blob: fc4ceb7090dcd969c5779ce98abd7877995abe44 [file] [log] [blame]
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "audio/utility/channel_mixing_matrix.h"
#include <stddef.h>
#include "audio/utility/channel_mixer.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/logging.h"
#include "rtc_base/strings/string_builder.h"
#include "test/gtest.h"
namespace webrtc {
// Test all possible layout conversions can be constructed and mixed.
// Also ensure that the channel matrix fulfill certain conditions when remapping
// is supported.
TEST(ChannelMixingMatrixTest, ConstructAllPossibleLayouts) {
for (ChannelLayout input_layout = CHANNEL_LAYOUT_MONO;
input_layout <= CHANNEL_LAYOUT_MAX;
input_layout = static_cast<ChannelLayout>(input_layout + 1)) {
for (ChannelLayout output_layout = CHANNEL_LAYOUT_MONO;
output_layout <= CHANNEL_LAYOUT_MAX;
output_layout = static_cast<ChannelLayout>(output_layout + 1)) {
// DISCRETE, BITSTREAM can't be tested here based on the current approach.
// CHANNEL_LAYOUT_STEREO_AND_KEYBOARD_MIC is not mixable.
// Stereo down mix should never be the output layout.
if (input_layout == CHANNEL_LAYOUT_BITSTREAM ||
input_layout == CHANNEL_LAYOUT_DISCRETE ||
input_layout == CHANNEL_LAYOUT_STEREO_AND_KEYBOARD_MIC ||
output_layout == CHANNEL_LAYOUT_BITSTREAM ||
output_layout == CHANNEL_LAYOUT_DISCRETE ||
output_layout == CHANNEL_LAYOUT_STEREO_AND_KEYBOARD_MIC ||
output_layout == CHANNEL_LAYOUT_STEREO_DOWNMIX) {
continue;
}
rtc::StringBuilder ss;
ss << "Input Layout: " << input_layout
<< ", Output Layout: " << output_layout;
SCOPED_TRACE(ss.str());
ChannelMixingMatrix matrix_builder(
input_layout, ChannelLayoutToChannelCount(input_layout),
output_layout, ChannelLayoutToChannelCount(output_layout));
const int input_channels = ChannelLayoutToChannelCount(input_layout);
const int output_channels = ChannelLayoutToChannelCount(output_layout);
std::vector<std::vector<float>> matrix;
bool remapping = matrix_builder.CreateTransformationMatrix(&matrix);
if (remapping) {
// Also ensure that (when remapping can take place), a maximum of one
// input channel is included per output. This knowledge will simplify
// the channel mixing algorithm since it allows us to find the only
// scale factor which equals 1.0 and copy that input to its
// corresponding output. If no such factor can be found, the
// corresponding output can be set to zero.
for (int i = 0; i < output_channels; i++) {
EXPECT_EQ(static_cast<size_t>(input_channels), matrix[i].size());
int num_input_channels_accounted_for_per_output = 0;
for (int j = 0; j < input_channels; j++) {
float scale = matrix[i][j];
if (scale > 0) {
EXPECT_EQ(scale, 1.0f);
num_input_channels_accounted_for_per_output++;
}
}
// Each output channel shall contain contribution from one or less
// input channels.
EXPECT_LE(num_input_channels_accounted_for_per_output, 1);
}
}
}
}
}
// Verify channels are mixed and scaled correctly.
TEST(ChannelMixingMatrixTest, StereoToMono) {
ChannelLayout input_layout = CHANNEL_LAYOUT_STEREO;
ChannelLayout output_layout = CHANNEL_LAYOUT_MONO;
ChannelMixingMatrix matrix_builder(
input_layout, ChannelLayoutToChannelCount(input_layout), output_layout,
ChannelLayoutToChannelCount(output_layout));
std::vector<std::vector<float>> matrix;
bool remapping = matrix_builder.CreateTransformationMatrix(&matrix);
// Input: stereo
// LEFT RIGHT
// Output: mono CENTER 0.5 0.5
//
EXPECT_FALSE(remapping);
EXPECT_EQ(1u, matrix.size());
EXPECT_EQ(2u, matrix[0].size());
EXPECT_EQ(0.5f, matrix[0][0]);
EXPECT_EQ(0.5f, matrix[0][1]);
}
TEST(ChannelMixingMatrixTest, MonoToStereo) {
ChannelLayout input_layout = CHANNEL_LAYOUT_MONO;
ChannelLayout output_layout = CHANNEL_LAYOUT_STEREO;
ChannelMixingMatrix matrix_builder(
input_layout, ChannelLayoutToChannelCount(input_layout), output_layout,
ChannelLayoutToChannelCount(output_layout));
std::vector<std::vector<float>> matrix;
bool remapping = matrix_builder.CreateTransformationMatrix(&matrix);
// Input: mono
// CENTER
// Output: stereo LEFT 1
// RIGHT 1
//
EXPECT_TRUE(remapping);
EXPECT_EQ(2u, matrix.size());
EXPECT_EQ(1u, matrix[0].size());
EXPECT_EQ(1.0f, matrix[0][0]);
EXPECT_EQ(1u, matrix[1].size());
EXPECT_EQ(1.0f, matrix[1][0]);
}
TEST(ChannelMixingMatrixTest, MonoToTwoOne) {
ChannelLayout input_layout = CHANNEL_LAYOUT_MONO;
ChannelLayout output_layout = CHANNEL_LAYOUT_2_1;
ChannelMixingMatrix matrix_builder(
input_layout, ChannelLayoutToChannelCount(input_layout), output_layout,
ChannelLayoutToChannelCount(output_layout));
std::vector<std::vector<float>> matrix;
bool remapping = matrix_builder.CreateTransformationMatrix(&matrix);
// Input: mono
// CENTER
// Output: 2.1 FRONT_LEFT 1
// FRONT_RIGHT 1
// BACK_CENTER 0
//
EXPECT_TRUE(remapping);
EXPECT_EQ(3u, matrix.size());
EXPECT_EQ(1u, matrix[0].size());
EXPECT_EQ(1.0f, matrix[0][0]);
EXPECT_EQ(1.0f, matrix[1][0]);
EXPECT_EQ(0.0f, matrix[2][0]);
}
TEST(ChannelMixingMatrixTest, MonoToFiveOne) {
ChannelLayout input_layout = CHANNEL_LAYOUT_MONO;
ChannelLayout output_layout = CHANNEL_LAYOUT_5_1;
const int input_channels = ChannelLayoutToChannelCount(input_layout);
const int output_channels = ChannelLayoutToChannelCount(output_layout);
ChannelMixingMatrix matrix_builder(input_layout, input_channels,
output_layout, output_channels);
std::vector<std::vector<float>> matrix;
bool remapping = matrix_builder.CreateTransformationMatrix(&matrix);
// Input: mono
// CENTER
// Output: 5.1 LEFT 1
// RIGHT 1
// CENTER 0
// LFE 0
// SIDE_LEFT 0
// SIDE_RIGHT 0
//
EXPECT_TRUE(remapping);
EXPECT_EQ(static_cast<size_t>(output_channels), matrix.size());
for (int n = 0; n < output_channels; n++) {
EXPECT_EQ(static_cast<size_t>(input_channels), matrix[n].size());
if (n == LEFT || n == RIGHT) {
EXPECT_EQ(1.0f, matrix[n][0]);
} else {
EXPECT_EQ(0.0f, matrix[n][0]);
}
}
}
TEST(ChannelMixingMatrixTest, MonoToSevenOne) {
ChannelLayout input_layout = CHANNEL_LAYOUT_MONO;
ChannelLayout output_layout = CHANNEL_LAYOUT_7_1;
const int input_channels = ChannelLayoutToChannelCount(input_layout);
const int output_channels = ChannelLayoutToChannelCount(output_layout);
ChannelMixingMatrix matrix_builder(input_layout, input_channels,
output_layout, output_channels);
std::vector<std::vector<float>> matrix;
bool remapping = matrix_builder.CreateTransformationMatrix(&matrix);
// Input: mono
// CENTER
// Output: 7.1 LEFT 1
// RIGHT 1
// CENTER 0
// LFE 0
// SIDE_LEFT 0
// SIDE_RIGHT 0
// BACK_LEFT 0
// BACK_RIGHT 0
//
EXPECT_TRUE(remapping);
EXPECT_EQ(static_cast<size_t>(output_channels), matrix.size());
for (int n = 0; n < output_channels; n++) {
EXPECT_EQ(static_cast<size_t>(input_channels), matrix[n].size());
if (n == LEFT || n == RIGHT) {
EXPECT_EQ(1.0f, matrix[n][0]);
} else {
EXPECT_EQ(0.0f, matrix[n][0]);
}
}
}
TEST(ChannelMixingMatrixTest, FiveOneToMono) {
ChannelLayout input_layout = CHANNEL_LAYOUT_5_1;
ChannelLayout output_layout = CHANNEL_LAYOUT_MONO;
ChannelMixingMatrix matrix_builder(
input_layout, ChannelLayoutToChannelCount(input_layout), output_layout,
ChannelLayoutToChannelCount(output_layout));
std::vector<std::vector<float>> matrix;
bool remapping = matrix_builder.CreateTransformationMatrix(&matrix);
// Note: 1/sqrt(2) is shown as 0.707.
//
// Input: 5.1
// LEFT RIGHT CENTER LFE SIDE_LEFT SIDE_RIGHT
// Output: mono CENTER 0.707 0.707 1 0.707 0.707 0.707
//
EXPECT_FALSE(remapping);
EXPECT_EQ(1u, matrix.size());
EXPECT_EQ(6u, matrix[0].size());
EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[0][0]);
EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[0][1]);
// The center channel will be mixed at scale 1.
EXPECT_EQ(1.0f, matrix[0][2]);
EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[0][3]);
EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[0][4]);
EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[0][5]);
}
TEST(ChannelMixingMatrixTest, FiveOneBackToStereo) {
// Front L, Front R, Front C, LFE, Back L, Back R
ChannelLayout input_layout = CHANNEL_LAYOUT_5_1_BACK;
ChannelLayout output_layout = CHANNEL_LAYOUT_STEREO;
const int input_channels = ChannelLayoutToChannelCount(input_layout);
const int output_channels = ChannelLayoutToChannelCount(output_layout);
ChannelMixingMatrix matrix_builder(input_layout, input_channels,
output_layout, output_channels);
std::vector<std::vector<float>> matrix;
bool remapping = matrix_builder.CreateTransformationMatrix(&matrix);
// Note: 1/sqrt(2) is shown as 0.707.
// Note: The Channels enumerator is given by {LEFT = 0, RIGHT, CENTER, LFE,
// BACK_LEFT, BACK_RIGHT,...}, hence we can use the enumerator values as
// indexes in the matrix when verifying the scaling factors.
//
// Input: 5.1
// LEFT RIGHT CENTER LFE BACK_LEFT BACK_RIGHT
// Output: stereo LEFT 1 0 0.707 0.707 0.707 0
// RIGHT 0 1 0.707 0.707 0 0.707
//
EXPECT_FALSE(remapping);
EXPECT_EQ(static_cast<size_t>(output_channels), matrix.size());
EXPECT_EQ(static_cast<size_t>(input_channels), matrix[LEFT].size());
EXPECT_EQ(static_cast<size_t>(input_channels), matrix[RIGHT].size());
EXPECT_EQ(1.0f, matrix[LEFT][LEFT]);
EXPECT_EQ(1.0f, matrix[RIGHT][RIGHT]);
EXPECT_EQ(0.0f, matrix[LEFT][RIGHT]);
EXPECT_EQ(0.0f, matrix[RIGHT][LEFT]);
EXPECT_EQ(0.0f, matrix[LEFT][BACK_RIGHT]);
EXPECT_EQ(0.0f, matrix[RIGHT][BACK_LEFT]);
EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[LEFT][CENTER]);
EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[LEFT][LFE]);
EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[LEFT][BACK_LEFT]);
EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[RIGHT][CENTER]);
EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[RIGHT][LFE]);
EXPECT_FLOAT_EQ(ChannelMixer::kHalfPower, matrix[RIGHT][BACK_RIGHT]);
}
TEST(ChannelMixingMatrixTest, FiveOneToSevenOne) {
// Front L, Front R, Front C, LFE, Side L, Side R
ChannelLayout input_layout = CHANNEL_LAYOUT_5_1;
// Front L, Front R, Front C, LFE, Side L, Side R, Back L, Back R
ChannelLayout output_layout = CHANNEL_LAYOUT_7_1;
const int input_channels = ChannelLayoutToChannelCount(input_layout);
const int output_channels = ChannelLayoutToChannelCount(output_layout);
ChannelMixingMatrix matrix_builder(input_layout, input_channels,
output_layout, output_channels);
std::vector<std::vector<float>> matrix;
bool remapping = matrix_builder.CreateTransformationMatrix(&matrix);
// Input: 5.1
// LEFT RIGHT CENTER LFE SIDE_LEFT SIDE_RIGHT
// Output: 7.1 LEFT 1 0 0 0 0 0
// RIGHT 0 1 0 0 0 0
// CENTER 0 0 1 0 0 0
// LFE 0 0 0 1 0 0
// SIDE_LEFT 0 0 0 0 1 0
// SIDE_RIGHT 0 0 0 0 0 1
// BACK_LEFT 0 0 0 0 0 0
// BACK_RIGHT 0 0 0 0 0 0
//
EXPECT_TRUE(remapping);
EXPECT_EQ(static_cast<size_t>(output_channels), matrix.size());
for (int i = 0; i < output_channels; i++) {
EXPECT_EQ(static_cast<size_t>(input_channels), matrix[i].size());
for (int j = 0; j < input_channels; j++) {
if (i == j) {
EXPECT_EQ(1.0f, matrix[i][j]);
} else {
EXPECT_EQ(0.0f, matrix[i][j]);
}
}
}
}
TEST(ChannelMixingMatrixTest, StereoToFiveOne) {
ChannelLayout input_layout = CHANNEL_LAYOUT_STEREO;
ChannelLayout output_layout = CHANNEL_LAYOUT_5_1;
const int input_channels = ChannelLayoutToChannelCount(input_layout);
const int output_channels = ChannelLayoutToChannelCount(output_layout);
ChannelMixingMatrix matrix_builder(input_layout, input_channels,
output_layout, output_channels);
std::vector<std::vector<float>> matrix;
bool remapping = matrix_builder.CreateTransformationMatrix(&matrix);
// Input: Stereo
// LEFT RIGHT
// Output: 5.1 LEFT 1 0
// RIGHT 0 1
// CENTER 0 0
// LFE 0 0
// SIDE_LEFT 0 0
// SIDE_RIGHT 0 0
//
EXPECT_TRUE(remapping);
EXPECT_EQ(static_cast<size_t>(output_channels), matrix.size());
for (int n = 0; n < output_channels; n++) {
EXPECT_EQ(static_cast<size_t>(input_channels), matrix[n].size());
if (n == LEFT) {
EXPECT_EQ(1.0f, matrix[LEFT][LEFT]);
EXPECT_EQ(0.0f, matrix[LEFT][RIGHT]);
} else if (n == RIGHT) {
EXPECT_EQ(0.0f, matrix[RIGHT][LEFT]);
EXPECT_EQ(1.0f, matrix[RIGHT][RIGHT]);
} else {
EXPECT_EQ(0.0f, matrix[n][LEFT]);
EXPECT_EQ(0.0f, matrix[n][RIGHT]);
}
}
}
TEST(ChannelMixingMatrixTest, DiscreteToDiscrete) {
const struct {
int input_channels;
int output_channels;
} test_case[] = {
{2, 2},
{2, 5},
{5, 2},
};
for (size_t n = 0; n < arraysize(test_case); n++) {
int input_channels = test_case[n].input_channels;
int output_channels = test_case[n].output_channels;
ChannelMixingMatrix matrix_builder(CHANNEL_LAYOUT_DISCRETE, input_channels,
CHANNEL_LAYOUT_DISCRETE,
output_channels);
std::vector<std::vector<float>> matrix;
bool remapping = matrix_builder.CreateTransformationMatrix(&matrix);
EXPECT_TRUE(remapping);
EXPECT_EQ(static_cast<size_t>(output_channels), matrix.size());
for (int i = 0; i < output_channels; i++) {
EXPECT_EQ(static_cast<size_t>(input_channels), matrix[i].size());
for (int j = 0; j < input_channels; j++) {
if (i == j) {
EXPECT_EQ(1.0f, matrix[i][j]);
} else {
EXPECT_EQ(0.0f, matrix[i][j]);
}
}
}
}
}
} // namespace webrtc