blob: 9bb803d16dc24cbda16d30b369688a5a64e1cacd [file] [log] [blame]
/*
* Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// This implementation is borrowed from Chromium.
#include "rtc_base/containers/flat_tree.h"
// Following tests are ported and extended tests from libcpp for std::set.
// They can be found here:
// https://github.com/llvm/llvm-project/tree/main/libcxx/test/std/containers/associative/set
//
// Not ported tests:
// * No tests with PrivateConstructor and std::less<> changed to std::less<T>
// These tests have to do with C++14 std::less<>
// http://en.cppreference.com/w/cpp/utility/functional/less_void
// and add support for templated versions of lookup functions.
// Because we use same implementation, we figured that it's OK just to check
// compilation and this is what we do in flat_set_unittest/flat_map_unittest.
// * No tests for max_size()
// Has to do with allocator support.
// * No tests with DefaultOnly.
// Standard containers allocate each element in the separate node on the heap
// and then manipulate these nodes. Flat containers store their elements in
// contiguous memory and move them around, type is required to be movable.
// * No tests for N3644.
// This proposal suggests that all default constructed iterators compare
// equal. Currently we use std::vector iterators and they don't implement
// this.
// * No tests with min_allocator and no tests counting allocations.
// Flat sets currently don't support allocators.
#include <array>
#include <deque>
#include <forward_list>
#include <functional>
#include <iterator>
#include <list>
#include <string>
#include <vector>
#include "rtc_base/containers/identity.h"
#include "rtc_base/containers/move_only_int.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
namespace flat_containers_internal {
namespace {
template <class It>
class InputIterator {
public:
using iterator_category = std::input_iterator_tag;
using value_type = typename std::iterator_traits<It>::value_type;
using difference_type = typename std::iterator_traits<It>::difference_type;
using pointer = It;
using reference = typename std::iterator_traits<It>::reference;
InputIterator() : it_() {}
explicit InputIterator(It it) : it_(it) {}
reference operator*() const { return *it_; }
pointer operator->() const { return it_; }
InputIterator& operator++() {
++it_;
return *this;
}
InputIterator operator++(int) {
InputIterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(const InputIterator& lhs, const InputIterator& rhs) {
return lhs.it_ == rhs.it_;
}
friend bool operator!=(const InputIterator& lhs, const InputIterator& rhs) {
return !(lhs == rhs);
}
private:
It it_;
};
template <typename It>
InputIterator<It> MakeInputIterator(It it) {
return InputIterator<It>(it);
}
class Emplaceable {
public:
Emplaceable() : Emplaceable(0, 0.0) {}
Emplaceable(int i, double d) : int_(i), double_(d) {}
Emplaceable(Emplaceable&& other) : int_(other.int_), double_(other.double_) {
other.int_ = 0;
other.double_ = 0.0;
}
Emplaceable(const Emplaceable&) = delete;
Emplaceable& operator=(const Emplaceable&) = delete;
Emplaceable& operator=(Emplaceable&& other) {
int_ = other.int_;
other.int_ = 0;
double_ = other.double_;
other.double_ = 0.0;
return *this;
}
friend bool operator==(const Emplaceable& lhs, const Emplaceable& rhs) {
return std::tie(lhs.int_, lhs.double_) == std::tie(rhs.int_, rhs.double_);
}
friend bool operator<(const Emplaceable& lhs, const Emplaceable& rhs) {
return std::tie(lhs.int_, lhs.double_) < std::tie(rhs.int_, rhs.double_);
}
private:
int int_;
double double_;
};
struct TemplateConstructor {
template <typename T>
explicit TemplateConstructor(const T&) {}
friend bool operator<(const TemplateConstructor&,
const TemplateConstructor&) {
return false;
}
};
class NonDefaultConstructibleCompare {
public:
explicit NonDefaultConstructibleCompare(int) {}
template <typename T>
bool operator()(const T& lhs, const T& rhs) const {
return std::less<T>()(lhs, rhs);
}
};
template <class PairType>
struct LessByFirst {
bool operator()(const PairType& lhs, const PairType& rhs) const {
return lhs.first < rhs.first;
}
};
// Common test trees.
template <typename ContainerT>
using TypedTree = flat_tree<typename ContainerT::value_type,
identity,
std::less<>,
ContainerT>;
using IntTree = TypedTree<std::vector<int>>;
using IntPair = std::pair<int, int>;
using IntPairTree =
flat_tree<IntPair, identity, LessByFirst<IntPair>, std::vector<IntPair>>;
using MoveOnlyTree =
flat_tree<MoveOnlyInt, identity, std::less<>, std::vector<MoveOnlyInt>>;
using EmplaceableTree =
flat_tree<Emplaceable, identity, std::less<>, std::vector<Emplaceable>>;
using ReversedTree =
flat_tree<int, identity, std::greater<int>, std::vector<int>>;
using TreeWithStrangeCompare =
flat_tree<int, identity, NonDefaultConstructibleCompare, std::vector<int>>;
using ::testing::ElementsAre;
using ::testing::IsEmpty;
template <typename T>
class FlatTreeTest : public testing::Test {};
TYPED_TEST_SUITE_P(FlatTreeTest);
TEST(FlatTree, IsMultipass) {
static_assert(!is_multipass<std::istream_iterator<int>>(),
"InputIterator is not multipass");
static_assert(!is_multipass<std::ostream_iterator<int>>(),
"OutputIterator is not multipass");
static_assert(is_multipass<std::forward_list<int>::iterator>(),
"ForwardIterator is multipass");
static_assert(is_multipass<std::list<int>::iterator>(),
"BidirectionalIterator is multipass");
static_assert(is_multipass<std::vector<int>::iterator>(),
"RandomAccessIterator is multipass");
}
// Tests that the compiler generated move operators propagrate noexcept
// specifiers.
TEST(FlatTree, NoExcept) {
struct MoveThrows {
MoveThrows(MoveThrows&&) noexcept(false) {}
MoveThrows& operator=(MoveThrows&&) noexcept(false) { return *this; }
};
using MoveThrowsTree =
flat_tree<MoveThrows, identity, std::less<>, std::array<MoveThrows, 1>>;
static_assert(std::is_nothrow_move_constructible<IntTree>::value,
"Error: IntTree is not nothrow move constructible");
static_assert(std::is_nothrow_move_assignable<IntTree>::value,
"Error: IntTree is not nothrow move assignable");
static_assert(!std::is_nothrow_move_constructible<MoveThrowsTree>::value,
"Error: MoveThrowsTree is nothrow move constructible");
static_assert(!std::is_nothrow_move_assignable<MoveThrowsTree>::value,
"Error: MoveThrowsTree is nothrow move assignable");
}
// ----------------------------------------------------------------------------
// Class.
// Check that flat_tree and its iterators can be instantiated with an
// incomplete type.
TEST(FlatTree, IncompleteType) {
struct A {
using Tree = flat_tree<A, identity, std::less<A>, std::vector<A>>;
int data;
Tree set_with_incomplete_type;
Tree::iterator it;
Tree::const_iterator cit;
// We do not declare operator< because clang complains that it's unused.
};
A a;
}
TEST(FlatTree, Stability) {
using Pair = std::pair<int, int>;
using Tree = flat_tree<Pair, identity, LessByFirst<Pair>, std::vector<Pair>>;
// Constructors are stable.
Tree cont({{0, 0}, {1, 0}, {0, 1}, {2, 0}, {0, 2}, {1, 1}});
auto AllOfSecondsAreZero = [&cont] {
return absl::c_all_of(cont,
[](const Pair& elem) { return elem.second == 0; });
};
EXPECT_TRUE(AllOfSecondsAreZero()) << "constructor should be stable";
// Should not replace existing.
cont.insert(Pair(0, 2));
cont.insert(Pair(1, 2));
cont.insert(Pair(2, 2));
EXPECT_TRUE(AllOfSecondsAreZero()) << "insert should be stable";
cont.insert(Pair(3, 0));
cont.insert(Pair(3, 2));
EXPECT_TRUE(AllOfSecondsAreZero()) << "insert should be stable";
}
// ----------------------------------------------------------------------------
// Types.
// key_type
// key_compare
// value_type
// value_compare
// pointer
// const_pointer
// reference
// const_reference
// size_type
// difference_type
// iterator
// const_iterator
// reverse_iterator
// const_reverse_iterator
TEST(FlatTree, Types) {
// These are guaranteed to be portable.
static_assert((std::is_same<int, IntTree::key_type>::value), "");
static_assert((std::is_same<int, IntTree::value_type>::value), "");
static_assert((std::is_same<std::less<>, IntTree::key_compare>::value), "");
static_assert((std::is_same<int&, IntTree::reference>::value), "");
static_assert((std::is_same<const int&, IntTree::const_reference>::value),
"");
static_assert((std::is_same<int*, IntTree::pointer>::value), "");
static_assert((std::is_same<const int*, IntTree::const_pointer>::value), "");
}
// ----------------------------------------------------------------------------
// Lifetime.
// flat_tree()
// flat_tree(const Compare& comp)
TYPED_TEST_P(FlatTreeTest, DefaultConstructor) {
{
TypedTree<TypeParam> cont;
EXPECT_THAT(cont, ElementsAre());
}
{
TreeWithStrangeCompare cont(NonDefaultConstructibleCompare(0));
EXPECT_THAT(cont, ElementsAre());
}
}
// flat_tree(const flat_tree& x)
TYPED_TEST_P(FlatTreeTest, CopyConstructor) {
TypedTree<TypeParam> original({1, 2, 3, 4});
TypedTree<TypeParam> copied(original);
EXPECT_THAT(copied, ElementsAre(1, 2, 3, 4));
EXPECT_THAT(copied, ElementsAre(1, 2, 3, 4));
EXPECT_THAT(original, ElementsAre(1, 2, 3, 4));
EXPECT_EQ(original, copied);
}
// flat_tree(flat_tree&& x)
TEST(FlatTree, MoveConstructor) {
int input_range[] = {1, 2, 3, 4};
MoveOnlyTree original(std::begin(input_range), std::end(input_range));
MoveOnlyTree moved(std::move(original));
EXPECT_EQ(1U, moved.count(MoveOnlyInt(1)));
EXPECT_EQ(1U, moved.count(MoveOnlyInt(2)));
EXPECT_EQ(1U, moved.count(MoveOnlyInt(3)));
EXPECT_EQ(1U, moved.count(MoveOnlyInt(4)));
}
// flat_tree(InputIterator first,
// InputIterator last,
// const Compare& comp = Compare())
TEST(FlatTree, RangeConstructor) {
{
IntPair input_vals[] = {{1, 1}, {1, 2}, {2, 1}, {2, 2}, {1, 3},
{2, 3}, {3, 1}, {3, 2}, {3, 3}};
IntPairTree first_of(MakeInputIterator(std::begin(input_vals)),
MakeInputIterator(std::end(input_vals)));
EXPECT_THAT(first_of,
ElementsAre(IntPair(1, 1), IntPair(2, 1), IntPair(3, 1)));
}
{
TreeWithStrangeCompare::value_type input_vals[] = {1, 1, 1, 2, 2,
2, 3, 3, 3};
TreeWithStrangeCompare cont(MakeInputIterator(std::begin(input_vals)),
MakeInputIterator(std::end(input_vals)),
NonDefaultConstructibleCompare(0));
EXPECT_THAT(cont, ElementsAre(1, 2, 3));
}
}
// flat_tree(const container_type&)
TYPED_TEST_P(FlatTreeTest, ContainerCopyConstructor) {
TypeParam items = {1, 2, 3, 4};
TypedTree<TypeParam> tree(items);
EXPECT_THAT(tree, ElementsAre(1, 2, 3, 4));
EXPECT_THAT(items, ElementsAre(1, 2, 3, 4));
}
// flat_tree(container_type&&)
TEST(FlatTree, ContainerMoveConstructor) {
using Pair = std::pair<int, MoveOnlyInt>;
// Construct an unsorted vector with a duplicate item in it. Sorted by the
// first item, the second allows us to test for stability. Using a move
// only type to ensure the vector is not copied.
std::vector<Pair> storage;
storage.push_back(Pair(2, MoveOnlyInt(0)));
storage.push_back(Pair(1, MoveOnlyInt(0)));
storage.push_back(Pair(2, MoveOnlyInt(1)));
using Tree = flat_tree<Pair, identity, LessByFirst<Pair>, std::vector<Pair>>;
Tree tree(std::move(storage));
// The list should be two items long, with only the first "2" saved.
ASSERT_EQ(2u, tree.size());
const Pair& zeroth = *tree.begin();
ASSERT_EQ(1, zeroth.first);
ASSERT_EQ(0, zeroth.second.data());
const Pair& first = *(tree.begin() + 1);
ASSERT_EQ(2, first.first);
ASSERT_EQ(0, first.second.data());
}
// flat_tree(std::initializer_list<value_type> ilist,
// const Compare& comp = Compare())
TYPED_TEST_P(FlatTreeTest, InitializerListConstructor) {
{
TypedTree<TypeParam> cont({1, 2, 3, 4, 5, 6, 10, 8});
EXPECT_THAT(cont, ElementsAre(1, 2, 3, 4, 5, 6, 8, 10));
}
{
TypedTree<TypeParam> cont({1, 2, 3, 4, 5, 6, 10, 8});
EXPECT_THAT(cont, ElementsAre(1, 2, 3, 4, 5, 6, 8, 10));
}
{
TreeWithStrangeCompare cont({1, 2, 3, 4, 5, 6, 10, 8},
NonDefaultConstructibleCompare(0));
EXPECT_THAT(cont, ElementsAre(1, 2, 3, 4, 5, 6, 8, 10));
}
{
IntPairTree first_of({{1, 1}, {2, 1}, {1, 2}});
EXPECT_THAT(first_of, ElementsAre(IntPair(1, 1), IntPair(2, 1)));
}
}
// flat_tree(sorted_unique_t,
// InputIterator first,
// InputIterator last,
// const Compare& comp = Compare())
TEST(FlatTree, SortedUniqueRangeConstructor) {
{
IntPair input_vals[] = {{1, 1}, {2, 1}, {3, 1}};
IntPairTree first_of(sorted_unique,
MakeInputIterator(std::begin(input_vals)),
MakeInputIterator(std::end(input_vals)));
EXPECT_THAT(first_of,
ElementsAre(IntPair(1, 1), IntPair(2, 1), IntPair(3, 1)));
}
{
TreeWithStrangeCompare::value_type input_vals[] = {1, 2, 3};
TreeWithStrangeCompare cont(sorted_unique,
MakeInputIterator(std::begin(input_vals)),
MakeInputIterator(std::end(input_vals)),
NonDefaultConstructibleCompare(0));
EXPECT_THAT(cont, ElementsAre(1, 2, 3));
}
}
// flat_tree(sorted_unique_t, const container_type&)
TYPED_TEST_P(FlatTreeTest, SortedUniqueContainerCopyConstructor) {
TypeParam items = {1, 2, 3, 4};
TypedTree<TypeParam> tree(sorted_unique, items);
EXPECT_THAT(tree, ElementsAre(1, 2, 3, 4));
EXPECT_THAT(items, ElementsAre(1, 2, 3, 4));
}
// flat_tree(sorted_unique_t, std::vector<value_type>&&)
TEST(FlatTree, SortedUniqueVectorMoveConstructor) {
using Pair = std::pair<int, MoveOnlyInt>;
std::vector<Pair> storage;
storage.push_back(Pair(1, MoveOnlyInt(0)));
storage.push_back(Pair(2, MoveOnlyInt(0)));
using Tree = flat_tree<Pair, identity, LessByFirst<Pair>, std::vector<Pair>>;
Tree tree(sorted_unique, std::move(storage));
ASSERT_EQ(2u, tree.size());
const Pair& zeroth = *tree.begin();
ASSERT_EQ(1, zeroth.first);
ASSERT_EQ(0, zeroth.second.data());
const Pair& first = *(tree.begin() + 1);
ASSERT_EQ(2, first.first);
ASSERT_EQ(0, first.second.data());
}
// flat_tree(sorted_unique_t,
// std::initializer_list<value_type> ilist,
// const Compare& comp = Compare())
TYPED_TEST_P(FlatTreeTest, SortedUniqueInitializerListConstructor) {
{
TypedTree<TypeParam> cont(sorted_unique, {1, 2, 3, 4, 5, 6, 8, 10});
EXPECT_THAT(cont, ElementsAre(1, 2, 3, 4, 5, 6, 8, 10));
}
{
TypedTree<TypeParam> cont(sorted_unique, {1, 2, 3, 4, 5, 6, 8, 10});
EXPECT_THAT(cont, ElementsAre(1, 2, 3, 4, 5, 6, 8, 10));
}
{
TreeWithStrangeCompare cont(sorted_unique, {1, 2, 3, 4, 5, 6, 8, 10},
NonDefaultConstructibleCompare(0));
EXPECT_THAT(cont, ElementsAre(1, 2, 3, 4, 5, 6, 8, 10));
}
{
IntPairTree first_of(sorted_unique, {{1, 1}, {2, 1}});
EXPECT_THAT(first_of, ElementsAre(IntPair(1, 1), IntPair(2, 1)));
}
}
// ----------------------------------------------------------------------------
// Assignments.
// flat_tree& operator=(const flat_tree&)
TYPED_TEST_P(FlatTreeTest, CopyAssignable) {
TypedTree<TypeParam> original({1, 2, 3, 4});
TypedTree<TypeParam> copied;
copied = original;
EXPECT_THAT(copied, ElementsAre(1, 2, 3, 4));
EXPECT_THAT(original, ElementsAre(1, 2, 3, 4));
EXPECT_EQ(original, copied);
}
// flat_tree& operator=(flat_tree&&)
TEST(FlatTree, MoveAssignable) {
int input_range[] = {1, 2, 3, 4};
MoveOnlyTree original(std::begin(input_range), std::end(input_range));
MoveOnlyTree moved;
moved = std::move(original);
EXPECT_EQ(1U, moved.count(MoveOnlyInt(1)));
EXPECT_EQ(1U, moved.count(MoveOnlyInt(2)));
EXPECT_EQ(1U, moved.count(MoveOnlyInt(3)));
EXPECT_EQ(1U, moved.count(MoveOnlyInt(4)));
}
// flat_tree& operator=(std::initializer_list<value_type> ilist)
TYPED_TEST_P(FlatTreeTest, InitializerListAssignable) {
TypedTree<TypeParam> cont({0});
cont = {1, 2, 3, 4, 5, 6, 10, 8};
EXPECT_EQ(0U, cont.count(0));
EXPECT_THAT(cont, ElementsAre(1, 2, 3, 4, 5, 6, 8, 10));
}
// --------------------------------------------------------------------------
// Memory management.
// void reserve(size_type new_capacity)
TEST(FlatTreeTest, Reserve) {
IntTree cont({1, 2, 3});
cont.reserve(5);
EXPECT_LE(5U, cont.capacity());
}
// size_type capacity() const
TEST(FlatTreeTest, Capacity) {
IntTree cont({1, 2, 3});
EXPECT_LE(cont.size(), cont.capacity());
cont.reserve(5);
EXPECT_LE(cont.size(), cont.capacity());
}
// void shrink_to_fit()
TEST(FlatTreeTest, ShrinkToFit) {
IntTree cont({1, 2, 3});
IntTree::size_type capacity_before = cont.capacity();
cont.shrink_to_fit();
EXPECT_GE(capacity_before, cont.capacity());
}
// ----------------------------------------------------------------------------
// Size management.
// void clear()
TYPED_TEST_P(FlatTreeTest, Clear) {
TypedTree<TypeParam> cont({1, 2, 3, 4, 5, 6, 7, 8});
cont.clear();
EXPECT_THAT(cont, ElementsAre());
}
// size_type size() const
TYPED_TEST_P(FlatTreeTest, Size) {
TypedTree<TypeParam> cont;
EXPECT_EQ(0U, cont.size());
cont.insert(2);
EXPECT_EQ(1U, cont.size());
cont.insert(1);
EXPECT_EQ(2U, cont.size());
cont.insert(3);
EXPECT_EQ(3U, cont.size());
cont.erase(cont.begin());
EXPECT_EQ(2U, cont.size());
cont.erase(cont.begin());
EXPECT_EQ(1U, cont.size());
cont.erase(cont.begin());
EXPECT_EQ(0U, cont.size());
}
// bool empty() const
TYPED_TEST_P(FlatTreeTest, Empty) {
TypedTree<TypeParam> cont;
EXPECT_TRUE(cont.empty());
cont.insert(1);
EXPECT_FALSE(cont.empty());
cont.clear();
EXPECT_TRUE(cont.empty());
}
// ----------------------------------------------------------------------------
// Iterators.
// iterator begin()
// const_iterator begin() const
// iterator end()
// const_iterator end() const
//
// reverse_iterator rbegin()
// const_reverse_iterator rbegin() const
// reverse_iterator rend()
// const_reverse_iterator rend() const
//
// const_iterator cbegin() const
// const_iterator cend() const
// const_reverse_iterator crbegin() const
// const_reverse_iterator crend() const
TYPED_TEST_P(FlatTreeTest, Iterators) {
TypedTree<TypeParam> cont({1, 2, 3, 4, 5, 6, 7, 8});
auto size =
static_cast<typename TypedTree<TypeParam>::difference_type>(cont.size());
EXPECT_EQ(size, std::distance(cont.begin(), cont.end()));
EXPECT_EQ(size, std::distance(cont.cbegin(), cont.cend()));
EXPECT_EQ(size, std::distance(cont.rbegin(), cont.rend()));
EXPECT_EQ(size, std::distance(cont.crbegin(), cont.crend()));
{
auto it = cont.begin();
auto c_it = cont.cbegin();
EXPECT_EQ(it, c_it);
for (int j = 1; it != cont.end(); ++it, ++c_it, ++j) {
EXPECT_EQ(j, *it);
EXPECT_EQ(j, *c_it);
}
}
{
auto rit = cont.rbegin();
auto c_rit = cont.crbegin();
EXPECT_EQ(rit, c_rit);
for (int j = static_cast<int>(size); rit != cont.rend();
++rit, ++c_rit, --j) {
EXPECT_EQ(j, *rit);
EXPECT_EQ(j, *c_rit);
}
}
}
// ----------------------------------------------------------------------------
// Insert operations.
// pair<iterator, bool> insert(const value_type& val)
TYPED_TEST_P(FlatTreeTest, InsertLValue) {
TypedTree<TypeParam> cont;
int value = 2;
std::pair<typename TypedTree<TypeParam>::iterator, bool> result =
cont.insert(value);
EXPECT_TRUE(result.second);
EXPECT_EQ(cont.begin(), result.first);
EXPECT_EQ(1U, cont.size());
EXPECT_EQ(2, *result.first);
value = 1;
result = cont.insert(value);
EXPECT_TRUE(result.second);
EXPECT_EQ(cont.begin(), result.first);
EXPECT_EQ(2U, cont.size());
EXPECT_EQ(1, *result.first);
value = 3;
result = cont.insert(value);
EXPECT_TRUE(result.second);
EXPECT_EQ(std::prev(cont.end()), result.first);
EXPECT_EQ(3U, cont.size());
EXPECT_EQ(3, *result.first);
value = 3;
result = cont.insert(value);
EXPECT_FALSE(result.second);
EXPECT_EQ(std::prev(cont.end()), result.first);
EXPECT_EQ(3U, cont.size());
EXPECT_EQ(3, *result.first);
}
// pair<iterator, bool> insert(value_type&& val)
TEST(FlatTree, InsertRValue) {
MoveOnlyTree cont;
std::pair<MoveOnlyTree::iterator, bool> result = cont.insert(MoveOnlyInt(2));
EXPECT_TRUE(result.second);
EXPECT_EQ(cont.begin(), result.first);
EXPECT_EQ(1U, cont.size());
EXPECT_EQ(2, result.first->data());
result = cont.insert(MoveOnlyInt(1));
EXPECT_TRUE(result.second);
EXPECT_EQ(cont.begin(), result.first);
EXPECT_EQ(2U, cont.size());
EXPECT_EQ(1, result.first->data());
result = cont.insert(MoveOnlyInt(3));
EXPECT_TRUE(result.second);
EXPECT_EQ(std::prev(cont.end()), result.first);
EXPECT_EQ(3U, cont.size());
EXPECT_EQ(3, result.first->data());
result = cont.insert(MoveOnlyInt(3));
EXPECT_FALSE(result.second);
EXPECT_EQ(std::prev(cont.end()), result.first);
EXPECT_EQ(3U, cont.size());
EXPECT_EQ(3, result.first->data());
}
// iterator insert(const_iterator position_hint, const value_type& val)
TYPED_TEST_P(FlatTreeTest, InsertPositionLValue) {
TypedTree<TypeParam> cont;
auto result = cont.insert(cont.cend(), 2);
EXPECT_EQ(cont.begin(), result);
EXPECT_EQ(1U, cont.size());
EXPECT_EQ(2, *result);
result = cont.insert(cont.cend(), 1);
EXPECT_EQ(cont.begin(), result);
EXPECT_EQ(2U, cont.size());
EXPECT_EQ(1, *result);
result = cont.insert(cont.cend(), 3);
EXPECT_EQ(std::prev(cont.end()), result);
EXPECT_EQ(3U, cont.size());
EXPECT_EQ(3, *result);
result = cont.insert(cont.cend(), 3);
EXPECT_EQ(std::prev(cont.end()), result);
EXPECT_EQ(3U, cont.size());
EXPECT_EQ(3, *result);
}
// iterator insert(const_iterator position_hint, value_type&& val)
TEST(FlatTree, InsertPositionRValue) {
MoveOnlyTree cont;
auto result = cont.insert(cont.cend(), MoveOnlyInt(2));
EXPECT_EQ(cont.begin(), result);
EXPECT_EQ(1U, cont.size());
EXPECT_EQ(2, result->data());
result = cont.insert(cont.cend(), MoveOnlyInt(1));
EXPECT_EQ(cont.begin(), result);
EXPECT_EQ(2U, cont.size());
EXPECT_EQ(1, result->data());
result = cont.insert(cont.cend(), MoveOnlyInt(3));
EXPECT_EQ(std::prev(cont.end()), result);
EXPECT_EQ(3U, cont.size());
EXPECT_EQ(3, result->data());
result = cont.insert(cont.cend(), MoveOnlyInt(3));
EXPECT_EQ(std::prev(cont.end()), result);
EXPECT_EQ(3U, cont.size());
EXPECT_EQ(3, result->data());
}
// template <class InputIterator>
// void insert(InputIterator first, InputIterator last);
TEST(FlatTree, InsertIterIter) {
struct GetKeyFromIntIntPair {
const int& operator()(const std::pair<int, int>& p) const {
return p.first;
}
};
using IntIntMap = flat_tree<int, GetKeyFromIntIntPair, std::less<int>,
std::vector<IntPair>>;
{
IntIntMap cont;
IntPair int_pairs[] = {{3, 1}, {1, 1}, {4, 1}, {2, 1}};
cont.insert(std::begin(int_pairs), std::end(int_pairs));
EXPECT_THAT(cont, ElementsAre(IntPair(1, 1), IntPair(2, 1), IntPair(3, 1),
IntPair(4, 1)));
}
{
IntIntMap cont({{1, 1}, {2, 1}, {3, 1}, {4, 1}});
std::vector<IntPair> int_pairs;
cont.insert(std::begin(int_pairs), std::end(int_pairs));
EXPECT_THAT(cont, ElementsAre(IntPair(1, 1), IntPair(2, 1), IntPair(3, 1),
IntPair(4, 1)));
}
{
IntIntMap cont({{1, 1}, {2, 1}, {3, 1}, {4, 1}});
IntPair int_pairs[] = {{1, 1}};
cont.insert(std::begin(int_pairs), std::end(int_pairs));
EXPECT_THAT(cont, ElementsAre(IntPair(1, 1), IntPair(2, 1), IntPair(3, 1),
IntPair(4, 1)));
}
{
IntIntMap cont({{1, 1}, {2, 1}, {3, 1}, {4, 1}});
IntPair int_pairs[] = {{5, 1}};
cont.insert(std::begin(int_pairs), std::end(int_pairs));
EXPECT_THAT(cont, ElementsAre(IntPair(1, 1), IntPair(2, 1), IntPair(3, 1),
IntPair(4, 1), IntPair(5, 1)));
}
{
IntIntMap cont({{1, 1}, {2, 1}, {3, 1}, {4, 1}});
IntPair int_pairs[] = {{3, 2}, {1, 2}, {4, 2}, {2, 2}};
cont.insert(std::begin(int_pairs), std::end(int_pairs));
EXPECT_THAT(cont, ElementsAre(IntPair(1, 1), IntPair(2, 1), IntPair(3, 1),
IntPair(4, 1)));
}
{
IntIntMap cont({{1, 1}, {2, 1}, {3, 1}, {4, 1}});
IntPair int_pairs[] = {{3, 2}, {1, 2}, {4, 2}, {2, 2}, {7, 2}, {6, 2},
{8, 2}, {5, 2}, {5, 3}, {6, 3}, {7, 3}, {8, 3}};
cont.insert(std::begin(int_pairs), std::end(int_pairs));
EXPECT_THAT(cont, ElementsAre(IntPair(1, 1), IntPair(2, 1), IntPair(3, 1),
IntPair(4, 1), IntPair(5, 2), IntPair(6, 2),
IntPair(7, 2), IntPair(8, 2)));
}
}
// template <class... Args>
// pair<iterator, bool> emplace(Args&&... args)
TYPED_TEST_P(FlatTreeTest, Emplace) {
{
EmplaceableTree cont;
std::pair<EmplaceableTree::iterator, bool> result = cont.emplace();
EXPECT_TRUE(result.second);
EXPECT_EQ(cont.begin(), result.first);
EXPECT_EQ(1U, cont.size());
EXPECT_EQ(Emplaceable(), *cont.begin());
result = cont.emplace(2, 3.5);
EXPECT_TRUE(result.second);
EXPECT_EQ(std::next(cont.begin()), result.first);
EXPECT_EQ(2U, cont.size());
EXPECT_EQ(Emplaceable(2, 3.5), *result.first);
result = cont.emplace(2, 3.5);
EXPECT_FALSE(result.second);
EXPECT_EQ(std::next(cont.begin()), result.first);
EXPECT_EQ(2U, cont.size());
EXPECT_EQ(Emplaceable(2, 3.5), *result.first);
}
{
TypedTree<TypeParam> cont;
std::pair<typename TypedTree<TypeParam>::iterator, bool> result =
cont.emplace(2);
EXPECT_TRUE(result.second);
EXPECT_EQ(cont.begin(), result.first);
EXPECT_EQ(1U, cont.size());
EXPECT_EQ(2, *result.first);
}
}
// template <class... Args>
// iterator emplace_hint(const_iterator position_hint, Args&&... args)
TYPED_TEST_P(FlatTreeTest, EmplacePosition) {
{
EmplaceableTree cont;
auto result = cont.emplace_hint(cont.cend());
EXPECT_EQ(cont.begin(), result);
EXPECT_EQ(1U, cont.size());
EXPECT_EQ(Emplaceable(), *cont.begin());
result = cont.emplace_hint(cont.cend(), 2, 3.5);
EXPECT_EQ(std::next(cont.begin()), result);
EXPECT_EQ(2U, cont.size());
EXPECT_EQ(Emplaceable(2, 3.5), *result);
result = cont.emplace_hint(cont.cbegin(), 2, 3.5);
EXPECT_EQ(std::next(cont.begin()), result);
EXPECT_EQ(2U, cont.size());
EXPECT_EQ(Emplaceable(2, 3.5), *result);
}
{
TypedTree<TypeParam> cont;
auto result = cont.emplace_hint(cont.cend(), 2);
EXPECT_EQ(cont.begin(), result);
EXPECT_EQ(1U, cont.size());
EXPECT_EQ(2, *result);
}
}
// ----------------------------------------------------------------------------
// Underlying type operations.
// underlying_type extract() &&
TYPED_TEST_P(FlatTreeTest, Extract) {
TypedTree<TypeParam> cont;
cont.emplace(3);
cont.emplace(1);
cont.emplace(2);
cont.emplace(4);
TypeParam body = std::move(cont).extract();
EXPECT_THAT(cont, IsEmpty());
EXPECT_THAT(body, ElementsAre(1, 2, 3, 4));
}
// replace(underlying_type&&)
TYPED_TEST_P(FlatTreeTest, Replace) {
TypeParam body = {1, 2, 3, 4};
TypedTree<TypeParam> cont;
cont.replace(std::move(body));
EXPECT_THAT(cont, ElementsAre(1, 2, 3, 4));
}
// ----------------------------------------------------------------------------
// Erase operations.
// iterator erase(const_iterator position_hint)
TYPED_TEST_P(FlatTreeTest, ErasePosition) {
{
TypedTree<TypeParam> cont({1, 2, 3, 4, 5, 6, 7, 8});
auto it = cont.erase(std::next(cont.cbegin(), 3));
EXPECT_EQ(std::next(cont.begin(), 3), it);
EXPECT_THAT(cont, ElementsAre(1, 2, 3, 5, 6, 7, 8));
it = cont.erase(std::next(cont.cbegin(), 0));
EXPECT_EQ(cont.begin(), it);
EXPECT_THAT(cont, ElementsAre(2, 3, 5, 6, 7, 8));
it = cont.erase(std::next(cont.cbegin(), 5));
EXPECT_EQ(cont.end(), it);
EXPECT_THAT(cont, ElementsAre(2, 3, 5, 6, 7));
it = cont.erase(std::next(cont.cbegin(), 1));
EXPECT_EQ(std::next(cont.begin()), it);
EXPECT_THAT(cont, ElementsAre(2, 5, 6, 7));
it = cont.erase(std::next(cont.cbegin(), 2));
EXPECT_EQ(std::next(cont.begin(), 2), it);
EXPECT_THAT(cont, ElementsAre(2, 5, 7));
it = cont.erase(std::next(cont.cbegin(), 2));
EXPECT_EQ(std::next(cont.begin(), 2), it);
EXPECT_THAT(cont, ElementsAre(2, 5));
it = cont.erase(std::next(cont.cbegin(), 0));
EXPECT_EQ(std::next(cont.begin(), 0), it);
EXPECT_THAT(cont, ElementsAre(5));
it = cont.erase(cont.cbegin());
EXPECT_EQ(cont.begin(), it);
EXPECT_EQ(cont.end(), it);
}
// This is LWG #2059.
// There is a potential ambiguity between erase with an iterator and erase
// with a key, if key has a templated constructor.
{
using T = TemplateConstructor;
flat_tree<T, identity, std::less<>, std::vector<T>> cont;
T v(0);
auto it = cont.find(v);
if (it != cont.end())
cont.erase(it);
}
}
// iterator erase(const_iterator first, const_iterator last)
TYPED_TEST_P(FlatTreeTest, EraseRange) {
TypedTree<TypeParam> cont({1, 2, 3, 4, 5, 6, 7, 8});
auto it =
cont.erase(std::next(cont.cbegin(), 5), std::next(cont.cbegin(), 5));
EXPECT_EQ(std::next(cont.begin(), 5), it);
EXPECT_THAT(cont, ElementsAre(1, 2, 3, 4, 5, 6, 7, 8));
it = cont.erase(std::next(cont.cbegin(), 3), std::next(cont.cbegin(), 4));
EXPECT_EQ(std::next(cont.begin(), 3), it);
EXPECT_THAT(cont, ElementsAre(1, 2, 3, 5, 6, 7, 8));
it = cont.erase(std::next(cont.cbegin(), 2), std::next(cont.cbegin(), 5));
EXPECT_EQ(std::next(cont.begin(), 2), it);
EXPECT_THAT(cont, ElementsAre(1, 2, 7, 8));
it = cont.erase(std::next(cont.cbegin(), 0), std::next(cont.cbegin(), 2));
EXPECT_EQ(std::next(cont.begin(), 0), it);
EXPECT_THAT(cont, ElementsAre(7, 8));
it = cont.erase(cont.cbegin(), cont.cend());
EXPECT_EQ(cont.begin(), it);
EXPECT_EQ(cont.end(), it);
}
// size_type erase(const key_type& key)
TYPED_TEST_P(FlatTreeTest, EraseKey) {
TypedTree<TypeParam> cont({1, 2, 3, 4, 5, 6, 7, 8});
EXPECT_EQ(0U, cont.erase(9));
EXPECT_THAT(cont, ElementsAre(1, 2, 3, 4, 5, 6, 7, 8));
EXPECT_EQ(1U, cont.erase(4));
EXPECT_THAT(cont, ElementsAre(1, 2, 3, 5, 6, 7, 8));
EXPECT_EQ(1U, cont.erase(1));
EXPECT_THAT(cont, ElementsAre(2, 3, 5, 6, 7, 8));
EXPECT_EQ(1U, cont.erase(8));
EXPECT_THAT(cont, ElementsAre(2, 3, 5, 6, 7));
EXPECT_EQ(1U, cont.erase(3));
EXPECT_THAT(cont, ElementsAre(2, 5, 6, 7));
EXPECT_EQ(1U, cont.erase(6));
EXPECT_THAT(cont, ElementsAre(2, 5, 7));
EXPECT_EQ(1U, cont.erase(7));
EXPECT_THAT(cont, ElementsAre(2, 5));
EXPECT_EQ(1U, cont.erase(2));
EXPECT_THAT(cont, ElementsAre(5));
EXPECT_EQ(1U, cont.erase(5));
EXPECT_THAT(cont, ElementsAre());
}
TYPED_TEST_P(FlatTreeTest, EraseEndDeath) {
{
TypedTree<TypeParam> tree;
ASSERT_DEATH_IF_SUPPORTED(tree.erase(tree.cend()), "");
}
{
TypedTree<TypeParam> tree = {1, 2, 3, 4};
ASSERT_DEATH_IF_SUPPORTED(tree.erase(tree.find(5)), "");
}
}
// ----------------------------------------------------------------------------
// Comparators.
// key_compare key_comp() const
TEST(FlatTree, KeyComp) {
ReversedTree cont({1, 2, 3, 4, 5});
EXPECT_TRUE(absl::c_is_sorted(cont, cont.key_comp()));
int new_elements[] = {6, 7, 8, 9, 10};
std::copy(std::begin(new_elements), std::end(new_elements),
std::inserter(cont, cont.end()));
EXPECT_TRUE(absl::c_is_sorted(cont, cont.key_comp()));
}
// value_compare value_comp() const
TEST(FlatTree, ValueComp) {
ReversedTree cont({1, 2, 3, 4, 5});
EXPECT_TRUE(absl::c_is_sorted(cont, cont.value_comp()));
int new_elements[] = {6, 7, 8, 9, 10};
std::copy(std::begin(new_elements), std::end(new_elements),
std::inserter(cont, cont.end()));
EXPECT_TRUE(absl::c_is_sorted(cont, cont.value_comp()));
}
// ----------------------------------------------------------------------------
// Search operations.
// size_type count(const key_type& key) const
TYPED_TEST_P(FlatTreeTest, Count) {
const TypedTree<TypeParam> cont({5, 6, 7, 8, 9, 10, 11, 12});
EXPECT_EQ(1U, cont.count(5));
EXPECT_EQ(1U, cont.count(6));
EXPECT_EQ(1U, cont.count(7));
EXPECT_EQ(1U, cont.count(8));
EXPECT_EQ(1U, cont.count(9));
EXPECT_EQ(1U, cont.count(10));
EXPECT_EQ(1U, cont.count(11));
EXPECT_EQ(1U, cont.count(12));
EXPECT_EQ(0U, cont.count(4));
}
// iterator find(const key_type& key)
// const_iterator find(const key_type& key) const
TYPED_TEST_P(FlatTreeTest, Find) {
{
TypedTree<TypeParam> cont({5, 6, 7, 8, 9, 10, 11, 12});
EXPECT_EQ(cont.begin(), cont.find(5));
EXPECT_EQ(std::next(cont.begin()), cont.find(6));
EXPECT_EQ(std::next(cont.begin(), 2), cont.find(7));
EXPECT_EQ(std::next(cont.begin(), 3), cont.find(8));
EXPECT_EQ(std::next(cont.begin(), 4), cont.find(9));
EXPECT_EQ(std::next(cont.begin(), 5), cont.find(10));
EXPECT_EQ(std::next(cont.begin(), 6), cont.find(11));
EXPECT_EQ(std::next(cont.begin(), 7), cont.find(12));
EXPECT_EQ(std::next(cont.begin(), 8), cont.find(4));
}
{
const TypedTree<TypeParam> cont({5, 6, 7, 8, 9, 10, 11, 12});
EXPECT_EQ(cont.begin(), cont.find(5));
EXPECT_EQ(std::next(cont.begin()), cont.find(6));
EXPECT_EQ(std::next(cont.begin(), 2), cont.find(7));
EXPECT_EQ(std::next(cont.begin(), 3), cont.find(8));
EXPECT_EQ(std::next(cont.begin(), 4), cont.find(9));
EXPECT_EQ(std::next(cont.begin(), 5), cont.find(10));
EXPECT_EQ(std::next(cont.begin(), 6), cont.find(11));
EXPECT_EQ(std::next(cont.begin(), 7), cont.find(12));
EXPECT_EQ(std::next(cont.begin(), 8), cont.find(4));
}
}
// bool contains(const key_type& key) const
TYPED_TEST_P(FlatTreeTest, Contains) {
const TypedTree<TypeParam> cont({5, 6, 7, 8, 9, 10, 11, 12});
EXPECT_TRUE(cont.contains(5));
EXPECT_TRUE(cont.contains(6));
EXPECT_TRUE(cont.contains(7));
EXPECT_TRUE(cont.contains(8));
EXPECT_TRUE(cont.contains(9));
EXPECT_TRUE(cont.contains(10));
EXPECT_TRUE(cont.contains(11));
EXPECT_TRUE(cont.contains(12));
EXPECT_FALSE(cont.contains(4));
}
// pair<iterator, iterator> equal_range(const key_type& key)
// pair<const_iterator, const_iterator> equal_range(const key_type& key) const
TYPED_TEST_P(FlatTreeTest, EqualRange) {
{
TypedTree<TypeParam> cont({5, 7, 9, 11, 13, 15, 17, 19});
std::pair<typename TypedTree<TypeParam>::iterator,
typename TypedTree<TypeParam>::iterator>
result = cont.equal_range(5);
EXPECT_EQ(std::next(cont.begin(), 0), result.first);
EXPECT_EQ(std::next(cont.begin(), 1), result.second);
result = cont.equal_range(7);
EXPECT_EQ(std::next(cont.begin(), 1), result.first);
EXPECT_EQ(std::next(cont.begin(), 2), result.second);
result = cont.equal_range(9);
EXPECT_EQ(std::next(cont.begin(), 2), result.first);
EXPECT_EQ(std::next(cont.begin(), 3), result.second);
result = cont.equal_range(11);
EXPECT_EQ(std::next(cont.begin(), 3), result.first);
EXPECT_EQ(std::next(cont.begin(), 4), result.second);
result = cont.equal_range(13);
EXPECT_EQ(std::next(cont.begin(), 4), result.first);
EXPECT_EQ(std::next(cont.begin(), 5), result.second);
result = cont.equal_range(15);
EXPECT_EQ(std::next(cont.begin(), 5), result.first);
EXPECT_EQ(std::next(cont.begin(), 6), result.second);
result = cont.equal_range(17);
EXPECT_EQ(std::next(cont.begin(), 6), result.first);
EXPECT_EQ(std::next(cont.begin(), 7), result.second);
result = cont.equal_range(19);
EXPECT_EQ(std::next(cont.begin(), 7), result.first);
EXPECT_EQ(std::next(cont.begin(), 8), result.second);
result = cont.equal_range(4);
EXPECT_EQ(std::next(cont.begin(), 0), result.first);
EXPECT_EQ(std::next(cont.begin(), 0), result.second);
result = cont.equal_range(6);
EXPECT_EQ(std::next(cont.begin(), 1), result.first);
EXPECT_EQ(std::next(cont.begin(), 1), result.second);
result = cont.equal_range(8);
EXPECT_EQ(std::next(cont.begin(), 2), result.first);
EXPECT_EQ(std::next(cont.begin(), 2), result.second);
result = cont.equal_range(10);
EXPECT_EQ(std::next(cont.begin(), 3), result.first);
EXPECT_EQ(std::next(cont.begin(), 3), result.second);
result = cont.equal_range(12);
EXPECT_EQ(std::next(cont.begin(), 4), result.first);
EXPECT_EQ(std::next(cont.begin(), 4), result.second);
result = cont.equal_range(14);
EXPECT_EQ(std::next(cont.begin(), 5), result.first);
EXPECT_EQ(std::next(cont.begin(), 5), result.second);
result = cont.equal_range(16);
EXPECT_EQ(std::next(cont.begin(), 6), result.first);
EXPECT_EQ(std::next(cont.begin(), 6), result.second);
result = cont.equal_range(18);
EXPECT_EQ(std::next(cont.begin(), 7), result.first);
EXPECT_EQ(std::next(cont.begin(), 7), result.second);
result = cont.equal_range(20);
EXPECT_EQ(std::next(cont.begin(), 8), result.first);
EXPECT_EQ(std::next(cont.begin(), 8), result.second);
}
{
const TypedTree<TypeParam> cont({5, 7, 9, 11, 13, 15, 17, 19});
std::pair<typename TypedTree<TypeParam>::const_iterator,
typename TypedTree<TypeParam>::const_iterator>
result = cont.equal_range(5);
EXPECT_EQ(std::next(cont.begin(), 0), result.first);
EXPECT_EQ(std::next(cont.begin(), 1), result.second);
result = cont.equal_range(7);
EXPECT_EQ(std::next(cont.begin(), 1), result.first);
EXPECT_EQ(std::next(cont.begin(), 2), result.second);
result = cont.equal_range(9);
EXPECT_EQ(std::next(cont.begin(), 2), result.first);
EXPECT_EQ(std::next(cont.begin(), 3), result.second);
result = cont.equal_range(11);
EXPECT_EQ(std::next(cont.begin(), 3), result.first);
EXPECT_EQ(std::next(cont.begin(), 4), result.second);
result = cont.equal_range(13);
EXPECT_EQ(std::next(cont.begin(), 4), result.first);
EXPECT_EQ(std::next(cont.begin(), 5), result.second);
result = cont.equal_range(15);
EXPECT_EQ(std::next(cont.begin(), 5), result.first);
EXPECT_EQ(std::next(cont.begin(), 6), result.second);
result = cont.equal_range(17);
EXPECT_EQ(std::next(cont.begin(), 6), result.first);
EXPECT_EQ(std::next(cont.begin(), 7), result.second);
result = cont.equal_range(19);
EXPECT_EQ(std::next(cont.begin(), 7), result.first);
EXPECT_EQ(std::next(cont.begin(), 8), result.second);
result = cont.equal_range(4);
EXPECT_EQ(std::next(cont.begin(), 0), result.first);
EXPECT_EQ(std::next(cont.begin(), 0), result.second);
result = cont.equal_range(6);
EXPECT_EQ(std::next(cont.begin(), 1), result.first);
EXPECT_EQ(std::next(cont.begin(), 1), result.second);
result = cont.equal_range(8);
EXPECT_EQ(std::next(cont.begin(), 2), result.first);
EXPECT_EQ(std::next(cont.begin(), 2), result.second);
result = cont.equal_range(10);
EXPECT_EQ(std::next(cont.begin(), 3), result.first);
EXPECT_EQ(std::next(cont.begin(), 3), result.second);
result = cont.equal_range(12);
EXPECT_EQ(std::next(cont.begin(), 4), result.first);
EXPECT_EQ(std::next(cont.begin(), 4), result.second);
result = cont.equal_range(14);
EXPECT_EQ(std::next(cont.begin(), 5), result.first);
EXPECT_EQ(std::next(cont.begin(), 5), result.second);
result = cont.equal_range(16);
EXPECT_EQ(std::next(cont.begin(), 6), result.first);
EXPECT_EQ(std::next(cont.begin(), 6), result.second);
result = cont.equal_range(18);
EXPECT_EQ(std::next(cont.begin(), 7), result.first);
EXPECT_EQ(std::next(cont.begin(), 7), result.second);
result = cont.equal_range(20);
EXPECT_EQ(std::next(cont.begin(), 8), result.first);
EXPECT_EQ(std::next(cont.begin(), 8), result.second);
}
}
// iterator lower_bound(const key_type& key);
// const_iterator lower_bound(const key_type& key) const;
TYPED_TEST_P(FlatTreeTest, LowerBound) {
{
TypedTree<TypeParam> cont({5, 7, 9, 11, 13, 15, 17, 19});
EXPECT_EQ(cont.begin(), cont.lower_bound(5));
EXPECT_EQ(std::next(cont.begin()), cont.lower_bound(7));
EXPECT_EQ(std::next(cont.begin(), 2), cont.lower_bound(9));
EXPECT_EQ(std::next(cont.begin(), 3), cont.lower_bound(11));
EXPECT_EQ(std::next(cont.begin(), 4), cont.lower_bound(13));
EXPECT_EQ(std::next(cont.begin(), 5), cont.lower_bound(15));
EXPECT_EQ(std::next(cont.begin(), 6), cont.lower_bound(17));
EXPECT_EQ(std::next(cont.begin(), 7), cont.lower_bound(19));
EXPECT_EQ(std::next(cont.begin(), 0), cont.lower_bound(4));
EXPECT_EQ(std::next(cont.begin(), 1), cont.lower_bound(6));
EXPECT_EQ(std::next(cont.begin(), 2), cont.lower_bound(8));
EXPECT_EQ(std::next(cont.begin(), 3), cont.lower_bound(10));
EXPECT_EQ(std::next(cont.begin(), 4), cont.lower_bound(12));
EXPECT_EQ(std::next(cont.begin(), 5), cont.lower_bound(14));
EXPECT_EQ(std::next(cont.begin(), 6), cont.lower_bound(16));
EXPECT_EQ(std::next(cont.begin(), 7), cont.lower_bound(18));
EXPECT_EQ(std::next(cont.begin(), 8), cont.lower_bound(20));
}
{
const TypedTree<TypeParam> cont({5, 7, 9, 11, 13, 15, 17, 19});
EXPECT_EQ(cont.begin(), cont.lower_bound(5));
EXPECT_EQ(std::next(cont.begin()), cont.lower_bound(7));
EXPECT_EQ(std::next(cont.begin(), 2), cont.lower_bound(9));
EXPECT_EQ(std::next(cont.begin(), 3), cont.lower_bound(11));
EXPECT_EQ(std::next(cont.begin(), 4), cont.lower_bound(13));
EXPECT_EQ(std::next(cont.begin(), 5), cont.lower_bound(15));
EXPECT_EQ(std::next(cont.begin(), 6), cont.lower_bound(17));
EXPECT_EQ(std::next(cont.begin(), 7), cont.lower_bound(19));
EXPECT_EQ(std::next(cont.begin(), 0), cont.lower_bound(4));
EXPECT_EQ(std::next(cont.begin(), 1), cont.lower_bound(6));
EXPECT_EQ(std::next(cont.begin(), 2), cont.lower_bound(8));
EXPECT_EQ(std::next(cont.begin(), 3), cont.lower_bound(10));
EXPECT_EQ(std::next(cont.begin(), 4), cont.lower_bound(12));
EXPECT_EQ(std::next(cont.begin(), 5), cont.lower_bound(14));
EXPECT_EQ(std::next(cont.begin(), 6), cont.lower_bound(16));
EXPECT_EQ(std::next(cont.begin(), 7), cont.lower_bound(18));
EXPECT_EQ(std::next(cont.begin(), 8), cont.lower_bound(20));
}
}
// iterator upper_bound(const key_type& key)
// const_iterator upper_bound(const key_type& key) const
TYPED_TEST_P(FlatTreeTest, UpperBound) {
{
TypedTree<TypeParam> cont({5, 7, 9, 11, 13, 15, 17, 19});
EXPECT_EQ(std::next(cont.begin(), 1), cont.upper_bound(5));
EXPECT_EQ(std::next(cont.begin(), 2), cont.upper_bound(7));
EXPECT_EQ(std::next(cont.begin(), 3), cont.upper_bound(9));
EXPECT_EQ(std::next(cont.begin(), 4), cont.upper_bound(11));
EXPECT_EQ(std::next(cont.begin(), 5), cont.upper_bound(13));
EXPECT_EQ(std::next(cont.begin(), 6), cont.upper_bound(15));
EXPECT_EQ(std::next(cont.begin(), 7), cont.upper_bound(17));
EXPECT_EQ(std::next(cont.begin(), 8), cont.upper_bound(19));
EXPECT_EQ(std::next(cont.begin(), 0), cont.upper_bound(4));
EXPECT_EQ(std::next(cont.begin(), 1), cont.upper_bound(6));
EXPECT_EQ(std::next(cont.begin(), 2), cont.upper_bound(8));
EXPECT_EQ(std::next(cont.begin(), 3), cont.upper_bound(10));
EXPECT_EQ(std::next(cont.begin(), 4), cont.upper_bound(12));
EXPECT_EQ(std::next(cont.begin(), 5), cont.upper_bound(14));
EXPECT_EQ(std::next(cont.begin(), 6), cont.upper_bound(16));
EXPECT_EQ(std::next(cont.begin(), 7), cont.upper_bound(18));
EXPECT_EQ(std::next(cont.begin(), 8), cont.upper_bound(20));
}
{
const TypedTree<TypeParam> cont({5, 7, 9, 11, 13, 15, 17, 19});
EXPECT_EQ(std::next(cont.begin(), 1), cont.upper_bound(5));
EXPECT_EQ(std::next(cont.begin(), 2), cont.upper_bound(7));
EXPECT_EQ(std::next(cont.begin(), 3), cont.upper_bound(9));
EXPECT_EQ(std::next(cont.begin(), 4), cont.upper_bound(11));
EXPECT_EQ(std::next(cont.begin(), 5), cont.upper_bound(13));
EXPECT_EQ(std::next(cont.begin(), 6), cont.upper_bound(15));
EXPECT_EQ(std::next(cont.begin(), 7), cont.upper_bound(17));
EXPECT_EQ(std::next(cont.begin(), 8), cont.upper_bound(19));
EXPECT_EQ(std::next(cont.begin(), 0), cont.upper_bound(4));
EXPECT_EQ(std::next(cont.begin(), 1), cont.upper_bound(6));
EXPECT_EQ(std::next(cont.begin(), 2), cont.upper_bound(8));
EXPECT_EQ(std::next(cont.begin(), 3), cont.upper_bound(10));
EXPECT_EQ(std::next(cont.begin(), 4), cont.upper_bound(12));
EXPECT_EQ(std::next(cont.begin(), 5), cont.upper_bound(14));
EXPECT_EQ(std::next(cont.begin(), 6), cont.upper_bound(16));
EXPECT_EQ(std::next(cont.begin(), 7), cont.upper_bound(18));
EXPECT_EQ(std::next(cont.begin(), 8), cont.upper_bound(20));
}
}
// ----------------------------------------------------------------------------
// General operations.
// void swap(flat_tree& other)
// void swap(flat_tree& lhs, flat_tree& rhs)
TYPED_TEST_P(FlatTreeTest, Swap) {
TypedTree<TypeParam> x({1, 2, 3});
TypedTree<TypeParam> y({4});
swap(x, y);
EXPECT_THAT(x, ElementsAre(4));
EXPECT_THAT(y, ElementsAre(1, 2, 3));
y.swap(x);
EXPECT_THAT(x, ElementsAre(1, 2, 3));
EXPECT_THAT(y, ElementsAre(4));
}
// bool operator==(const flat_tree& lhs, const flat_tree& rhs)
// bool operator!=(const flat_tree& lhs, const flat_tree& rhs)
// bool operator<(const flat_tree& lhs, const flat_tree& rhs)
// bool operator>(const flat_tree& lhs, const flat_tree& rhs)
// bool operator<=(const flat_tree& lhs, const flat_tree& rhs)
// bool operator>=(const flat_tree& lhs, const flat_tree& rhs)
TEST(FlatTree, Comparison) {
// Provided comparator does not participate in comparison.
ReversedTree biggest({3});
ReversedTree smallest({1});
ReversedTree middle({1, 2});
EXPECT_EQ(biggest, biggest);
EXPECT_NE(biggest, smallest);
EXPECT_LT(smallest, middle);
EXPECT_LE(smallest, middle);
EXPECT_LE(middle, middle);
EXPECT_GT(biggest, middle);
EXPECT_GE(biggest, middle);
EXPECT_GE(biggest, biggest);
}
TYPED_TEST_P(FlatTreeTest, SupportsEraseIf) {
TypedTree<TypeParam> x;
EXPECT_EQ(0u, EraseIf(x, [](int) { return false; }));
EXPECT_THAT(x, ElementsAre());
x = {1, 2, 3};
EXPECT_EQ(1u, EraseIf(x, [](int elem) { return !(elem & 1); }));
EXPECT_THAT(x, ElementsAre(1, 3));
x = {1, 2, 3, 4};
EXPECT_EQ(2u, EraseIf(x, [](int elem) { return elem & 1; }));
EXPECT_THAT(x, ElementsAre(2, 4));
}
REGISTER_TYPED_TEST_SUITE_P(FlatTreeTest,
DefaultConstructor,
CopyConstructor,
ContainerCopyConstructor,
InitializerListConstructor,
SortedUniqueContainerCopyConstructor,
SortedUniqueInitializerListConstructor,
CopyAssignable,
InitializerListAssignable,
Clear,
Size,
Empty,
Iterators,
InsertLValue,
InsertPositionLValue,
Emplace,
EmplacePosition,
Extract,
Replace,
ErasePosition,
EraseRange,
EraseKey,
EraseEndDeath,
Count,
Find,
Contains,
EqualRange,
LowerBound,
UpperBound,
Swap,
SupportsEraseIf);
using IntSequenceContainers =
::testing::Types<std::deque<int>, std::vector<int>>;
INSTANTIATE_TYPED_TEST_SUITE_P(My, FlatTreeTest, IntSequenceContainers);
} // namespace
} // namespace flat_containers_internal
} // namespace webrtc