blob: b97901c634fce8cf768d5e9b7ebce60cd7ebc1fb [file] [log] [blame]
/*
* Copyright 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
package org.webrtc;
import android.graphics.Point;
import android.opengl.Matrix;
import android.view.View;
/**
* Static helper functions for renderer implementations.
*/
public class RendererCommon {
/** Interface for reporting rendering events. */
public static interface RendererEvents {
/**
* Callback fired once first frame is rendered.
*/
public void onFirstFrameRendered();
/**
* Callback fired when rendered frame resolution or rotation has changed.
*/
public void onFrameResolutionChanged(int videoWidth, int videoHeight, int rotation);
}
/**
* Interface for rendering frames on an EGLSurface with specified viewport location. Rotation,
* mirror, and cropping is specified using a 4x4 texture coordinate transform matrix. The frame
* input can either be an OES texture, RGB texture, or YUV textures in I420 format. The function
* release() must be called manually to free the resources held by this object.
*/
public static interface GlDrawer {
/**
* Functions for drawing frames with different sources. The rendering surface target is
* implied by the current EGL context of the calling thread and requires no explicit argument.
* The coordinates specify the viewport location on the surface target.
*/
void drawOes(int oesTextureId, float[] texMatrix, int frameWidth, int frameHeight,
int viewportX, int viewportY, int viewportWidth, int viewportHeight);
void drawRgb(int textureId, float[] texMatrix, int frameWidth, int frameHeight, int viewportX,
int viewportY, int viewportWidth, int viewportHeight);
void drawYuv(int[] yuvTextures, float[] texMatrix, int frameWidth, int frameHeight,
int viewportX, int viewportY, int viewportWidth, int viewportHeight);
/**
* Release all GL resources. This needs to be done manually, otherwise resources may leak.
*/
void release();
}
/**
* Helper class for determining layout size based on layout requirements, scaling type, and video
* aspect ratio.
*/
public static class VideoLayoutMeasure {
// The scaling type determines how the video will fill the allowed layout area in measure(). It
// can be specified separately for the case when video has matched orientation with layout size
// and when there is an orientation mismatch.
private float visibleFractionMatchOrientation =
convertScalingTypeToVisibleFraction(ScalingType.SCALE_ASPECT_BALANCED);
private float visibleFractionMismatchOrientation =
convertScalingTypeToVisibleFraction(ScalingType.SCALE_ASPECT_BALANCED);
public void setScalingType(ScalingType scalingType) {
setScalingType(/* scalingTypeMatchOrientation= */ scalingType,
/* scalingTypeMismatchOrientation= */ scalingType);
}
public void setScalingType(
ScalingType scalingTypeMatchOrientation, ScalingType scalingTypeMismatchOrientation) {
this.visibleFractionMatchOrientation =
convertScalingTypeToVisibleFraction(scalingTypeMatchOrientation);
this.visibleFractionMismatchOrientation =
convertScalingTypeToVisibleFraction(scalingTypeMismatchOrientation);
}
public void setVisibleFraction(
float visibleFractionMatchOrientation, float visibleFractionMismatchOrientation) {
this.visibleFractionMatchOrientation = visibleFractionMatchOrientation;
this.visibleFractionMismatchOrientation = visibleFractionMismatchOrientation;
}
public Point measure(int widthSpec, int heightSpec, int frameWidth, int frameHeight) {
// Calculate max allowed layout size.
final int maxWidth = View.getDefaultSize(Integer.MAX_VALUE, widthSpec);
final int maxHeight = View.getDefaultSize(Integer.MAX_VALUE, heightSpec);
if (frameWidth == 0 || frameHeight == 0 || maxWidth == 0 || maxHeight == 0) {
return new Point(maxWidth, maxHeight);
}
// Calculate desired display size based on scaling type, video aspect ratio,
// and maximum layout size.
final float frameAspect = frameWidth / (float) frameHeight;
final float displayAspect = maxWidth / (float) maxHeight;
final float visibleFraction = (frameAspect > 1.0f) == (displayAspect > 1.0f)
? visibleFractionMatchOrientation
: visibleFractionMismatchOrientation;
final Point layoutSize = getDisplaySize(visibleFraction, frameAspect, maxWidth, maxHeight);
// If the measure specification is forcing a specific size - yield.
if (View.MeasureSpec.getMode(widthSpec) == View.MeasureSpec.EXACTLY) {
layoutSize.x = maxWidth;
}
if (View.MeasureSpec.getMode(heightSpec) == View.MeasureSpec.EXACTLY) {
layoutSize.y = maxHeight;
}
return layoutSize;
}
}
// Types of video scaling:
// SCALE_ASPECT_FIT - video frame is scaled to fit the size of the view by
// maintaining the aspect ratio (black borders may be displayed).
// SCALE_ASPECT_FILL - video frame is scaled to fill the size of the view by
// maintaining the aspect ratio. Some portion of the video frame may be
// clipped.
// SCALE_ASPECT_BALANCED - Compromise between FIT and FILL. Video frame will fill as much as
// possible of the view while maintaining aspect ratio, under the constraint that at least
// `BALANCED_VISIBLE_FRACTION` of the frame content will be shown.
public static enum ScalingType { SCALE_ASPECT_FIT, SCALE_ASPECT_FILL, SCALE_ASPECT_BALANCED }
// The minimum fraction of the frame content that will be shown for `SCALE_ASPECT_BALANCED`.
// This limits excessive cropping when adjusting display size.
private static float BALANCED_VISIBLE_FRACTION = 0.5625f;
/**
* Returns layout transformation matrix that applies an optional mirror effect and compensates
* for video vs display aspect ratio.
*/
public static float[] getLayoutMatrix(
boolean mirror, float videoAspectRatio, float displayAspectRatio) {
float scaleX = 1;
float scaleY = 1;
// Scale X or Y dimension so that video and display size have same aspect ratio.
if (displayAspectRatio > videoAspectRatio) {
scaleY = videoAspectRatio / displayAspectRatio;
} else {
scaleX = displayAspectRatio / videoAspectRatio;
}
// Apply optional horizontal flip.
if (mirror) {
scaleX *= -1;
}
final float matrix[] = new float[16];
Matrix.setIdentityM(matrix, 0);
Matrix.scaleM(matrix, 0, scaleX, scaleY, 1);
adjustOrigin(matrix);
return matrix;
}
/** Converts a float[16] matrix array to android.graphics.Matrix. */
public static android.graphics.Matrix convertMatrixToAndroidGraphicsMatrix(float[] matrix4x4) {
// clang-format off
float[] values = {
matrix4x4[0 * 4 + 0], matrix4x4[1 * 4 + 0], matrix4x4[3 * 4 + 0],
matrix4x4[0 * 4 + 1], matrix4x4[1 * 4 + 1], matrix4x4[3 * 4 + 1],
matrix4x4[0 * 4 + 3], matrix4x4[1 * 4 + 3], matrix4x4[3 * 4 + 3],
};
// clang-format on
android.graphics.Matrix matrix = new android.graphics.Matrix();
matrix.setValues(values);
return matrix;
}
/** Converts android.graphics.Matrix to a float[16] matrix array. */
public static float[] convertMatrixFromAndroidGraphicsMatrix(android.graphics.Matrix matrix) {
float[] values = new float[9];
matrix.getValues(values);
// The android.graphics.Matrix looks like this:
// [x1 y1 w1]
// [x2 y2 w2]
// [x3 y3 w3]
// We want to contruct a matrix that looks like this:
// [x1 y1 0 w1]
// [x2 y2 0 w2]
// [ 0 0 1 0]
// [x3 y3 0 w3]
// Since it is stored in column-major order, it looks like this:
// [x1 x2 0 x3
// y1 y2 0 y3
// 0 0 1 0
// w1 w2 0 w3]
// clang-format off
float[] matrix4x4 = {
values[0 * 3 + 0], values[1 * 3 + 0], 0, values[2 * 3 + 0],
values[0 * 3 + 1], values[1 * 3 + 1], 0, values[2 * 3 + 1],
0, 0, 1, 0,
values[0 * 3 + 2], values[1 * 3 + 2], 0, values[2 * 3 + 2],
};
// clang-format on
return matrix4x4;
}
/**
* Calculate display size based on scaling type, video aspect ratio, and maximum display size.
*/
public static Point getDisplaySize(
ScalingType scalingType, float videoAspectRatio, int maxDisplayWidth, int maxDisplayHeight) {
return getDisplaySize(convertScalingTypeToVisibleFraction(scalingType), videoAspectRatio,
maxDisplayWidth, maxDisplayHeight);
}
/**
* Move `matrix` transformation origin to (0.5, 0.5). This is the origin for texture coordinates
* that are in the range 0 to 1.
*/
private static void adjustOrigin(float[] matrix) {
// Note that OpenGL is using column-major order.
// Pre translate with -0.5 to move coordinates to range [-0.5, 0.5].
matrix[12] -= 0.5f * (matrix[0] + matrix[4]);
matrix[13] -= 0.5f * (matrix[1] + matrix[5]);
// Post translate with 0.5 to move coordinates to range [0, 1].
matrix[12] += 0.5f;
matrix[13] += 0.5f;
}
/**
* Each scaling type has a one-to-one correspondence to a numeric minimum fraction of the video
* that must remain visible.
*/
private static float convertScalingTypeToVisibleFraction(ScalingType scalingType) {
switch (scalingType) {
case SCALE_ASPECT_FIT:
return 1.0f;
case SCALE_ASPECT_FILL:
return 0.0f;
case SCALE_ASPECT_BALANCED:
return BALANCED_VISIBLE_FRACTION;
default:
throw new IllegalArgumentException();
}
}
/**
* Calculate display size based on minimum fraction of the video that must remain visible,
* video aspect ratio, and maximum display size.
*/
public static Point getDisplaySize(
float minVisibleFraction, float videoAspectRatio, int maxDisplayWidth, int maxDisplayHeight) {
// If there is no constraint on the amount of cropping, fill the allowed display area.
if (minVisibleFraction == 0 || videoAspectRatio == 0) {
return new Point(maxDisplayWidth, maxDisplayHeight);
}
// Each dimension is constrained on max display size and how much we are allowed to crop.
final int width = Math.min(
maxDisplayWidth, Math.round(maxDisplayHeight / minVisibleFraction * videoAspectRatio));
final int height = Math.min(
maxDisplayHeight, Math.round(maxDisplayWidth / minVisibleFraction / videoAspectRatio));
return new Point(width, height);
}
}