| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/aec3/adaptive_fir_filter.h" |
| |
| // Defines WEBRTC_ARCH_X86_FAMILY, used below. |
| #include <math.h> |
| |
| #include <algorithm> |
| #include <numeric> |
| #include <string> |
| |
| #include "rtc_base/system/arch.h" |
| #if defined(WEBRTC_ARCH_X86_FAMILY) |
| #include <emmintrin.h> |
| #endif |
| |
| #include "modules/audio_processing/aec3/adaptive_fir_filter_erl.h" |
| #include "modules/audio_processing/aec3/aec3_fft.h" |
| #include "modules/audio_processing/aec3/aec_state.h" |
| #include "modules/audio_processing/aec3/coarse_filter_update_gain.h" |
| #include "modules/audio_processing/aec3/render_delay_buffer.h" |
| #include "modules/audio_processing/aec3/render_signal_analyzer.h" |
| #include "modules/audio_processing/logging/apm_data_dumper.h" |
| #include "modules/audio_processing/test/echo_canceller_test_tools.h" |
| #include "modules/audio_processing/utility/cascaded_biquad_filter.h" |
| #include "rtc_base/arraysize.h" |
| #include "rtc_base/numerics/safe_minmax.h" |
| #include "rtc_base/random.h" |
| #include "rtc_base/strings/string_builder.h" |
| #include "system_wrappers/include/cpu_features_wrapper.h" |
| #include "test/gtest.h" |
| |
| namespace webrtc { |
| namespace aec3 { |
| namespace { |
| |
| std::string ProduceDebugText(size_t num_render_channels, size_t delay) { |
| rtc::StringBuilder ss; |
| ss << "delay: " << delay << ", "; |
| ss << "num_render_channels:" << num_render_channels; |
| return ss.Release(); |
| } |
| |
| } // namespace |
| |
| class AdaptiveFirFilterOneTwoFourEightRenderChannels |
| : public ::testing::Test, |
| public ::testing::WithParamInterface<size_t> {}; |
| |
| INSTANTIATE_TEST_SUITE_P(MultiChannel, |
| AdaptiveFirFilterOneTwoFourEightRenderChannels, |
| ::testing::Values(1, 2, 4, 8)); |
| |
| #if defined(WEBRTC_HAS_NEON) |
| // Verifies that the optimized methods for filter adaptation are similar to |
| // their reference counterparts. |
| TEST_P(AdaptiveFirFilterOneTwoFourEightRenderChannels, |
| FilterAdaptationNeonOptimizations) { |
| const size_t num_render_channels = GetParam(); |
| for (size_t num_partitions : {2, 5, 12, 30, 50}) { |
| constexpr int kSampleRateHz = 48000; |
| constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz); |
| |
| std::unique_ptr<RenderDelayBuffer> render_delay_buffer( |
| RenderDelayBuffer::Create(EchoCanceller3Config(), kSampleRateHz, |
| num_render_channels)); |
| Random random_generator(42U); |
| Block x(kNumBands, num_render_channels); |
| FftData S_C; |
| FftData S_Neon; |
| FftData G; |
| Aec3Fft fft; |
| std::vector<std::vector<FftData>> H_C( |
| num_partitions, std::vector<FftData>(num_render_channels)); |
| std::vector<std::vector<FftData>> H_Neon( |
| num_partitions, std::vector<FftData>(num_render_channels)); |
| for (size_t p = 0; p < num_partitions; ++p) { |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| H_C[p][ch].Clear(); |
| H_Neon[p][ch].Clear(); |
| } |
| } |
| |
| for (int k = 0; k < 30; ++k) { |
| for (int band = 0; band < x.NumBands(); ++band) { |
| for (int ch = 0; ch < x.NumChannels(); ++ch) { |
| RandomizeSampleVector(&random_generator, x.View(band, ch)); |
| } |
| } |
| render_delay_buffer->Insert(x); |
| if (k == 0) { |
| render_delay_buffer->Reset(); |
| } |
| render_delay_buffer->PrepareCaptureProcessing(); |
| } |
| auto* const render_buffer = render_delay_buffer->GetRenderBuffer(); |
| |
| for (size_t j = 0; j < G.re.size(); ++j) { |
| G.re[j] = j / 10001.f; |
| } |
| for (size_t j = 1; j < G.im.size() - 1; ++j) { |
| G.im[j] = j / 20001.f; |
| } |
| G.im[0] = 0.f; |
| G.im[G.im.size() - 1] = 0.f; |
| |
| AdaptPartitions_Neon(*render_buffer, G, num_partitions, &H_Neon); |
| AdaptPartitions(*render_buffer, G, num_partitions, &H_C); |
| AdaptPartitions_Neon(*render_buffer, G, num_partitions, &H_Neon); |
| AdaptPartitions(*render_buffer, G, num_partitions, &H_C); |
| |
| for (size_t p = 0; p < num_partitions; ++p) { |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| for (size_t j = 0; j < H_C[p][ch].re.size(); ++j) { |
| EXPECT_FLOAT_EQ(H_C[p][ch].re[j], H_Neon[p][ch].re[j]); |
| EXPECT_FLOAT_EQ(H_C[p][ch].im[j], H_Neon[p][ch].im[j]); |
| } |
| } |
| } |
| |
| ApplyFilter_Neon(*render_buffer, num_partitions, H_Neon, &S_Neon); |
| ApplyFilter(*render_buffer, num_partitions, H_C, &S_C); |
| for (size_t j = 0; j < S_C.re.size(); ++j) { |
| EXPECT_NEAR(S_C.re[j], S_Neon.re[j], fabs(S_C.re[j] * 0.00001f)); |
| EXPECT_NEAR(S_C.im[j], S_Neon.im[j], fabs(S_C.re[j] * 0.00001f)); |
| } |
| } |
| } |
| |
| // Verifies that the optimized method for frequency response computation is |
| // bitexact to the reference counterpart. |
| TEST_P(AdaptiveFirFilterOneTwoFourEightRenderChannels, |
| ComputeFrequencyResponseNeonOptimization) { |
| const size_t num_render_channels = GetParam(); |
| for (size_t num_partitions : {2, 5, 12, 30, 50}) { |
| std::vector<std::vector<FftData>> H( |
| num_partitions, std::vector<FftData>(num_render_channels)); |
| std::vector<std::array<float, kFftLengthBy2Plus1>> H2(num_partitions); |
| std::vector<std::array<float, kFftLengthBy2Plus1>> H2_Neon(num_partitions); |
| |
| for (size_t p = 0; p < num_partitions; ++p) { |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| for (size_t k = 0; k < H[p][ch].re.size(); ++k) { |
| H[p][ch].re[k] = k + p / 3.f + ch; |
| H[p][ch].im[k] = p + k / 7.f - ch; |
| } |
| } |
| } |
| |
| ComputeFrequencyResponse(num_partitions, H, &H2); |
| ComputeFrequencyResponse_Neon(num_partitions, H, &H2_Neon); |
| |
| for (size_t p = 0; p < num_partitions; ++p) { |
| for (size_t k = 0; k < H2[p].size(); ++k) { |
| EXPECT_FLOAT_EQ(H2[p][k], H2_Neon[p][k]); |
| } |
| } |
| } |
| } |
| #endif |
| |
| #if defined(WEBRTC_ARCH_X86_FAMILY) |
| // Verifies that the optimized methods for filter adaptation are bitexact to |
| // their reference counterparts. |
| TEST_P(AdaptiveFirFilterOneTwoFourEightRenderChannels, |
| FilterAdaptationSse2Optimizations) { |
| const size_t num_render_channels = GetParam(); |
| constexpr int kSampleRateHz = 48000; |
| constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz); |
| |
| bool use_sse2 = (GetCPUInfo(kSSE2) != 0); |
| if (use_sse2) { |
| for (size_t num_partitions : {2, 5, 12, 30, 50}) { |
| std::unique_ptr<RenderDelayBuffer> render_delay_buffer( |
| RenderDelayBuffer::Create(EchoCanceller3Config(), kSampleRateHz, |
| num_render_channels)); |
| Random random_generator(42U); |
| Block x(kNumBands, num_render_channels); |
| FftData S_C; |
| FftData S_Sse2; |
| FftData G; |
| Aec3Fft fft; |
| std::vector<std::vector<FftData>> H_C( |
| num_partitions, std::vector<FftData>(num_render_channels)); |
| std::vector<std::vector<FftData>> H_Sse2( |
| num_partitions, std::vector<FftData>(num_render_channels)); |
| for (size_t p = 0; p < num_partitions; ++p) { |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| H_C[p][ch].Clear(); |
| H_Sse2[p][ch].Clear(); |
| } |
| } |
| |
| for (size_t k = 0; k < 500; ++k) { |
| for (int band = 0; band < x.NumBands(); ++band) { |
| for (int ch = 0; ch < x.NumChannels(); ++ch) { |
| RandomizeSampleVector(&random_generator, x.View(band, ch)); |
| } |
| } |
| render_delay_buffer->Insert(x); |
| if (k == 0) { |
| render_delay_buffer->Reset(); |
| } |
| render_delay_buffer->PrepareCaptureProcessing(); |
| auto* const render_buffer = render_delay_buffer->GetRenderBuffer(); |
| |
| ApplyFilter_Sse2(*render_buffer, num_partitions, H_Sse2, &S_Sse2); |
| ApplyFilter(*render_buffer, num_partitions, H_C, &S_C); |
| for (size_t j = 0; j < S_C.re.size(); ++j) { |
| EXPECT_FLOAT_EQ(S_C.re[j], S_Sse2.re[j]); |
| EXPECT_FLOAT_EQ(S_C.im[j], S_Sse2.im[j]); |
| } |
| |
| std::for_each(G.re.begin(), G.re.end(), |
| [&](float& a) { a = random_generator.Rand<float>(); }); |
| std::for_each(G.im.begin(), G.im.end(), |
| [&](float& a) { a = random_generator.Rand<float>(); }); |
| |
| AdaptPartitions_Sse2(*render_buffer, G, num_partitions, &H_Sse2); |
| AdaptPartitions(*render_buffer, G, num_partitions, &H_C); |
| |
| for (size_t p = 0; p < num_partitions; ++p) { |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| for (size_t j = 0; j < H_C[p][ch].re.size(); ++j) { |
| EXPECT_FLOAT_EQ(H_C[p][ch].re[j], H_Sse2[p][ch].re[j]); |
| EXPECT_FLOAT_EQ(H_C[p][ch].im[j], H_Sse2[p][ch].im[j]); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Verifies that the optimized methods for filter adaptation are bitexact to |
| // their reference counterparts. |
| TEST_P(AdaptiveFirFilterOneTwoFourEightRenderChannels, |
| FilterAdaptationAvx2Optimizations) { |
| const size_t num_render_channels = GetParam(); |
| constexpr int kSampleRateHz = 48000; |
| constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz); |
| |
| bool use_avx2 = (GetCPUInfo(kAVX2) != 0); |
| if (use_avx2) { |
| for (size_t num_partitions : {2, 5, 12, 30, 50}) { |
| std::unique_ptr<RenderDelayBuffer> render_delay_buffer( |
| RenderDelayBuffer::Create(EchoCanceller3Config(), kSampleRateHz, |
| num_render_channels)); |
| Random random_generator(42U); |
| Block x(kNumBands, num_render_channels); |
| FftData S_C; |
| FftData S_Avx2; |
| FftData G; |
| Aec3Fft fft; |
| std::vector<std::vector<FftData>> H_C( |
| num_partitions, std::vector<FftData>(num_render_channels)); |
| std::vector<std::vector<FftData>> H_Avx2( |
| num_partitions, std::vector<FftData>(num_render_channels)); |
| for (size_t p = 0; p < num_partitions; ++p) { |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| H_C[p][ch].Clear(); |
| H_Avx2[p][ch].Clear(); |
| } |
| } |
| |
| for (size_t k = 0; k < 500; ++k) { |
| for (int band = 0; band < x.NumBands(); ++band) { |
| for (int ch = 0; ch < x.NumChannels(); ++ch) { |
| RandomizeSampleVector(&random_generator, x.View(band, ch)); |
| } |
| } |
| render_delay_buffer->Insert(x); |
| if (k == 0) { |
| render_delay_buffer->Reset(); |
| } |
| render_delay_buffer->PrepareCaptureProcessing(); |
| auto* const render_buffer = render_delay_buffer->GetRenderBuffer(); |
| |
| ApplyFilter_Avx2(*render_buffer, num_partitions, H_Avx2, &S_Avx2); |
| ApplyFilter(*render_buffer, num_partitions, H_C, &S_C); |
| for (size_t j = 0; j < S_C.re.size(); ++j) { |
| EXPECT_FLOAT_EQ(S_C.re[j], S_Avx2.re[j]); |
| EXPECT_FLOAT_EQ(S_C.im[j], S_Avx2.im[j]); |
| } |
| |
| std::for_each(G.re.begin(), G.re.end(), |
| [&](float& a) { a = random_generator.Rand<float>(); }); |
| std::for_each(G.im.begin(), G.im.end(), |
| [&](float& a) { a = random_generator.Rand<float>(); }); |
| |
| AdaptPartitions_Avx2(*render_buffer, G, num_partitions, &H_Avx2); |
| AdaptPartitions(*render_buffer, G, num_partitions, &H_C); |
| |
| for (size_t p = 0; p < num_partitions; ++p) { |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| for (size_t j = 0; j < H_C[p][ch].re.size(); ++j) { |
| EXPECT_FLOAT_EQ(H_C[p][ch].re[j], H_Avx2[p][ch].re[j]); |
| EXPECT_FLOAT_EQ(H_C[p][ch].im[j], H_Avx2[p][ch].im[j]); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Verifies that the optimized method for frequency response computation is |
| // bitexact to the reference counterpart. |
| TEST_P(AdaptiveFirFilterOneTwoFourEightRenderChannels, |
| ComputeFrequencyResponseSse2Optimization) { |
| const size_t num_render_channels = GetParam(); |
| bool use_sse2 = (GetCPUInfo(kSSE2) != 0); |
| if (use_sse2) { |
| for (size_t num_partitions : {2, 5, 12, 30, 50}) { |
| std::vector<std::vector<FftData>> H( |
| num_partitions, std::vector<FftData>(num_render_channels)); |
| std::vector<std::array<float, kFftLengthBy2Plus1>> H2(num_partitions); |
| std::vector<std::array<float, kFftLengthBy2Plus1>> H2_Sse2( |
| num_partitions); |
| |
| for (size_t p = 0; p < num_partitions; ++p) { |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| for (size_t k = 0; k < H[p][ch].re.size(); ++k) { |
| H[p][ch].re[k] = k + p / 3.f + ch; |
| H[p][ch].im[k] = p + k / 7.f - ch; |
| } |
| } |
| } |
| |
| ComputeFrequencyResponse(num_partitions, H, &H2); |
| ComputeFrequencyResponse_Sse2(num_partitions, H, &H2_Sse2); |
| |
| for (size_t p = 0; p < num_partitions; ++p) { |
| for (size_t k = 0; k < H2[p].size(); ++k) { |
| EXPECT_FLOAT_EQ(H2[p][k], H2_Sse2[p][k]); |
| } |
| } |
| } |
| } |
| } |
| |
| // Verifies that the optimized method for frequency response computation is |
| // bitexact to the reference counterpart. |
| TEST_P(AdaptiveFirFilterOneTwoFourEightRenderChannels, |
| ComputeFrequencyResponseAvx2Optimization) { |
| const size_t num_render_channels = GetParam(); |
| bool use_avx2 = (GetCPUInfo(kAVX2) != 0); |
| if (use_avx2) { |
| for (size_t num_partitions : {2, 5, 12, 30, 50}) { |
| std::vector<std::vector<FftData>> H( |
| num_partitions, std::vector<FftData>(num_render_channels)); |
| std::vector<std::array<float, kFftLengthBy2Plus1>> H2(num_partitions); |
| std::vector<std::array<float, kFftLengthBy2Plus1>> H2_Avx2( |
| num_partitions); |
| |
| for (size_t p = 0; p < num_partitions; ++p) { |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| for (size_t k = 0; k < H[p][ch].re.size(); ++k) { |
| H[p][ch].re[k] = k + p / 3.f + ch; |
| H[p][ch].im[k] = p + k / 7.f - ch; |
| } |
| } |
| } |
| |
| ComputeFrequencyResponse(num_partitions, H, &H2); |
| ComputeFrequencyResponse_Avx2(num_partitions, H, &H2_Avx2); |
| |
| for (size_t p = 0; p < num_partitions; ++p) { |
| for (size_t k = 0; k < H2[p].size(); ++k) { |
| EXPECT_FLOAT_EQ(H2[p][k], H2_Avx2[p][k]); |
| } |
| } |
| } |
| } |
| } |
| |
| #endif |
| |
| #if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID) |
| // Verifies that the check for non-null data dumper works. |
| TEST(AdaptiveFirFilterDeathTest, NullDataDumper) { |
| EXPECT_DEATH(AdaptiveFirFilter(9, 9, 250, 1, DetectOptimization(), nullptr), |
| ""); |
| } |
| |
| // Verifies that the check for non-null filter output works. |
| TEST(AdaptiveFirFilterDeathTest, NullFilterOutput) { |
| ApmDataDumper data_dumper(42); |
| AdaptiveFirFilter filter(9, 9, 250, 1, DetectOptimization(), &data_dumper); |
| std::unique_ptr<RenderDelayBuffer> render_delay_buffer( |
| RenderDelayBuffer::Create(EchoCanceller3Config(), 48000, 1)); |
| EXPECT_DEATH(filter.Filter(*render_delay_buffer->GetRenderBuffer(), nullptr), |
| ""); |
| } |
| |
| #endif |
| |
| // Verifies that the filter statistics can be accessed when filter statistics |
| // are turned on. |
| TEST(AdaptiveFirFilterTest, FilterStatisticsAccess) { |
| ApmDataDumper data_dumper(42); |
| Aec3Optimization optimization = DetectOptimization(); |
| AdaptiveFirFilter filter(9, 9, 250, 1, optimization, &data_dumper); |
| std::vector<std::array<float, kFftLengthBy2Plus1>> H2( |
| filter.max_filter_size_partitions(), |
| std::array<float, kFftLengthBy2Plus1>()); |
| for (auto& H2_k : H2) { |
| H2_k.fill(0.f); |
| } |
| |
| std::array<float, kFftLengthBy2Plus1> erl; |
| ComputeErl(optimization, H2, erl); |
| filter.ComputeFrequencyResponse(&H2); |
| } |
| |
| // Verifies that the filter size if correctly repported. |
| TEST(AdaptiveFirFilterTest, FilterSize) { |
| ApmDataDumper data_dumper(42); |
| for (size_t filter_size = 1; filter_size < 5; ++filter_size) { |
| AdaptiveFirFilter filter(filter_size, filter_size, 250, 1, |
| DetectOptimization(), &data_dumper); |
| EXPECT_EQ(filter_size, filter.SizePartitions()); |
| } |
| } |
| |
| class AdaptiveFirFilterMultiChannel |
| : public ::testing::Test, |
| public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {}; |
| |
| INSTANTIATE_TEST_SUITE_P(MultiChannel, |
| AdaptiveFirFilterMultiChannel, |
| ::testing::Combine(::testing::Values(1, 4), |
| ::testing::Values(1, 8))); |
| |
| // Verifies that the filter is being able to properly filter a signal and to |
| // adapt its coefficients. |
| TEST_P(AdaptiveFirFilterMultiChannel, FilterAndAdapt) { |
| const size_t num_render_channels = std::get<0>(GetParam()); |
| const size_t num_capture_channels = std::get<1>(GetParam()); |
| |
| constexpr int kSampleRateHz = 48000; |
| constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz); |
| constexpr size_t kNumBlocksToProcessPerRenderChannel = 1000; |
| |
| ApmDataDumper data_dumper(42); |
| EchoCanceller3Config config; |
| |
| if (num_render_channels == 33) { |
| config.filter.refined = {13, 0.00005f, 0.0005f, 0.0001f, 2.f, 20075344.f}; |
| config.filter.coarse = {13, 0.1f, 20075344.f}; |
| config.filter.refined_initial = {12, 0.005f, 0.5f, 0.001f, 2.f, 20075344.f}; |
| config.filter.coarse_initial = {12, 0.7f, 20075344.f}; |
| } |
| |
| AdaptiveFirFilter filter( |
| config.filter.refined.length_blocks, config.filter.refined.length_blocks, |
| config.filter.config_change_duration_blocks, num_render_channels, |
| DetectOptimization(), &data_dumper); |
| std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>> H2( |
| num_capture_channels, std::vector<std::array<float, kFftLengthBy2Plus1>>( |
| filter.max_filter_size_partitions(), |
| std::array<float, kFftLengthBy2Plus1>())); |
| std::vector<std::vector<float>> h( |
| num_capture_channels, |
| std::vector<float>( |
| GetTimeDomainLength(filter.max_filter_size_partitions()), 0.f)); |
| Aec3Fft fft; |
| config.delay.default_delay = 1; |
| std::unique_ptr<RenderDelayBuffer> render_delay_buffer( |
| RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels)); |
| CoarseFilterUpdateGain gain(config.filter.coarse, |
| config.filter.config_change_duration_blocks); |
| Random random_generator(42U); |
| Block x(kNumBands, num_render_channels); |
| std::vector<float> n(kBlockSize, 0.f); |
| std::vector<float> y(kBlockSize, 0.f); |
| AecState aec_state(EchoCanceller3Config{}, num_capture_channels); |
| RenderSignalAnalyzer render_signal_analyzer(config); |
| absl::optional<DelayEstimate> delay_estimate; |
| std::vector<float> e(kBlockSize, 0.f); |
| std::array<float, kFftLength> s_scratch; |
| std::vector<SubtractorOutput> output(num_capture_channels); |
| FftData S; |
| FftData G; |
| FftData E; |
| std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(num_capture_channels); |
| std::vector<std::array<float, kFftLengthBy2Plus1>> E2_refined( |
| num_capture_channels); |
| std::array<float, kFftLengthBy2Plus1> E2_coarse; |
| // [B,A] = butter(2,100/8000,'high') |
| constexpr CascadedBiQuadFilter::BiQuadCoefficients |
| kHighPassFilterCoefficients = {{0.97261f, -1.94523f, 0.97261f}, |
| {-1.94448f, 0.94598f}}; |
| for (auto& Y2_ch : Y2) { |
| Y2_ch.fill(0.f); |
| } |
| for (auto& E2_refined_ch : E2_refined) { |
| E2_refined_ch.fill(0.f); |
| } |
| E2_coarse.fill(0.f); |
| for (auto& subtractor_output : output) { |
| subtractor_output.Reset(); |
| } |
| |
| constexpr float kScale = 1.0f / kFftLengthBy2; |
| |
| for (size_t delay_samples : {0, 64, 150, 200, 301}) { |
| std::vector<DelayBuffer<float>> delay_buffer( |
| num_render_channels, DelayBuffer<float>(delay_samples)); |
| std::vector<std::unique_ptr<CascadedBiQuadFilter>> x_hp_filter( |
| num_render_channels); |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| x_hp_filter[ch] = std::make_unique<CascadedBiQuadFilter>( |
| kHighPassFilterCoefficients, 1); |
| } |
| CascadedBiQuadFilter y_hp_filter(kHighPassFilterCoefficients, 1); |
| |
| SCOPED_TRACE(ProduceDebugText(num_render_channels, delay_samples)); |
| const size_t num_blocks_to_process = |
| kNumBlocksToProcessPerRenderChannel * num_render_channels; |
| for (size_t j = 0; j < num_blocks_to_process; ++j) { |
| std::fill(y.begin(), y.end(), 0.f); |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| RandomizeSampleVector(&random_generator, x.View(/*band=*/0, ch)); |
| std::array<float, kBlockSize> y_channel; |
| delay_buffer[ch].Delay(x.View(/*band=*/0, ch), y_channel); |
| for (size_t k = 0; k < y.size(); ++k) { |
| y[k] += y_channel[k] / num_render_channels; |
| } |
| } |
| |
| RandomizeSampleVector(&random_generator, n); |
| const float noise_scaling = 1.f / 100.f / num_render_channels; |
| for (size_t k = 0; k < y.size(); ++k) { |
| y[k] += n[k] * noise_scaling; |
| } |
| |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| x_hp_filter[ch]->Process(x.View(/*band=*/0, ch)); |
| } |
| y_hp_filter.Process(y); |
| |
| render_delay_buffer->Insert(x); |
| if (j == 0) { |
| render_delay_buffer->Reset(); |
| } |
| render_delay_buffer->PrepareCaptureProcessing(); |
| auto* const render_buffer = render_delay_buffer->GetRenderBuffer(); |
| |
| render_signal_analyzer.Update(*render_buffer, |
| aec_state.MinDirectPathFilterDelay()); |
| |
| filter.Filter(*render_buffer, &S); |
| fft.Ifft(S, &s_scratch); |
| std::transform(y.begin(), y.end(), s_scratch.begin() + kFftLengthBy2, |
| e.begin(), |
| [&](float a, float b) { return a - b * kScale; }); |
| std::for_each(e.begin(), e.end(), |
| [](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); }); |
| fft.ZeroPaddedFft(e, Aec3Fft::Window::kRectangular, &E); |
| for (auto& o : output) { |
| for (size_t k = 0; k < kBlockSize; ++k) { |
| o.s_refined[k] = kScale * s_scratch[k + kFftLengthBy2]; |
| } |
| } |
| |
| std::array<float, kFftLengthBy2Plus1> render_power; |
| render_buffer->SpectralSum(filter.SizePartitions(), &render_power); |
| gain.Compute(render_power, render_signal_analyzer, E, |
| filter.SizePartitions(), false, &G); |
| filter.Adapt(*render_buffer, G, &h[0]); |
| aec_state.HandleEchoPathChange(EchoPathVariability( |
| false, EchoPathVariability::DelayAdjustment::kNone, false)); |
| |
| filter.ComputeFrequencyResponse(&H2[0]); |
| aec_state.Update(delay_estimate, H2, h, *render_buffer, E2_refined, Y2, |
| output); |
| } |
| // Verify that the filter is able to perform well. |
| EXPECT_LT(1000 * std::inner_product(e.begin(), e.end(), e.begin(), 0.f), |
| std::inner_product(y.begin(), y.end(), y.begin(), 0.f)); |
| } |
| } |
| |
| } // namespace aec3 |
| } // namespace webrtc |