| /* |
| * Copyright 2004 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <memory> |
| #include <utility> // for std::pair |
| |
| #include "webrtc/p2p/base/transport.h" |
| |
| #include "webrtc/p2p/base/candidate.h" |
| #include "webrtc/p2p/base/p2pconstants.h" |
| #include "webrtc/p2p/base/port.h" |
| #include "webrtc/p2p/base/transportchannelimpl.h" |
| #include "webrtc/base/bind.h" |
| #include "webrtc/base/checks.h" |
| #include "webrtc/base/logging.h" |
| |
| namespace cricket { |
| |
| static bool VerifyIceParams(const TransportDescription& desc) { |
| // For legacy protocols. |
| if (desc.ice_ufrag.empty() && desc.ice_pwd.empty()) |
| return true; |
| |
| if (desc.ice_ufrag.length() < ICE_UFRAG_MIN_LENGTH || |
| desc.ice_ufrag.length() > ICE_UFRAG_MAX_LENGTH) { |
| return false; |
| } |
| if (desc.ice_pwd.length() < ICE_PWD_MIN_LENGTH || |
| desc.ice_pwd.length() > ICE_PWD_MAX_LENGTH) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool BadTransportDescription(const std::string& desc, std::string* err_desc) { |
| if (err_desc) { |
| *err_desc = desc; |
| } |
| LOG(LS_ERROR) << desc; |
| return false; |
| } |
| |
| bool IceCredentialsChanged(const std::string& old_ufrag, |
| const std::string& old_pwd, |
| const std::string& new_ufrag, |
| const std::string& new_pwd) { |
| // The standard (RFC 5245 Section 9.1.1.1) says that ICE restarts MUST change |
| // both the ufrag and password. However, section 9.2.1.1 says changing the |
| // ufrag OR password indicates an ICE restart. So, to keep compatibility with |
| // endpoints that only change one, we'll treat this as an ICE restart. |
| return (old_ufrag != new_ufrag) || (old_pwd != new_pwd); |
| } |
| |
| Transport::Transport(const std::string& name, PortAllocator* allocator) |
| : name_(name), allocator_(allocator) {} |
| |
| Transport::~Transport() { |
| RTC_DCHECK(channels_destroyed_); |
| } |
| |
| void Transport::SetIceRole(IceRole role) { |
| ice_role_ = role; |
| for (const auto& kv : channels_) { |
| kv.second->SetIceRole(ice_role_); |
| } |
| } |
| |
| std::unique_ptr<rtc::SSLCertificate> Transport::GetRemoteSSLCertificate() { |
| if (channels_.empty()) { |
| return nullptr; |
| } |
| |
| auto iter = channels_.begin(); |
| return iter->second->GetRemoteSSLCertificate(); |
| } |
| |
| void Transport::SetIceConfig(const IceConfig& config) { |
| ice_config_ = config; |
| for (const auto& kv : channels_) { |
| kv.second->SetIceConfig(ice_config_); |
| } |
| } |
| |
| bool Transport::SetLocalTransportDescription( |
| const TransportDescription& description, |
| ContentAction action, |
| std::string* error_desc) { |
| bool ret = true; |
| |
| if (!VerifyIceParams(description)) { |
| return BadTransportDescription("Invalid ice-ufrag or ice-pwd length", |
| error_desc); |
| } |
| |
| local_description_.reset(new TransportDescription(description)); |
| |
| for (const auto& kv : channels_) { |
| ret &= ApplyLocalTransportDescription(kv.second, error_desc); |
| } |
| if (!ret) { |
| return false; |
| } |
| |
| // If PRANSWER/ANSWER is set, we should decide transport protocol type. |
| if (action == CA_PRANSWER || action == CA_ANSWER) { |
| ret &= NegotiateTransportDescription(action, error_desc); |
| } |
| if (ret) { |
| local_description_set_ = true; |
| } |
| |
| return ret; |
| } |
| |
| bool Transport::SetRemoteTransportDescription( |
| const TransportDescription& description, |
| ContentAction action, |
| std::string* error_desc) { |
| bool ret = true; |
| |
| if (!VerifyIceParams(description)) { |
| return BadTransportDescription("Invalid ice-ufrag or ice-pwd length", |
| error_desc); |
| } |
| |
| remote_description_.reset(new TransportDescription(description)); |
| for (const auto& kv : channels_) { |
| ret &= ApplyRemoteTransportDescription(kv.second, error_desc); |
| } |
| |
| // If PRANSWER/ANSWER is set, we should decide transport protocol type. |
| if (action == CA_PRANSWER || action == CA_ANSWER) { |
| ret = NegotiateTransportDescription(CA_OFFER, error_desc); |
| } |
| if (ret) { |
| remote_description_set_ = true; |
| } |
| |
| return ret; |
| } |
| |
| TransportChannelImpl* Transport::CreateChannel(int component) { |
| TransportChannelImpl* channel; |
| |
| // Create the entry if it does not exist. |
| bool channel_exists = false; |
| auto iter = channels_.find(component); |
| if (iter == channels_.end()) { |
| channel = CreateTransportChannel(component); |
| channels_.insert(std::pair<int, TransportChannelImpl*>(component, channel)); |
| } else { |
| channel = iter->second; |
| channel_exists = true; |
| } |
| |
| channels_destroyed_ = false; |
| |
| if (channel_exists) { |
| // If this is an existing channel, we should just return it. |
| return channel; |
| } |
| |
| // Push down our transport state to the new channel. |
| channel->SetIceRole(ice_role_); |
| channel->SetIceTiebreaker(tiebreaker_); |
| channel->SetIceConfig(ice_config_); |
| // TODO(ronghuawu): Change CreateChannel to be able to return error since |
| // below Apply**Description calls can fail. |
| if (local_description_) |
| ApplyLocalTransportDescription(channel, nullptr); |
| if (remote_description_) |
| ApplyRemoteTransportDescription(channel, nullptr); |
| if (local_description_ && remote_description_) |
| ApplyNegotiatedTransportDescription(channel, nullptr); |
| |
| return channel; |
| } |
| |
| TransportChannelImpl* Transport::GetChannel(int component) { |
| auto iter = channels_.find(component); |
| return (iter != channels_.end()) ? iter->second : nullptr; |
| } |
| |
| bool Transport::HasChannels() { |
| return !channels_.empty(); |
| } |
| |
| void Transport::DestroyChannel(int component) { |
| auto iter = channels_.find(component); |
| if (iter == channels_.end()) |
| return; |
| |
| TransportChannelImpl* channel = iter->second; |
| channels_.erase(iter); |
| DestroyTransportChannel(channel); |
| } |
| |
| void Transport::MaybeStartGathering() { |
| CallChannels(&TransportChannelImpl::MaybeStartGathering); |
| } |
| |
| void Transport::DestroyAllChannels() { |
| for (const auto& kv : channels_) { |
| DestroyTransportChannel(kv.second); |
| } |
| channels_.clear(); |
| channels_destroyed_ = true; |
| } |
| |
| void Transport::CallChannels(TransportChannelFunc func) { |
| for (const auto& kv : channels_) { |
| (kv.second->*func)(); |
| } |
| } |
| |
| bool Transport::VerifyCandidate(const Candidate& cand, std::string* error) { |
| // No address zero. |
| if (cand.address().IsNil() || cand.address().IsAnyIP()) { |
| *error = "candidate has address of zero"; |
| return false; |
| } |
| |
| // Disallow all ports below 1024, except for 80 and 443 on public addresses. |
| int port = cand.address().port(); |
| if (cand.protocol() == TCP_PROTOCOL_NAME && |
| (cand.tcptype() == TCPTYPE_ACTIVE_STR || port == 0)) { |
| // Expected for active-only candidates per |
| // http://tools.ietf.org/html/rfc6544#section-4.5 so no error. |
| // Libjingle clients emit port 0, in "active" mode. |
| return true; |
| } |
| if (port < 1024) { |
| if ((port != 80) && (port != 443)) { |
| *error = "candidate has port below 1024, but not 80 or 443"; |
| return false; |
| } |
| |
| if (cand.address().IsPrivateIP()) { |
| *error = "candidate has port of 80 or 443 with private IP address"; |
| return false; |
| } |
| } |
| |
| if (!HasChannel(cand.component())) { |
| *error = "Candidate has an unknown component: " + cand.ToString() + |
| " for content: " + name(); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Transport::VerifyCandidates(const Candidates& candidates, |
| std::string* error) { |
| for (const Candidate& candidate : candidates) { |
| if (!VerifyCandidate(candidate, error)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| bool Transport::GetStats(TransportStats* stats) { |
| stats->transport_name = name(); |
| stats->channel_stats.clear(); |
| for (auto kv : channels_) { |
| TransportChannelImpl* channel = kv.second; |
| TransportChannelStats substats; |
| substats.component = channel->component(); |
| channel->GetSrtpCryptoSuite(&substats.srtp_crypto_suite); |
| channel->GetSslCipherSuite(&substats.ssl_cipher_suite); |
| if (!channel->GetStats(&substats.connection_infos)) { |
| return false; |
| } |
| stats->channel_stats.push_back(substats); |
| } |
| return true; |
| } |
| |
| bool Transport::AddRemoteCandidates(const std::vector<Candidate>& candidates, |
| std::string* error) { |
| ASSERT(!channels_destroyed_); |
| // Verify each candidate before passing down to the transport layer. |
| if (!VerifyCandidates(candidates, error)) { |
| return false; |
| } |
| |
| for (const Candidate& candidate : candidates) { |
| TransportChannelImpl* channel = GetChannel(candidate.component()); |
| if (channel != nullptr) { |
| channel->AddRemoteCandidate(candidate); |
| } |
| } |
| return true; |
| } |
| |
| bool Transport::RemoveRemoteCandidates(const std::vector<Candidate>& candidates, |
| std::string* error) { |
| ASSERT(!channels_destroyed_); |
| // Verify each candidate before passing down to the transport layer. |
| if (!VerifyCandidates(candidates, error)) { |
| return false; |
| } |
| |
| for (const Candidate& candidate : candidates) { |
| TransportChannelImpl* channel = GetChannel(candidate.component()); |
| if (channel != nullptr) { |
| channel->RemoveRemoteCandidate(candidate); |
| } |
| } |
| return true; |
| } |
| |
| bool Transport::ApplyLocalTransportDescription(TransportChannelImpl* ch, |
| std::string* error_desc) { |
| ch->SetIceParameters(local_description_->GetIceParameters()); |
| return true; |
| } |
| |
| bool Transport::ApplyRemoteTransportDescription(TransportChannelImpl* ch, |
| std::string* error_desc) { |
| ch->SetRemoteIceParameters(remote_description_->GetIceParameters()); |
| return true; |
| } |
| |
| bool Transport::ApplyNegotiatedTransportDescription( |
| TransportChannelImpl* channel, |
| std::string* error_desc) { |
| channel->SetRemoteIceMode(remote_ice_mode_); |
| return true; |
| } |
| |
| bool Transport::NegotiateTransportDescription(ContentAction local_role, |
| std::string* error_desc) { |
| // TODO(ekr@rtfm.com): This is ICE-specific stuff. Refactor into |
| // P2PTransport. |
| |
| // If transport is in ICEROLE_CONTROLLED and remote end point supports only |
| // ice_lite, this local end point should take CONTROLLING role. |
| if (ice_role_ == ICEROLE_CONTROLLED && |
| remote_description_->ice_mode == ICEMODE_LITE) { |
| SetIceRole(ICEROLE_CONTROLLING); |
| } |
| |
| // Update remote ice_mode to all existing channels. |
| remote_ice_mode_ = remote_description_->ice_mode; |
| |
| // Now that we have negotiated everything, push it downward. |
| // Note that we cache the result so that if we have race conditions |
| // between future SetRemote/SetLocal invocations and new channel |
| // creation, we have the negotiation state saved until a new |
| // negotiation happens. |
| for (const auto& kv : channels_) { |
| if (!ApplyNegotiatedTransportDescription(kv.second, error_desc)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool Transport::VerifyCertificateFingerprint( |
| const rtc::RTCCertificate* certificate, |
| const rtc::SSLFingerprint* fingerprint, |
| std::string* error_desc) const { |
| if (!fingerprint) { |
| return BadTransportDescription("No fingerprint.", error_desc); |
| } |
| if (!certificate) { |
| return BadTransportDescription( |
| "Fingerprint provided but no identity available.", error_desc); |
| } |
| std::unique_ptr<rtc::SSLFingerprint> fp_tmp(rtc::SSLFingerprint::Create( |
| fingerprint->algorithm, certificate->identity())); |
| ASSERT(fp_tmp.get() != NULL); |
| if (*fp_tmp == *fingerprint) { |
| return true; |
| } |
| std::ostringstream desc; |
| desc << "Local fingerprint does not match identity. Expected: "; |
| desc << fp_tmp->ToString(); |
| desc << " Got: " << fingerprint->ToString(); |
| return BadTransportDescription(desc.str(), error_desc); |
| } |
| |
| bool Transport::NegotiateRole(ContentAction local_role, |
| rtc::SSLRole* ssl_role, |
| std::string* error_desc) const { |
| RTC_DCHECK(ssl_role); |
| if (!local_description() || !remote_description()) { |
| const std::string msg = |
| "Local and Remote description must be set before " |
| "transport descriptions are negotiated"; |
| return BadTransportDescription(msg, error_desc); |
| } |
| |
| // From RFC 4145, section-4.1, The following are the values that the |
| // 'setup' attribute can take in an offer/answer exchange: |
| // Offer Answer |
| // ________________ |
| // active passive / holdconn |
| // passive active / holdconn |
| // actpass active / passive / holdconn |
| // holdconn holdconn |
| // |
| // Set the role that is most conformant with RFC 5763, Section 5, bullet 1 |
| // The endpoint MUST use the setup attribute defined in [RFC4145]. |
| // The endpoint that is the offerer MUST use the setup attribute |
| // value of setup:actpass and be prepared to receive a client_hello |
| // before it receives the answer. The answerer MUST use either a |
| // setup attribute value of setup:active or setup:passive. Note that |
| // if the answerer uses setup:passive, then the DTLS handshake will |
| // not begin until the answerer is received, which adds additional |
| // latency. setup:active allows the answer and the DTLS handshake to |
| // occur in parallel. Thus, setup:active is RECOMMENDED. Whichever |
| // party is active MUST initiate a DTLS handshake by sending a |
| // ClientHello over each flow (host/port quartet). |
| // IOW - actpass and passive modes should be treated as server and |
| // active as client. |
| ConnectionRole local_connection_role = local_description()->connection_role; |
| ConnectionRole remote_connection_role = remote_description()->connection_role; |
| |
| bool is_remote_server = false; |
| if (local_role == CA_OFFER) { |
| if (local_connection_role != CONNECTIONROLE_ACTPASS) { |
| return BadTransportDescription( |
| "Offerer must use actpass value for setup attribute.", error_desc); |
| } |
| |
| if (remote_connection_role == CONNECTIONROLE_ACTIVE || |
| remote_connection_role == CONNECTIONROLE_PASSIVE || |
| remote_connection_role == CONNECTIONROLE_NONE) { |
| is_remote_server = (remote_connection_role == CONNECTIONROLE_PASSIVE); |
| } else { |
| const std::string msg = |
| "Answerer must use either active or passive value " |
| "for setup attribute."; |
| return BadTransportDescription(msg, error_desc); |
| } |
| // If remote is NONE or ACTIVE it will act as client. |
| } else { |
| if (remote_connection_role != CONNECTIONROLE_ACTPASS && |
| remote_connection_role != CONNECTIONROLE_NONE) { |
| return BadTransportDescription( |
| "Offerer must use actpass value for setup attribute.", error_desc); |
| } |
| |
| if (local_connection_role == CONNECTIONROLE_ACTIVE || |
| local_connection_role == CONNECTIONROLE_PASSIVE) { |
| is_remote_server = (local_connection_role == CONNECTIONROLE_ACTIVE); |
| } else { |
| const std::string msg = |
| "Answerer must use either active or passive value " |
| "for setup attribute."; |
| return BadTransportDescription(msg, error_desc); |
| } |
| |
| // If local is passive, local will act as server. |
| } |
| |
| *ssl_role = is_remote_server ? rtc::SSL_CLIENT : rtc::SSL_SERVER; |
| return true; |
| } |
| |
| } // namespace cricket |