blob: 9f1df582556daace954cfd17fd5a430ad6668b4a [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#if defined(WEBRTC_POSIX)
#include <netinet/in.h>
#include <sys/socket.h>
#ifdef OPENBSD
#include <netinet/in_systm.h>
#endif
#ifndef __native_client__
#include <netinet/ip.h>
#endif
#include <netdb.h>
#endif
#include "rtc_base/ip_address.h"
#include "rtc_base/byte_order.h"
#include "rtc_base/net_helpers.h"
#include "rtc_base/string_utils.h"
#if defined(WEBRTC_WIN)
#include "rtc_base/win32.h"
#endif // WEBRTC_WIN
namespace rtc {
// Prefixes used for categorizing IPv6 addresses.
static const in6_addr kV4MappedPrefix = {
{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, 0}}};
static const in6_addr k6To4Prefix = {{{0x20, 0x02, 0}}};
static const in6_addr kTeredoPrefix = {{{0x20, 0x01, 0x00, 0x00}}};
static const in6_addr kV4CompatibilityPrefix = {{{0}}};
static const in6_addr k6BonePrefix = {{{0x3f, 0xfe, 0}}};
static const in6_addr kPrivateNetworkPrefix = {{{0xFD}}};
static bool IPIsHelper(const IPAddress& ip,
const in6_addr& tomatch,
int length);
static in_addr ExtractMappedAddress(const in6_addr& addr);
uint32_t IPAddress::v4AddressAsHostOrderInteger() const {
if (family_ == AF_INET) {
return NetworkToHost32(u_.ip4.s_addr);
} else {
return 0;
}
}
int IPAddress::overhead() const {
switch (family_) {
case AF_INET: // IPv4
return 20;
case AF_INET6: // IPv6
return 40;
default:
return 0;
}
}
bool IPAddress::IsNil() const {
return IPIsUnspec(*this);
}
size_t IPAddress::Size() const {
switch (family_) {
case AF_INET:
return sizeof(in_addr);
case AF_INET6:
return sizeof(in6_addr);
}
return 0;
}
bool IPAddress::operator==(const IPAddress& other) const {
if (family_ != other.family_) {
return false;
}
if (family_ == AF_INET) {
return memcmp(&u_.ip4, &other.u_.ip4, sizeof(u_.ip4)) == 0;
}
if (family_ == AF_INET6) {
return memcmp(&u_.ip6, &other.u_.ip6, sizeof(u_.ip6)) == 0;
}
return family_ == AF_UNSPEC;
}
bool IPAddress::operator!=(const IPAddress& other) const {
return !((*this) == other);
}
bool IPAddress::operator>(const IPAddress& other) const {
return (*this) != other && !((*this) < other);
}
bool IPAddress::operator<(const IPAddress& other) const {
// IPv4 is 'less than' IPv6
if (family_ != other.family_) {
if (family_ == AF_UNSPEC) {
return true;
}
if (family_ == AF_INET && other.family_ == AF_INET6) {
return true;
}
return false;
}
// Comparing addresses of the same family.
switch (family_) {
case AF_INET: {
return NetworkToHost32(u_.ip4.s_addr) <
NetworkToHost32(other.u_.ip4.s_addr);
}
case AF_INET6: {
return memcmp(&u_.ip6.s6_addr, &other.u_.ip6.s6_addr, 16) < 0;
}
}
// Catches AF_UNSPEC and invalid addresses.
return false;
}
in6_addr IPAddress::ipv6_address() const {
return u_.ip6;
}
in_addr IPAddress::ipv4_address() const {
return u_.ip4;
}
std::string IPAddress::ToString() const {
if (family_ != AF_INET && family_ != AF_INET6) {
return std::string();
}
char buf[INET6_ADDRSTRLEN] = {0};
const void* src = &u_.ip4;
if (family_ == AF_INET6) {
src = &u_.ip6;
}
if (!rtc::inet_ntop(family_, src, buf, sizeof(buf))) {
return std::string();
}
return std::string(buf);
}
std::string IPAddress::ToSensitiveString() const {
#if !defined(NDEBUG)
// Return non-stripped in debug.
return ToString();
#else
switch (family_) {
case AF_INET: {
std::string address = ToString();
size_t find_pos = address.rfind('.');
if (find_pos == std::string::npos)
return std::string();
address.resize(find_pos);
address += ".x";
return address;
}
case AF_INET6: {
std::string result;
result.resize(INET6_ADDRSTRLEN);
in6_addr addr = ipv6_address();
size_t len = snprintf(&(result[0]), result.size(), "%x:%x:%x:x:x:x:x:x",
(addr.s6_addr[0] << 8) + addr.s6_addr[1],
(addr.s6_addr[2] << 8) + addr.s6_addr[3],
(addr.s6_addr[4] << 8) + addr.s6_addr[5]);
result.resize(len);
return result;
}
}
return std::string();
#endif
}
IPAddress IPAddress::Normalized() const {
if (family_ != AF_INET6) {
return *this;
}
if (!IPIsV4Mapped(*this)) {
return *this;
}
in_addr addr = ExtractMappedAddress(u_.ip6);
return IPAddress(addr);
}
IPAddress IPAddress::AsIPv6Address() const {
if (family_ != AF_INET) {
return *this;
}
in6_addr v6addr = kV4MappedPrefix;
::memcpy(&v6addr.s6_addr[12], &u_.ip4.s_addr, sizeof(u_.ip4.s_addr));
return IPAddress(v6addr);
}
bool InterfaceAddress::operator==(const InterfaceAddress& other) const {
return ipv6_flags_ == other.ipv6_flags() &&
static_cast<const IPAddress&>(*this) == other;
}
bool InterfaceAddress::operator!=(const InterfaceAddress& other) const {
return !((*this) == other);
}
const InterfaceAddress& InterfaceAddress::operator=(
const InterfaceAddress& other) {
ipv6_flags_ = other.ipv6_flags_;
static_cast<IPAddress&>(*this) = other;
return *this;
}
std::string InterfaceAddress::ToString() const {
std::string result = IPAddress::ToString();
if (family() == AF_INET6)
result += "|flags:0x" + rtc::ToHex(ipv6_flags());
return result;
}
static bool IPIsPrivateNetworkV4(const IPAddress& ip) {
uint32_t ip_in_host_order = ip.v4AddressAsHostOrderInteger();
return ((ip_in_host_order >> 24) == 10) ||
((ip_in_host_order >> 20) == ((172 << 4) | 1)) ||
((ip_in_host_order >> 16) == ((192 << 8) | 168));
}
static bool IPIsPrivateNetworkV6(const IPAddress& ip) {
return IPIsHelper(ip, kPrivateNetworkPrefix, 8);
}
bool IPIsPrivateNetwork(const IPAddress& ip) {
switch (ip.family()) {
case AF_INET: {
return IPIsPrivateNetworkV4(ip);
}
case AF_INET6: {
return IPIsPrivateNetworkV6(ip);
}
}
return false;
}
static bool IPIsSharedNetworkV4(const IPAddress& ip) {
uint32_t ip_in_host_order = ip.v4AddressAsHostOrderInteger();
return (ip_in_host_order >> 22) == ((100 << 2) | 1);
}
bool IPIsSharedNetwork(const IPAddress& ip) {
if (ip.family() == AF_INET) {
return IPIsSharedNetworkV4(ip);
}
return false;
}
in_addr ExtractMappedAddress(const in6_addr& in6) {
in_addr ipv4;
::memcpy(&ipv4.s_addr, &in6.s6_addr[12], sizeof(ipv4.s_addr));
return ipv4;
}
bool IPFromAddrInfo(struct addrinfo* info, IPAddress* out) {
if (!info || !info->ai_addr) {
return false;
}
if (info->ai_addr->sa_family == AF_INET) {
sockaddr_in* addr = reinterpret_cast<sockaddr_in*>(info->ai_addr);
*out = IPAddress(addr->sin_addr);
return true;
} else if (info->ai_addr->sa_family == AF_INET6) {
sockaddr_in6* addr = reinterpret_cast<sockaddr_in6*>(info->ai_addr);
*out = IPAddress(addr->sin6_addr);
return true;
}
return false;
}
bool IPFromString(const std::string& str, IPAddress* out) {
if (!out) {
return false;
}
in_addr addr;
if (rtc::inet_pton(AF_INET, str.c_str(), &addr) == 0) {
in6_addr addr6;
if (rtc::inet_pton(AF_INET6, str.c_str(), &addr6) == 0) {
*out = IPAddress();
return false;
}
*out = IPAddress(addr6);
} else {
*out = IPAddress(addr);
}
return true;
}
bool IPFromString(const std::string& str, int flags, InterfaceAddress* out) {
IPAddress ip;
if (!IPFromString(str, &ip)) {
return false;
}
*out = InterfaceAddress(ip, flags);
return true;
}
bool IPIsAny(const IPAddress& ip) {
switch (ip.family()) {
case AF_INET:
return ip == IPAddress(INADDR_ANY);
case AF_INET6:
return ip == IPAddress(in6addr_any) || ip == IPAddress(kV4MappedPrefix);
case AF_UNSPEC:
return false;
}
return false;
}
static bool IPIsLoopbackV4(const IPAddress& ip) {
uint32_t ip_in_host_order = ip.v4AddressAsHostOrderInteger();
return ((ip_in_host_order >> 24) == 127);
}
static bool IPIsLoopbackV6(const IPAddress& ip) {
return ip == IPAddress(in6addr_loopback);
}
bool IPIsLoopback(const IPAddress& ip) {
switch (ip.family()) {
case AF_INET: {
return IPIsLoopbackV4(ip);
}
case AF_INET6: {
return IPIsLoopbackV6(ip);
}
}
return false;
}
bool IPIsPrivate(const IPAddress& ip) {
return IPIsLinkLocal(ip) || IPIsLoopback(ip) || IPIsPrivateNetwork(ip) ||
IPIsSharedNetwork(ip);
}
bool IPIsUnspec(const IPAddress& ip) {
return ip.family() == AF_UNSPEC;
}
size_t HashIP(const IPAddress& ip) {
switch (ip.family()) {
case AF_INET: {
return ip.ipv4_address().s_addr;
}
case AF_INET6: {
in6_addr v6addr = ip.ipv6_address();
const uint32_t* v6_as_ints =
reinterpret_cast<const uint32_t*>(&v6addr.s6_addr);
return v6_as_ints[0] ^ v6_as_ints[1] ^ v6_as_ints[2] ^ v6_as_ints[3];
}
}
return 0;
}
IPAddress TruncateIP(const IPAddress& ip, int length) {
if (length < 0) {
return IPAddress();
}
if (ip.family() == AF_INET) {
if (length > 31) {
return ip;
}
if (length == 0) {
return IPAddress(INADDR_ANY);
}
int mask = (0xFFFFFFFF << (32 - length));
uint32_t host_order_ip = NetworkToHost32(ip.ipv4_address().s_addr);
in_addr masked;
masked.s_addr = HostToNetwork32(host_order_ip & mask);
return IPAddress(masked);
} else if (ip.family() == AF_INET6) {
if (length > 127) {
return ip;
}
if (length == 0) {
return IPAddress(in6addr_any);
}
in6_addr v6addr = ip.ipv6_address();
int position = length / 32;
int inner_length = 32 - (length - (position * 32));
// Note: 64bit mask constant needed to allow possible 32-bit left shift.
uint32_t inner_mask = 0xFFFFFFFFLL << inner_length;
uint32_t* v6_as_ints = reinterpret_cast<uint32_t*>(&v6addr.s6_addr);
for (int i = 0; i < 4; ++i) {
if (i == position) {
uint32_t host_order_inner = NetworkToHost32(v6_as_ints[i]);
v6_as_ints[i] = HostToNetwork32(host_order_inner & inner_mask);
} else if (i > position) {
v6_as_ints[i] = 0;
}
}
return IPAddress(v6addr);
}
return IPAddress();
}
int CountIPMaskBits(const IPAddress& mask) {
uint32_t word_to_count = 0;
int bits = 0;
switch (mask.family()) {
case AF_INET: {
word_to_count = NetworkToHost32(mask.ipv4_address().s_addr);
break;
}
case AF_INET6: {
in6_addr v6addr = mask.ipv6_address();
const uint32_t* v6_as_ints =
reinterpret_cast<const uint32_t*>(&v6addr.s6_addr);
int i = 0;
for (; i < 4; ++i) {
if (v6_as_ints[i] != 0xFFFFFFFF) {
break;
}
}
if (i < 4) {
word_to_count = NetworkToHost32(v6_as_ints[i]);
}
bits = (i * 32);
break;
}
default: {
return 0;
}
}
if (word_to_count == 0) {
return bits;
}
// Public domain bit-twiddling hack from:
// http://graphics.stanford.edu/~seander/bithacks.html
// Counts the trailing 0s in the word.
unsigned int zeroes = 32;
// This could also be written word_to_count &= -word_to_count, but
// MSVC emits warning C4146 when negating an unsigned number.
word_to_count &= ~word_to_count + 1; // Isolate lowest set bit.
if (word_to_count)
zeroes--;
if (word_to_count & 0x0000FFFF)
zeroes -= 16;
if (word_to_count & 0x00FF00FF)
zeroes -= 8;
if (word_to_count & 0x0F0F0F0F)
zeroes -= 4;
if (word_to_count & 0x33333333)
zeroes -= 2;
if (word_to_count & 0x55555555)
zeroes -= 1;
return bits + (32 - zeroes);
}
bool IPIsHelper(const IPAddress& ip, const in6_addr& tomatch, int length) {
// Helper method for checking IP prefix matches (but only on whole byte
// lengths). Length is in bits.
in6_addr addr = ip.ipv6_address();
return ::memcmp(&addr, &tomatch, (length >> 3)) == 0;
}
bool IPIs6Bone(const IPAddress& ip) {
return IPIsHelper(ip, k6BonePrefix, 16);
}
bool IPIs6To4(const IPAddress& ip) {
return IPIsHelper(ip, k6To4Prefix, 16);
}
static bool IPIsLinkLocalV4(const IPAddress& ip) {
uint32_t ip_in_host_order = ip.v4AddressAsHostOrderInteger();
return ((ip_in_host_order >> 16) == ((169 << 8) | 254));
}
static bool IPIsLinkLocalV6(const IPAddress& ip) {
// Can't use the helper because the prefix is 10 bits.
in6_addr addr = ip.ipv6_address();
return (addr.s6_addr[0] == 0xFE) && ((addr.s6_addr[1] & 0xC0) == 0x80);
}
bool IPIsLinkLocal(const IPAddress& ip) {
switch (ip.family()) {
case AF_INET: {
return IPIsLinkLocalV4(ip);
}
case AF_INET6: {
return IPIsLinkLocalV6(ip);
}
}
return false;
}
// According to http://www.ietf.org/rfc/rfc2373.txt, Appendix A, page 19. An
// address which contains MAC will have its 11th and 12th bytes as FF:FE as well
// as the U/L bit as 1.
bool IPIsMacBased(const IPAddress& ip) {
in6_addr addr = ip.ipv6_address();
return ((addr.s6_addr[8] & 0x02) && addr.s6_addr[11] == 0xFF &&
addr.s6_addr[12] == 0xFE);
}
bool IPIsSiteLocal(const IPAddress& ip) {
// Can't use the helper because the prefix is 10 bits.
in6_addr addr = ip.ipv6_address();
return addr.s6_addr[0] == 0xFE && (addr.s6_addr[1] & 0xC0) == 0xC0;
}
bool IPIsULA(const IPAddress& ip) {
// Can't use the helper because the prefix is 7 bits.
in6_addr addr = ip.ipv6_address();
return (addr.s6_addr[0] & 0xFE) == 0xFC;
}
bool IPIsTeredo(const IPAddress& ip) {
return IPIsHelper(ip, kTeredoPrefix, 32);
}
bool IPIsV4Compatibility(const IPAddress& ip) {
return IPIsHelper(ip, kV4CompatibilityPrefix, 96);
}
bool IPIsV4Mapped(const IPAddress& ip) {
return IPIsHelper(ip, kV4MappedPrefix, 96);
}
int IPAddressPrecedence(const IPAddress& ip) {
// Precedence values from RFC 3484-bis. Prefers native v4 over 6to4/Teredo.
if (ip.family() == AF_INET) {
return 30;
} else if (ip.family() == AF_INET6) {
if (IPIsLoopback(ip)) {
return 60;
} else if (IPIsULA(ip)) {
return 50;
} else if (IPIsV4Mapped(ip)) {
return 30;
} else if (IPIs6To4(ip)) {
return 20;
} else if (IPIsTeredo(ip)) {
return 10;
} else if (IPIsV4Compatibility(ip) || IPIsSiteLocal(ip) || IPIs6Bone(ip)) {
return 1;
} else {
// A 'normal' IPv6 address.
return 40;
}
}
return 0;
}
IPAddress GetLoopbackIP(int family) {
if (family == AF_INET) {
return rtc::IPAddress(INADDR_LOOPBACK);
}
if (family == AF_INET6) {
return rtc::IPAddress(in6addr_loopback);
}
return rtc::IPAddress();
}
IPAddress GetAnyIP(int family) {
if (family == AF_INET) {
return rtc::IPAddress(INADDR_ANY);
}
if (family == AF_INET6) {
return rtc::IPAddress(in6addr_any);
}
return rtc::IPAddress();
}
} // namespace rtc