 1) |
| ? partition_to_constrain_ + 1 |
| : 0; |
| } |
| |
| void AdaptiveFirFilter::ScaleFilter(float factor) { |
| for (auto& H_p : H_) { |
| for (auto& H_p_ch : H_p) { |
| for (auto& re : H_p_ch.re) { |
| re *= factor; |
| } |
| for (auto& im : H_p_ch.im) { |
| im *= factor; |
| } |
| } |
| } |
| } |
| |
| // Set the filter coefficients. |
| void AdaptiveFirFilter::SetFilter(size_t num_partitions, |
| const std::vector<std::vector<FftData>>& H) { |
| const size_t min_num_partitions = |
| std::min(current_size_partitions_, num_partitions); |
| for (size_t p = 0; p < min_num_partitions; ++p) { |
| RTC_DCHECK_EQ(H_[p].size(), H[p].size()); |
| RTC_DCHECK_EQ(num_render_channels_, H_[p].size()); |
| |
| for (size_t ch = 0; ch < num_render_channels_; ++ch) { |
| std::copy(H[p][ch].re.begin(), H[p][ch].re.end(), H_[p][ch].re.begin()); |
| std::copy(H[p][ch].im.begin(), H[p][ch].im.end(), H_[p][ch].im.begin()); |
| } |
| } |
| } |
| |
| } // namespace webrtc |