blob: b6ae0d743063625dbc0909b1a30cfbf2e4c6823d [file] [log] [blame]
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/svc/svc_rate_allocator.h"
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <numeric>
#include <vector>
#include "absl/container/inlined_vector.h"
#include "modules/video_coding/svc/create_scalability_structure.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
constexpr float kSpatialLayeringRateScalingFactor = 0.55f;
constexpr float kTemporalLayeringRateScalingFactor = 0.55f;
struct ActiveSpatialLayers {
size_t first = 0;
size_t num = 0;
};
ActiveSpatialLayers GetActiveSpatialLayers(const VideoCodec& codec,
size_t num_spatial_layers) {
ActiveSpatialLayers active;
for (active.first = 0; active.first < num_spatial_layers; ++active.first) {
if (codec.spatialLayers[active.first].active) {
break;
}
}
size_t last_active_layer = active.first;
for (; last_active_layer < num_spatial_layers; ++last_active_layer) {
if (!codec.spatialLayers[last_active_layer].active) {
break;
}
}
active.num = last_active_layer - active.first;
return active;
}
std::vector<DataRate> AdjustAndVerify(
const VideoCodec& codec,
size_t first_active_layer,
const std::vector<DataRate>& spatial_layer_rates) {
std::vector<DataRate> adjusted_spatial_layer_rates;
// Keep track of rate that couldn't be applied to the previous layer due to
// max bitrate constraint, try to pass it forward to the next one.
DataRate excess_rate = DataRate::Zero();
for (size_t sl_idx = 0; sl_idx < spatial_layer_rates.size(); ++sl_idx) {
DataRate min_rate = DataRate::KilobitsPerSec(
codec.spatialLayers[first_active_layer + sl_idx].minBitrate);
DataRate max_rate = DataRate::KilobitsPerSec(
codec.spatialLayers[first_active_layer + sl_idx].maxBitrate);
DataRate layer_rate = spatial_layer_rates[sl_idx] + excess_rate;
if (layer_rate < min_rate) {
// Not enough rate to reach min bitrate for desired number of layers,
// abort allocation.
if (spatial_layer_rates.size() == 1) {
return spatial_layer_rates;
}
return adjusted_spatial_layer_rates;
}
if (layer_rate <= max_rate) {
excess_rate = DataRate::Zero();
adjusted_spatial_layer_rates.push_back(layer_rate);
} else {
excess_rate = layer_rate - max_rate;
adjusted_spatial_layer_rates.push_back(max_rate);
}
}
return adjusted_spatial_layer_rates;
}
static std::vector<DataRate> SplitBitrate(size_t num_layers,
DataRate total_bitrate,
float rate_scaling_factor) {
std::vector<DataRate> bitrates;
double denominator = 0.0;
for (size_t layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
denominator += std::pow(rate_scaling_factor, layer_idx);
}
double numerator = std::pow(rate_scaling_factor, num_layers - 1);
for (size_t layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
bitrates.push_back(numerator * total_bitrate / denominator);
numerator /= rate_scaling_factor;
}
const DataRate sum =
std::accumulate(bitrates.begin(), bitrates.end(), DataRate::Zero());
// Keep the sum of split bitrates equal to the total bitrate by adding or
// subtracting bits, which were lost due to rounding, to the latest layer.
if (total_bitrate > sum) {
bitrates.back() += total_bitrate - sum;
} else if (total_bitrate < sum) {
bitrates.back() -= sum - total_bitrate;
}
return bitrates;
}
// Returns the minimum bitrate needed for `num_active_layers` spatial layers to
// become active using the configuration specified by `codec`.
DataRate FindLayerTogglingThreshold(const VideoCodec& codec,
size_t first_active_layer,
size_t num_active_layers) {
if (num_active_layers == 1) {
return DataRate::KilobitsPerSec(codec.spatialLayers[0].minBitrate);
}
if (codec.mode == VideoCodecMode::kRealtimeVideo) {
DataRate lower_bound = DataRate::Zero();
DataRate upper_bound = DataRate::Zero();
if (num_active_layers > 1) {
for (size_t i = 0; i < num_active_layers - 1; ++i) {
lower_bound += DataRate::KilobitsPerSec(
codec.spatialLayers[first_active_layer + i].minBitrate);
upper_bound += DataRate::KilobitsPerSec(
codec.spatialLayers[first_active_layer + i].maxBitrate);
}
}
upper_bound += DataRate::KilobitsPerSec(
codec.spatialLayers[first_active_layer + num_active_layers - 1]
.minBitrate);
// Do a binary search until upper and lower bound is the highest bitrate for
// `num_active_layers` - 1 layers and lowest bitrate for `num_active_layers`
// layers respectively.
while (upper_bound - lower_bound > DataRate::BitsPerSec(1)) {
DataRate try_rate = (lower_bound + upper_bound) / 2;
if (AdjustAndVerify(codec, first_active_layer,
SplitBitrate(num_active_layers, try_rate,
kSpatialLayeringRateScalingFactor))
.size() == num_active_layers) {
upper_bound = try_rate;
} else {
lower_bound = try_rate;
}
}
return upper_bound;
} else {
DataRate toggling_rate = DataRate::Zero();
for (size_t i = 0; i < num_active_layers - 1; ++i) {
toggling_rate += DataRate::KilobitsPerSec(
codec.spatialLayers[first_active_layer + i].targetBitrate);
}
toggling_rate += DataRate::KilobitsPerSec(
codec.spatialLayers[first_active_layer + num_active_layers - 1]
.minBitrate);
return toggling_rate;
}
}
} // namespace
SvcRateAllocator::NumLayers SvcRateAllocator::GetNumLayers(
const VideoCodec& codec) {
NumLayers layers;
if (absl::optional<ScalabilityMode> scalability_mode =
codec.GetScalabilityMode();
scalability_mode.has_value()) {
if (auto structure = CreateScalabilityStructure(*scalability_mode)) {
ScalableVideoController::StreamLayersConfig config =
structure->StreamConfig();
layers.spatial = config.num_spatial_layers;
layers.temporal = config.num_temporal_layers;
return layers;
}
}
if (codec.codecType == kVideoCodecVP9) {
layers.spatial = codec.VP9().numberOfSpatialLayers;
layers.temporal = codec.VP9().numberOfTemporalLayers;
return layers;
}
layers.spatial = 1;
layers.temporal = 1;
return layers;
}
SvcRateAllocator::SvcRateAllocator(const VideoCodec& codec)
: codec_(codec),
num_layers_(GetNumLayers(codec)),
experiment_settings_(StableTargetRateExperiment::ParseFromFieldTrials()),
cumulative_layer_start_bitrates_(GetLayerStartBitrates(codec)),
last_active_layer_count_(0) {
RTC_DCHECK_GT(num_layers_.spatial, 0);
RTC_DCHECK_LE(num_layers_.spatial, kMaxSpatialLayers);
RTC_DCHECK_GT(num_layers_.temporal, 0);
RTC_DCHECK_LE(num_layers_.temporal, 3);
for (size_t layer_idx = 0; layer_idx < num_layers_.spatial; ++layer_idx) {
// Verify min <= target <= max.
if (codec.spatialLayers[layer_idx].active) {
RTC_DCHECK_GT(codec.spatialLayers[layer_idx].maxBitrate, 0);
RTC_DCHECK_GE(codec.spatialLayers[layer_idx].maxBitrate,
codec.spatialLayers[layer_idx].minBitrate);
RTC_DCHECK_GE(codec.spatialLayers[layer_idx].targetBitrate,
codec.spatialLayers[layer_idx].minBitrate);
RTC_DCHECK_GE(codec.spatialLayers[layer_idx].maxBitrate,
codec.spatialLayers[layer_idx].targetBitrate);
}
}
}
VideoBitrateAllocation SvcRateAllocator::Allocate(
VideoBitrateAllocationParameters parameters) {
DataRate total_bitrate = parameters.total_bitrate;
if (codec_.maxBitrate != 0) {
total_bitrate =
std::min(total_bitrate, DataRate::KilobitsPerSec(codec_.maxBitrate));
}
if (codec_.spatialLayers[0].targetBitrate == 0) {
// Delegate rate distribution to encoder wrapper if bitrate thresholds
// are not set.
VideoBitrateAllocation bitrate_allocation;
bitrate_allocation.SetBitrate(0, 0, total_bitrate.bps());
return bitrate_allocation;
}
const ActiveSpatialLayers active_layers =
GetActiveSpatialLayers(codec_, num_layers_.spatial);
size_t num_spatial_layers = active_layers.num;
if (num_spatial_layers == 0) {
return VideoBitrateAllocation(); // All layers are deactivated.
}
// Figure out how many spatial layers should be active.
if (experiment_settings_.IsEnabled() &&
parameters.stable_bitrate > DataRate::Zero()) {
double hysteresis_factor;
if (codec_.mode == VideoCodecMode::kScreensharing) {
hysteresis_factor = experiment_settings_.GetScreenshareHysteresisFactor();
} else {
hysteresis_factor = experiment_settings_.GetVideoHysteresisFactor();
}
DataRate stable_rate =
std::min(parameters.total_bitrate, parameters.stable_bitrate);
// First check if bitrate has grown large enough to enable new layers.
size_t num_enabled_with_hysteresis =
FindNumEnabledLayers(stable_rate / hysteresis_factor);
if (num_enabled_with_hysteresis >= last_active_layer_count_) {
num_spatial_layers = num_enabled_with_hysteresis;
} else {
// We could not enable new layers, check if any should be disabled.
num_spatial_layers =
std::min(last_active_layer_count_, FindNumEnabledLayers(stable_rate));
}
} else {
num_spatial_layers = FindNumEnabledLayers(parameters.total_bitrate);
}
last_active_layer_count_ = num_spatial_layers;
VideoBitrateAllocation allocation;
if (codec_.mode == VideoCodecMode::kRealtimeVideo) {
allocation = GetAllocationNormalVideo(total_bitrate, active_layers.first,
num_spatial_layers);
} else {
allocation = GetAllocationScreenSharing(total_bitrate, active_layers.first,
num_spatial_layers);
}
allocation.set_bw_limited(num_spatial_layers < active_layers.num);
return allocation;
}
VideoBitrateAllocation SvcRateAllocator::GetAllocationNormalVideo(
DataRate total_bitrate,
size_t first_active_layer,
size_t num_spatial_layers) const {
std::vector<DataRate> spatial_layer_rates;
if (num_spatial_layers == 0) {
// Not enough rate for even the base layer. Force allocation at the total
// bitrate anyway.
num_spatial_layers = 1;
spatial_layer_rates.push_back(total_bitrate);
} else {
spatial_layer_rates =
AdjustAndVerify(codec_, first_active_layer,
SplitBitrate(num_spatial_layers, total_bitrate,
kSpatialLayeringRateScalingFactor));
RTC_DCHECK_EQ(spatial_layer_rates.size(), num_spatial_layers);
}
VideoBitrateAllocation bitrate_allocation;
for (size_t sl_idx = 0; sl_idx < num_spatial_layers; ++sl_idx) {
std::vector<DataRate> temporal_layer_rates =
SplitBitrate(num_layers_.temporal, spatial_layer_rates[sl_idx],
kTemporalLayeringRateScalingFactor);
// Distribute rate across temporal layers. Allocate more bits to lower
// layers since they are used for prediction of higher layers and their
// references are far apart.
if (num_layers_.temporal == 1) {
bitrate_allocation.SetBitrate(sl_idx + first_active_layer, 0,
temporal_layer_rates[0].bps());
} else if (num_layers_.temporal == 2) {
bitrate_allocation.SetBitrate(sl_idx + first_active_layer, 0,
temporal_layer_rates[1].bps());
bitrate_allocation.SetBitrate(sl_idx + first_active_layer, 1,
temporal_layer_rates[0].bps());
} else {
RTC_CHECK_EQ(num_layers_.temporal, 3);
// In case of three temporal layers the high layer has two frames and the
// middle layer has one frame within GOP (in between two consecutive low
// layer frames). Thus high layer requires more bits (comparing pure
// bitrate of layer, excluding bitrate of base layers) to keep quality on
// par with lower layers.
bitrate_allocation.SetBitrate(sl_idx + first_active_layer, 0,
temporal_layer_rates[2].bps());
bitrate_allocation.SetBitrate(sl_idx + first_active_layer, 1,
temporal_layer_rates[0].bps());
bitrate_allocation.SetBitrate(sl_idx + first_active_layer, 2,
temporal_layer_rates[1].bps());
}
}
return bitrate_allocation;
}
// Bit-rate is allocated in such a way, that the highest enabled layer will have
// between min and max bitrate, and all others will have exactly target
// bit-rate allocated.
VideoBitrateAllocation SvcRateAllocator::GetAllocationScreenSharing(
DataRate total_bitrate,
size_t first_active_layer,
size_t num_spatial_layers) const {
VideoBitrateAllocation bitrate_allocation;
if (num_spatial_layers == 0 ||
total_bitrate <
DataRate::KilobitsPerSec(
codec_.spatialLayers[first_active_layer].minBitrate)) {
// Always enable at least one layer.
bitrate_allocation.SetBitrate(first_active_layer, 0, total_bitrate.bps());
return bitrate_allocation;
}
DataRate allocated_rate = DataRate::Zero();
DataRate top_layer_rate = DataRate::Zero();
size_t sl_idx;
for (sl_idx = first_active_layer;
sl_idx < first_active_layer + num_spatial_layers; ++sl_idx) {
const DataRate min_rate =
DataRate::KilobitsPerSec(codec_.spatialLayers[sl_idx].minBitrate);
const DataRate target_rate =
DataRate::KilobitsPerSec(codec_.spatialLayers[sl_idx].targetBitrate);
if (allocated_rate + min_rate > total_bitrate) {
// Use stable rate to determine if layer should be enabled.
break;
}
top_layer_rate = std::min(target_rate, total_bitrate - allocated_rate);
bitrate_allocation.SetBitrate(sl_idx, 0, top_layer_rate.bps());
allocated_rate += top_layer_rate;
}
if (sl_idx > 0 && total_bitrate - allocated_rate > DataRate::Zero()) {
// Add leftover to the last allocated layer.
top_layer_rate = std::min(
top_layer_rate + (total_bitrate - allocated_rate),
DataRate::KilobitsPerSec(codec_.spatialLayers[sl_idx - 1].maxBitrate));
bitrate_allocation.SetBitrate(sl_idx - 1, 0, top_layer_rate.bps());
}
return bitrate_allocation;
}
size_t SvcRateAllocator::FindNumEnabledLayers(DataRate target_rate) const {
if (cumulative_layer_start_bitrates_.empty()) {
return 0;
}
size_t num_enabled_layers = 0;
for (DataRate start_rate : cumulative_layer_start_bitrates_) {
// First layer is always enabled.
if (num_enabled_layers == 0 || start_rate <= target_rate) {
++num_enabled_layers;
} else {
break;
}
}
return num_enabled_layers;
}
DataRate SvcRateAllocator::GetMaxBitrate(const VideoCodec& codec) {
const NumLayers num_layers = GetNumLayers(codec);
const ActiveSpatialLayers active_layers =
GetActiveSpatialLayers(codec, num_layers.spatial);
DataRate max_bitrate = DataRate::Zero();
for (size_t sl_idx = 0; sl_idx < active_layers.num; ++sl_idx) {
max_bitrate += DataRate::KilobitsPerSec(
codec.spatialLayers[active_layers.first + sl_idx].maxBitrate);
}
if (codec.maxBitrate != 0) {
max_bitrate =
std::min(max_bitrate, DataRate::KilobitsPerSec(codec.maxBitrate));
}
return max_bitrate;
}
DataRate SvcRateAllocator::GetPaddingBitrate(const VideoCodec& codec) {
auto start_bitrate = GetLayerStartBitrates(codec);
if (start_bitrate.empty()) {
return DataRate::Zero(); // All layers are deactivated.
}
return start_bitrate.back();
}
absl::InlinedVector<DataRate, kMaxSpatialLayers>
SvcRateAllocator::GetLayerStartBitrates(const VideoCodec& codec) {
absl::InlinedVector<DataRate, kMaxSpatialLayers> start_bitrates;
const NumLayers num_layers = GetNumLayers(codec);
const ActiveSpatialLayers active_layers =
GetActiveSpatialLayers(codec, num_layers.spatial);
DataRate last_rate = DataRate::Zero();
for (size_t i = 1; i <= active_layers.num; ++i) {
DataRate layer_toggling_rate =
FindLayerTogglingThreshold(codec, active_layers.first, i);
start_bitrates.push_back(layer_toggling_rate);
RTC_DCHECK_LE(last_rate, layer_toggling_rate);
last_rate = layer_toggling_rate;
}
return start_bitrates;
}
} // namespace webrtc