| /* |
| * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/agc2/noise_level_estimator.h" |
| |
| #include <stddef.h> |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <numeric> |
| |
| #include "api/array_view.h" |
| #include "common_audio/include/audio_util.h" |
| #include "modules/audio_processing/agc2/signal_classifier.h" |
| #include "modules/audio_processing/logging/apm_data_dumper.h" |
| #include "rtc_base/checks.h" |
| |
| namespace webrtc { |
| namespace { |
| constexpr int kFramesPerSecond = 100; |
| |
| float FrameEnergy(const AudioFrameView<const float>& audio) { |
| float energy = 0.0f; |
| for (size_t k = 0; k < audio.num_channels(); ++k) { |
| float channel_energy = |
| std::accumulate(audio.channel(k).begin(), audio.channel(k).end(), 0.0f, |
| [](float a, float b) -> float { return a + b * b; }); |
| energy = std::max(channel_energy, energy); |
| } |
| return energy; |
| } |
| |
| float EnergyToDbfs(float signal_energy, size_t num_samples) { |
| const float rms = std::sqrt(signal_energy / num_samples); |
| return FloatS16ToDbfs(rms); |
| } |
| |
| class NoiseLevelEstimatorImpl : public NoiseLevelEstimator { |
| public: |
| NoiseLevelEstimatorImpl(ApmDataDumper* data_dumper) |
| : data_dumper_(data_dumper), signal_classifier_(data_dumper) { |
| Initialize(48000); |
| } |
| NoiseLevelEstimatorImpl(const NoiseLevelEstimatorImpl&) = delete; |
| NoiseLevelEstimatorImpl& operator=(const NoiseLevelEstimatorImpl&) = delete; |
| ~NoiseLevelEstimatorImpl() = default; |
| |
| float Analyze(const AudioFrameView<const float>& frame) { |
| data_dumper_->DumpRaw("agc2_noise_level_estimator_hold_counter", |
| noise_energy_hold_counter_); |
| const int sample_rate_hz = |
| static_cast<int>(frame.samples_per_channel() * kFramesPerSecond); |
| if (sample_rate_hz != sample_rate_hz_) { |
| Initialize(sample_rate_hz); |
| } |
| const float frame_energy = FrameEnergy(frame); |
| if (frame_energy <= 0.f) { |
| RTC_DCHECK_GE(frame_energy, 0.f); |
| data_dumper_->DumpRaw("agc2_noise_level_estimator_signal_type", -1); |
| return EnergyToDbfs(noise_energy_, frame.samples_per_channel()); |
| } |
| |
| if (first_update_) { |
| // Initialize the noise energy to the frame energy. |
| first_update_ = false; |
| data_dumper_->DumpRaw("agc2_noise_level_estimator_signal_type", -1); |
| noise_energy_ = std::max(frame_energy, min_noise_energy_); |
| return EnergyToDbfs(noise_energy_, frame.samples_per_channel()); |
| } |
| |
| const SignalClassifier::SignalType signal_type = |
| signal_classifier_.Analyze(frame.channel(0)); |
| data_dumper_->DumpRaw("agc2_noise_level_estimator_signal_type", |
| static_cast<int>(signal_type)); |
| |
| // Update the noise estimate in a minimum statistics-type manner. |
| if (signal_type == SignalClassifier::SignalType::kStationary) { |
| if (frame_energy > noise_energy_) { |
| // Leak the estimate upwards towards the frame energy if no recent |
| // downward update. |
| noise_energy_hold_counter_ = |
| std::max(noise_energy_hold_counter_ - 1, 0); |
| |
| if (noise_energy_hold_counter_ == 0) { |
| constexpr float kMaxNoiseEnergyFactor = 1.01f; |
| noise_energy_ = |
| std::min(noise_energy_ * kMaxNoiseEnergyFactor, frame_energy); |
| } |
| } else { |
| // Update smoothly downwards with a limited maximum update magnitude. |
| constexpr float kMinNoiseEnergyFactor = 0.9f; |
| constexpr float kNoiseEnergyDeltaFactor = 0.05f; |
| noise_energy_ = |
| std::max(noise_energy_ * kMinNoiseEnergyFactor, |
| noise_energy_ - kNoiseEnergyDeltaFactor * |
| (noise_energy_ - frame_energy)); |
| // Prevent an energy increase for the next 10 seconds. |
| constexpr int kNumFramesToEnergyIncreaseAllowed = 1000; |
| noise_energy_hold_counter_ = kNumFramesToEnergyIncreaseAllowed; |
| } |
| } else { |
| // TODO(bugs.webrtc.org/7494): Remove to not forget the estimated level. |
| // For a non-stationary signal, leak the estimate downwards in order to |
| // avoid estimate locking due to incorrect signal classification. |
| noise_energy_ = noise_energy_ * 0.99f; |
| } |
| |
| // Ensure a minimum of the estimate. |
| noise_energy_ = std::max(noise_energy_, min_noise_energy_); |
| return EnergyToDbfs(noise_energy_, frame.samples_per_channel()); |
| } |
| |
| private: |
| void Initialize(int sample_rate_hz) { |
| sample_rate_hz_ = sample_rate_hz; |
| noise_energy_ = 1.0f; |
| first_update_ = true; |
| min_noise_energy_ = sample_rate_hz * 2.0f * 2.0f / kFramesPerSecond; |
| noise_energy_hold_counter_ = 0; |
| signal_classifier_.Initialize(sample_rate_hz); |
| } |
| |
| ApmDataDumper* const data_dumper_; |
| int sample_rate_hz_; |
| float min_noise_energy_; |
| bool first_update_; |
| float noise_energy_; |
| int noise_energy_hold_counter_; |
| SignalClassifier signal_classifier_; |
| }; |
| |
| } // namespace |
| |
| std::unique_ptr<NoiseLevelEstimator> CreateNoiseLevelEstimator( |
| ApmDataDumper* data_dumper) { |
| return std::make_unique<NoiseLevelEstimatorImpl>(data_dumper); |
| } |
| |
| } // namespace webrtc |