| /* |
| * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/aec3/adaptive_fir_filter_erl.h" |
| |
| #include <array> |
| #include <vector> |
| |
| #include "rtc_base/system/arch.h" |
| #if defined(WEBRTC_ARCH_X86_FAMILY) |
| #include <emmintrin.h> |
| #endif |
| |
| #include "system_wrappers/include/cpu_features_wrapper.h" |
| #include "test/gtest.h" |
| |
| namespace webrtc { |
| namespace aec3 { |
| |
| #if defined(WEBRTC_HAS_NEON) |
| // Verifies that the optimized method for echo return loss computation is |
| // bitexact to the reference counterpart. |
| TEST(AdaptiveFirFilter, UpdateErlNeonOptimization) { |
| const size_t kNumPartitions = 12; |
| std::vector<std::array<float, kFftLengthBy2Plus1>> H2(kNumPartitions); |
| std::array<float, kFftLengthBy2Plus1> erl; |
| std::array<float, kFftLengthBy2Plus1> erl_NEON; |
| |
| for (size_t j = 0; j < H2.size(); ++j) { |
| for (size_t k = 0; k < H2[j].size(); ++k) { |
| H2[j][k] = k + j / 3.f; |
| } |
| } |
| |
| ErlComputer(H2, erl); |
| ErlComputer_NEON(H2, erl_NEON); |
| |
| for (size_t j = 0; j < erl.size(); ++j) { |
| EXPECT_FLOAT_EQ(erl[j], erl_NEON[j]); |
| } |
| } |
| |
| #endif |
| |
| #if defined(WEBRTC_ARCH_X86_FAMILY) |
| // Verifies that the optimized method for echo return loss computation is |
| // bitexact to the reference counterpart. |
| TEST(AdaptiveFirFilter, UpdateErlSse2Optimization) { |
| bool use_sse2 = (GetCPUInfo(kSSE2) != 0); |
| if (use_sse2) { |
| const size_t kNumPartitions = 12; |
| std::vector<std::array<float, kFftLengthBy2Plus1>> H2(kNumPartitions); |
| std::array<float, kFftLengthBy2Plus1> erl; |
| std::array<float, kFftLengthBy2Plus1> erl_SSE2; |
| |
| for (size_t j = 0; j < H2.size(); ++j) { |
| for (size_t k = 0; k < H2[j].size(); ++k) { |
| H2[j][k] = k + j / 3.f; |
| } |
| } |
| |
| ErlComputer(H2, erl); |
| ErlComputer_SSE2(H2, erl_SSE2); |
| |
| for (size_t j = 0; j < erl.size(); ++j) { |
| EXPECT_FLOAT_EQ(erl[j], erl_SSE2[j]); |
| } |
| } |
| } |
| |
| // Verifies that the optimized method for echo return loss computation is |
| // bitexact to the reference counterpart. |
| TEST(AdaptiveFirFilter, UpdateErlAvx2Optimization) { |
| bool use_avx2 = (GetCPUInfo(kAVX2) != 0); |
| if (use_avx2) { |
| const size_t kNumPartitions = 12; |
| std::vector<std::array<float, kFftLengthBy2Plus1>> H2(kNumPartitions); |
| std::array<float, kFftLengthBy2Plus1> erl; |
| std::array<float, kFftLengthBy2Plus1> erl_AVX2; |
| |
| for (size_t j = 0; j < H2.size(); ++j) { |
| for (size_t k = 0; k < H2[j].size(); ++k) { |
| H2[j][k] = k + j / 3.f; |
| } |
| } |
| |
| ErlComputer(H2, erl); |
| ErlComputer_AVX2(H2, erl_AVX2); |
| |
| for (size_t j = 0; j < erl.size(); ++j) { |
| EXPECT_FLOAT_EQ(erl[j], erl_AVX2[j]); |
| } |
| } |
| } |
| |
| #endif |
| |
| } // namespace aec3 |
| } // namespace webrtc |