blob: 461ee7fa4a44879610b1249af0c6126bd704fcb0 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_coding/neteq/normal.h"
#include <string.h> // memset, memcpy
#include <algorithm> // min
#include "common_audio/signal_processing/include/signal_processing_library.h"
#include "modules/audio_coding/neteq/audio_multi_vector.h"
#include "modules/audio_coding/neteq/background_noise.h"
#include "modules/audio_coding/neteq/decoder_database.h"
#include "modules/audio_coding/neteq/expand.h"
#include "rtc_base/checks.h"
namespace webrtc {
int Normal::Process(const int16_t* input,
size_t length,
NetEq::Mode last_mode,
AudioMultiVector* output) {
if (length == 0) {
// Nothing to process.
output->Clear();
return static_cast<int>(length);
}
RTC_DCHECK(output->Empty());
// Output should be empty at this point.
if (length % output->Channels() != 0) {
// The length does not match the number of channels.
output->Clear();
return 0;
}
output->PushBackInterleaved(rtc::ArrayView<const int16_t>(input, length));
const int fs_mult = fs_hz_ / 8000;
RTC_DCHECK_GT(fs_mult, 0);
// fs_shift = log2(fs_mult), rounded down.
// Note that `fs_shift` is not "exact" for 48 kHz.
// TODO(hlundin): Investigate this further.
const int fs_shift = 30 - WebRtcSpl_NormW32(fs_mult);
// If last call resulted in a CodedPlc we don't need to do cross-fading but we
// need to report the end of the interruption once we are back to normal
// operation.
if (last_mode == NetEq::Mode::kCodecPlc) {
statistics_->EndExpandEvent(fs_hz_);
}
// Check if last RecOut call resulted in an Expand. If so, we have to take
// care of some cross-fading and unmuting.
if (last_mode == NetEq::Mode::kExpand) {
// Generate interpolation data using Expand.
// First, set Expand parameters to appropriate values.
expand_->SetParametersForNormalAfterExpand();
// Call Expand.
AudioMultiVector expanded(output->Channels());
expand_->Process(&expanded);
expand_->Reset();
size_t length_per_channel = length / output->Channels();
std::unique_ptr<int16_t[]> signal(new int16_t[length_per_channel]);
for (size_t channel_ix = 0; channel_ix < output->Channels(); ++channel_ix) {
// Set muting factor to the same as expand muting factor.
int16_t mute_factor = expand_->MuteFactor(channel_ix);
(*output)[channel_ix].CopyTo(length_per_channel, 0, signal.get());
// Find largest absolute value in new data.
int16_t decoded_max =
WebRtcSpl_MaxAbsValueW16(signal.get(), length_per_channel);
// Adjust muting factor if needed (to BGN level).
size_t energy_length =
std::min(static_cast<size_t>(fs_mult * 64), length_per_channel);
int scaling = 6 + fs_shift - WebRtcSpl_NormW32(decoded_max * decoded_max);
scaling = std::max(scaling, 0); // `scaling` should always be >= 0.
int32_t energy = WebRtcSpl_DotProductWithScale(signal.get(), signal.get(),
energy_length, scaling);
int32_t scaled_energy_length =
static_cast<int32_t>(energy_length >> scaling);
if (scaled_energy_length > 0) {
energy = energy / scaled_energy_length;
} else {
energy = 0;
}
int local_mute_factor = 16384; // 1.0 in Q14.
if ((energy != 0) && (energy > background_noise_.Energy(channel_ix))) {
// Normalize new frame energy to 15 bits.
scaling = WebRtcSpl_NormW32(energy) - 16;
// We want background_noise_.energy() / energy in Q14.
int32_t bgn_energy = WEBRTC_SPL_SHIFT_W32(
background_noise_.Energy(channel_ix), scaling + 14);
int16_t energy_scaled =
static_cast<int16_t>(WEBRTC_SPL_SHIFT_W32(energy, scaling));
int32_t ratio = WebRtcSpl_DivW32W16(bgn_energy, energy_scaled);
local_mute_factor =
std::min(local_mute_factor, WebRtcSpl_SqrtFloor(ratio << 14));
}
mute_factor = std::max<int16_t>(mute_factor, local_mute_factor);
RTC_DCHECK_LE(mute_factor, 16384);
RTC_DCHECK_GE(mute_factor, 0);
// If muted increase by 0.64 for every 20 ms (NB/WB 0.0040/0.0020 in Q14),
// or as fast as it takes to come back to full gain within the frame
// length.
const int back_to_fullscale_inc =
static_cast<int>((16384 - mute_factor) / length_per_channel);
const int increment = std::max(64 / fs_mult, back_to_fullscale_inc);
for (size_t i = 0; i < length_per_channel; i++) {
// Scale with mute factor.
RTC_DCHECK_LT(channel_ix, output->Channels());
RTC_DCHECK_LT(i, output->Size());
int32_t scaled_signal = (*output)[channel_ix][i] * mute_factor;
// Shift 14 with proper rounding.
(*output)[channel_ix][i] =
static_cast<int16_t>((scaled_signal + 8192) >> 14);
// Increase mute_factor towards 16384.
mute_factor =
static_cast<int16_t>(std::min(mute_factor + increment, 16384));
}
// Interpolate the expanded data into the new vector.
// (NB/WB/SWB32/SWB48 8/16/32/48 samples.)
size_t win_length = samples_per_ms_;
int16_t win_slope_Q14 = default_win_slope_Q14_;
RTC_DCHECK_LT(channel_ix, output->Channels());
if (win_length > output->Size()) {
win_length = output->Size();
win_slope_Q14 = (1 << 14) / static_cast<int16_t>(win_length);
}
int16_t win_up_Q14 = 0;
for (size_t i = 0; i < win_length; i++) {
win_up_Q14 += win_slope_Q14;
(*output)[channel_ix][i] =
(win_up_Q14 * (*output)[channel_ix][i] +
((1 << 14) - win_up_Q14) * expanded[channel_ix][i] + (1 << 13)) >>
14;
}
RTC_DCHECK_GT(win_up_Q14,
(1 << 14) - 32); // Worst case rouding is a length of 34
}
} else if (last_mode == NetEq::Mode::kRfc3389Cng) {
RTC_DCHECK_EQ(output->Channels(), 1); // Not adapted for multi-channel yet.
static const size_t kCngLength = 48;
RTC_DCHECK_LE(8 * fs_mult, kCngLength);
int16_t cng_output[kCngLength];
ComfortNoiseDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder();
if (cng_decoder) {
// Generate long enough for 48kHz.
if (!cng_decoder->Generate(cng_output, false)) {
// Error returned; set return vector to all zeros.
memset(cng_output, 0, sizeof(cng_output));
}
} else {
// If no CNG instance is defined, just copy from the decoded data.
// (This will result in interpolating the decoded with itself.)
(*output)[0].CopyTo(fs_mult * 8, 0, cng_output);
}
// Interpolate the CNG into the new vector.
// (NB/WB/SWB32/SWB48 8/16/32/48 samples.)
size_t win_length = samples_per_ms_;
int16_t win_slope_Q14 = default_win_slope_Q14_;
if (win_length > kCngLength) {
win_length = kCngLength;
win_slope_Q14 = (1 << 14) / static_cast<int16_t>(win_length);
}
int16_t win_up_Q14 = 0;
for (size_t i = 0; i < win_length; i++) {
win_up_Q14 += win_slope_Q14;
(*output)[0][i] =
(win_up_Q14 * (*output)[0][i] +
((1 << 14) - win_up_Q14) * cng_output[i] + (1 << 13)) >>
14;
}
RTC_DCHECK_GT(win_up_Q14,
(1 << 14) - 32); // Worst case rouding is a length of 34
}
return static_cast<int>(length);
}
} // namespace webrtc