blob: 6bdfa847dfdbb3c392f998954b06c228a521faec [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_framework.h"
#include <numeric>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/base/constructormagic.h"
#include "webrtc/modules/remote_bitrate_estimator/test/packet.h"
#include "webrtc/modules/remote_bitrate_estimator/test/packet_sender.h"
#include "webrtc/test/testsupport/fileutils.h"
namespace webrtc {
namespace testing {
namespace bwe {
static bool IsSequenceNumberSorted(const Packets& packets) {
PacketsConstIt last_it = packets.begin();
for (PacketsConstIt it = last_it; it != packets.end(); ++it) {
const MediaPacket* packet = static_cast<const MediaPacket*>(*it);
const MediaPacket* last_packet = static_cast<const MediaPacket*>(*last_it);
if (IsNewerSequenceNumber(last_packet->header().sequenceNumber,
packet->header().sequenceNumber)) {
return false;
}
last_it = it;
}
return true;
}
TEST(BweTestFramework_PacketTest, IsTimeSorted) {
Packets packets;
// Insert some packets in order...
EXPECT_TRUE(IsTimeSorted(packets));
packets.push_back(new MediaPacket(100, 0));
EXPECT_TRUE(IsTimeSorted(packets));
packets.push_back(new MediaPacket(110, 0));
EXPECT_TRUE(IsTimeSorted(packets));
// ...and one out-of-order...
packets.push_back(new MediaPacket(100, 0));
EXPECT_FALSE(IsTimeSorted(packets));
// ...remove the out-of-order packet, insert another in-order packet.
delete packets.back();
packets.pop_back();
packets.push_back(new MediaPacket(120, 0));
EXPECT_TRUE(IsTimeSorted(packets));
for (auto* packet : packets)
delete packet;
}
TEST(BweTestFramework_PacketTest, IsSequenceNumberSorted) {
Packets packets;
// Insert some packets in order...
EXPECT_TRUE(IsSequenceNumberSorted(packets));
packets.push_back(new MediaPacket(0, 100));
EXPECT_TRUE(IsSequenceNumberSorted(packets));
packets.push_back(new MediaPacket(0, 110));
EXPECT_TRUE(IsSequenceNumberSorted(packets));
// ...and one out-of-order...
packets.push_back(new MediaPacket(0, 100));
EXPECT_FALSE(IsSequenceNumberSorted(packets));
// ...remove the out-of-order packet, insert another in-order packet.
delete packets.back();
packets.pop_back();
packets.push_back(new MediaPacket(0, 120));
EXPECT_TRUE(IsSequenceNumberSorted(packets));
for (auto* packet : packets)
delete packet;
}
TEST(BweTestFramework_StatsTest, Mean) {
Stats<int32_t> stats;
EXPECT_EQ(0, stats.GetMean());
stats.Push(1);
stats.Push(3);
EXPECT_EQ(2, stats.GetMean());
// Integer division rounds (1+3-3)/3 to 0.
stats.Push(-3);
EXPECT_EQ(0, stats.GetMean());
}
TEST(BweTestFramework_StatsTest, Variance) {
Stats<int32_t> stats;
EXPECT_EQ(0, stats.GetVariance());
// Mean is 2 ; ((1-2)*(1-2)+(3-2)*(3-2))/2 = (1+1)/2 = 1
stats.Push(1);
stats.Push(3);
EXPECT_EQ(1, stats.GetVariance());
// Integer division rounds 26/3 to 8
// Mean is 0 ; (1*1+3*3+(-4)*(-4))/3 = (1+9+16)/3 = 8
stats.Push(-4);
EXPECT_EQ(8, stats.GetVariance());
}
TEST(BweTestFramework_StatsTest, StdDev) {
Stats<int32_t> stats;
EXPECT_EQ(0, stats.GetStdDev());
// Variance is 1 ; sqrt(1) = 1
stats.Push(1);
stats.Push(3);
EXPECT_EQ(1, stats.GetStdDev());
// Variance is 8 ; sqrt(8) = 2 with integers.
stats.Push(-4);
EXPECT_EQ(2, stats.GetStdDev());
}
TEST(BweTestFramework_StatsTest, MinMax) {
Stats<int32_t> stats;
EXPECT_EQ(0, stats.GetMin());
EXPECT_EQ(0, stats.GetMax());
stats.Push(1);
EXPECT_EQ(1, stats.GetMin());
EXPECT_EQ(1, stats.GetMax());
stats.Push(3);
EXPECT_EQ(1, stats.GetMin());
EXPECT_EQ(3, stats.GetMax());
stats.Push(-4);
EXPECT_EQ(-4, stats.GetMin());
EXPECT_EQ(3, stats.GetMax());
}
class BweTestFramework_RateCounterFilterTest : public ::testing::Test {
public:
BweTestFramework_RateCounterFilterTest()
: filter_(NULL, 0, "", ""), now_ms_(0) {}
virtual ~BweTestFramework_RateCounterFilterTest() {}
protected:
void TestRateCounter(int64_t run_for_ms, uint32_t payload_bits,
uint32_t expected_pps, uint32_t expected_bps) {
Packets packets;
RTPHeader header;
// "Send" a packet every 10 ms.
for (int64_t i = 0; i < run_for_ms; i += 10, now_ms_ += 10) {
packets.push_back(
new MediaPacket(0, now_ms_ * 1000, payload_bits / 8, header));
}
filter_.RunFor(run_for_ms, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
EXPECT_EQ(expected_pps, filter_.packets_per_second());
EXPECT_EQ(expected_bps, filter_.bits_per_second());
for (auto* packet : packets)
delete packet;
}
private:
RateCounterFilter filter_;
int64_t now_ms_;
RTC_DISALLOW_COPY_AND_ASSIGN(BweTestFramework_RateCounterFilterTest);
};
TEST_F(BweTestFramework_RateCounterFilterTest, Short) {
// 100ms, 100 bytes per packet, should result in 10 pps and 8 kbps. We're
// generating one packet every 10 ms ; 10 * 800 = 8k
TestRateCounter(100, 800, 10, 8000);
}
TEST_F(BweTestFramework_RateCounterFilterTest, Medium) {
// 100ms, like above.
TestRateCounter(100, 800, 10, 8000);
// 1000ms, 100 bpp, should result in 100 pps and 80 kbps. We're still
// generating packets every 10 ms.
TestRateCounter(900, 800, 100, 80000);
}
TEST_F(BweTestFramework_RateCounterFilterTest, Long) {
// 100ms, 1000ms, like above.
TestRateCounter(100, 800, 10, 8000);
TestRateCounter(900, 800, 100, 80000);
// 2000ms, should only see rate of last second, so 100 pps, and 40 kbps now.
TestRateCounter(1000, 400, 100, 40000);
// 2500ms, half a second with zero payload size. We should get same pps as
// before, but kbps should drop to half of previous rate.
TestRateCounter(500, 0, 100, 20000);
// Another half second with zero payload size. Now the kbps rate should drop
// to zero.
TestRateCounter(500, 0, 100, 0);
// Increate payload size again. 200 * 100 * 0.5 = 10 kbps.
TestRateCounter(500, 200, 100, 10000);
}
static void TestLossFilter(float loss_percent, bool zero_tolerance) {
LossFilter filter(NULL, 0);
filter.SetLoss(loss_percent);
Packets::size_type sent_packets = 0;
Packets::size_type remaining_packets = 0;
// No input should yield no output
{
Packets packets;
sent_packets += packets.size();
filter.RunFor(0, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
ASSERT_TRUE(IsSequenceNumberSorted(packets));
remaining_packets += packets.size();
EXPECT_EQ(0u, sent_packets);
EXPECT_EQ(0u, remaining_packets);
for (auto* packet : packets)
delete packet;
}
// Generate and process 10000 packets in different batch sizes (some empty)
for (int i = 0; i < 2225; ++i) {
Packets packets;
for (int j = 0; j < i % 10; ++j)
packets.push_back(new MediaPacket(i, i));
sent_packets += packets.size();
filter.RunFor(0, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
ASSERT_TRUE(IsSequenceNumberSorted(packets));
remaining_packets += packets.size();
for (auto* packet : packets)
delete packet;
}
float loss_fraction = 0.01f * (100.0f - loss_percent);
Packets::size_type expected_packets = loss_fraction * sent_packets;
if (zero_tolerance) {
EXPECT_EQ(expected_packets, remaining_packets);
} else {
// Require within 1% of expected
EXPECT_NEAR(expected_packets, remaining_packets, 100);
}
}
TEST(BweTestFramework_LossFilterTest, Loss0) {
// With 0% loss, the result should be exact (no loss).
TestLossFilter(0.0f, true);
}
TEST(BweTestFramework_LossFilterTest, Loss10) {
TestLossFilter(10.0f, false);
}
TEST(BweTestFramework_LossFilterTest, Loss50) {
TestLossFilter(50.0f, false);
}
TEST(BweTestFramework_LossFilterTest, Loss100) {
// With 100% loss, the result should be exact (no packets out).
TestLossFilter(100.0f, true);
}
class BweTestFramework_DelayFilterTest : public ::testing::Test {
public:
BweTestFramework_DelayFilterTest()
: filter_(NULL, 0), now_ms_(0), sequence_number_(0) {}
virtual ~BweTestFramework_DelayFilterTest() {
for (auto* packet : accumulated_packets_)
delete packet;
}
protected:
void TestDelayFilter(int64_t run_for_ms, uint32_t in_packets,
uint32_t out_packets) {
Packets packets;
for (uint32_t i = 0; i < in_packets; ++i) {
packets.push_back(new MediaPacket(
now_ms_ * 1000 + (sequence_number_ >> 4), sequence_number_));
sequence_number_++;
}
filter_.RunFor(run_for_ms, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
ASSERT_TRUE(IsSequenceNumberSorted(packets));
for (PacketsConstIt it = packets.begin(); it != packets.end(); ++it) {
EXPECT_LE(now_ms_ * 1000, (*it)->send_time_us());
}
EXPECT_EQ(out_packets, packets.size());
accumulated_packets_.splice(accumulated_packets_.end(), packets);
now_ms_ += run_for_ms;
}
void TestDelayFilter(int64_t delay_ms) {
filter_.SetOneWayDelayMs(delay_ms);
TestDelayFilter(1, 0, 0); // No input should yield no output
// Single packet
TestDelayFilter(0, 1, 1);
TestDelayFilter(delay_ms, 0, 0);
for (int i = 0; i < delay_ms; ++i) {
filter_.SetOneWayDelayMs(i);
TestDelayFilter(1, 10, 10);
}
TestDelayFilter(0, 0, 0);
TestDelayFilter(delay_ms, 0, 0);
// Wait a little longer - should still see no output
TestDelayFilter(delay_ms, 0, 0);
for (int i = 1; i < delay_ms + 1; ++i) {
filter_.SetOneWayDelayMs(i);
TestDelayFilter(1, 5, 5);
}
TestDelayFilter(0, 0, 0);
filter_.SetOneWayDelayMs(2 * delay_ms);
TestDelayFilter(1, 0, 0);
TestDelayFilter(delay_ms, 13, 13);
TestDelayFilter(delay_ms, 0, 0);
// Wait a little longer - should still see no output
TestDelayFilter(delay_ms, 0, 0);
for (int i = 0; i < 2 * delay_ms; ++i) {
filter_.SetOneWayDelayMs(2 * delay_ms - i - 1);
TestDelayFilter(1, 5, 5);
}
TestDelayFilter(0, 0, 0);
filter_.SetOneWayDelayMs(0);
TestDelayFilter(0, 7, 7);
ASSERT_TRUE(IsTimeSorted(accumulated_packets_));
ASSERT_TRUE(IsSequenceNumberSorted(accumulated_packets_));
}
DelayFilter filter_;
Packets accumulated_packets_;
private:
int64_t now_ms_;
uint16_t sequence_number_;
RTC_DISALLOW_COPY_AND_ASSIGN(BweTestFramework_DelayFilterTest);
};
TEST_F(BweTestFramework_DelayFilterTest, Delay0) {
TestDelayFilter(1, 0, 0); // No input should yield no output
TestDelayFilter(1, 10, 10); // Expect no delay (delay time is zero)
TestDelayFilter(1, 0, 0); // Check no packets are still in buffer
filter_.SetOneWayDelayMs(0);
TestDelayFilter(1, 5, 5); // Expect no delay (delay time is zero)
TestDelayFilter(1, 0, 0); // Check no packets are still in buffer
}
TEST_F(BweTestFramework_DelayFilterTest, Delay1) {
TestDelayFilter(1);
}
TEST_F(BweTestFramework_DelayFilterTest, Delay2) {
TestDelayFilter(2);
}
TEST_F(BweTestFramework_DelayFilterTest, Delay20) {
TestDelayFilter(20);
}
TEST_F(BweTestFramework_DelayFilterTest, Delay100) {
TestDelayFilter(100);
}
TEST_F(BweTestFramework_DelayFilterTest, JumpToZeroDelay) {
DelayFilter delay(NULL, 0);
Packets acc;
Packets packets;
// Delay a bunch of packets, accumulate them to the 'acc' list.
delay.SetOneWayDelayMs(100.0f);
for (uint32_t i = 0; i < 10; ++i) {
packets.push_back(new MediaPacket(i * 100, i));
}
delay.RunFor(1000, &packets);
acc.splice(acc.end(), packets);
ASSERT_TRUE(IsTimeSorted(acc));
ASSERT_TRUE(IsSequenceNumberSorted(acc));
// Drop delay to zero, send a few more packets through the delay, append them
// to the 'acc' list and verify that it is all sorted.
delay.SetOneWayDelayMs(0.0f);
for (uint32_t i = 10; i < 50; ++i) {
packets.push_back(new MediaPacket(i * 100, i));
}
delay.RunFor(1000, &packets);
acc.splice(acc.end(), packets);
ASSERT_TRUE(IsTimeSorted(acc));
ASSERT_TRUE(IsSequenceNumberSorted(acc));
for (auto* packet : acc)
delete packet;
}
TEST_F(BweTestFramework_DelayFilterTest, IncreasingDelay) {
// Gradually increase delay.
for (int i = 1; i < 50; i += 4) {
TestDelayFilter(i);
}
// Reach a steady state.
filter_.SetOneWayDelayMs(100);
TestDelayFilter(1, 20, 20);
TestDelayFilter(2, 0, 0);
TestDelayFilter(99, 20, 20);
// Drop delay back down to zero.
filter_.SetOneWayDelayMs(0);
TestDelayFilter(1, 100, 100);
TestDelayFilter(23010, 0, 0);
ASSERT_TRUE(IsTimeSorted(accumulated_packets_));
ASSERT_TRUE(IsSequenceNumberSorted(accumulated_packets_));
}
static void TestJitterFilter(int64_t max_jitter_ms) {
JitterFilter filter(NULL, 0);
filter.SetMaxJitter(max_jitter_ms);
int64_t now_ms = 0;
uint16_t sequence_number = 0;
// Generate packets, add jitter to them, accumulate the altered packets.
Packets original;
Packets jittered;
for (uint32_t i = 0; i < 1000; ++i) {
Packets packets;
for (uint32_t j = 0; j < i % 100; ++j) {
packets.push_back(new MediaPacket(now_ms * 1000, sequence_number));
original.push_back(new MediaPacket(now_ms * 1000, sequence_number));
++sequence_number;
now_ms += 5 * max_jitter_ms;
}
filter.RunFor(max_jitter_ms, &packets);
jittered.splice(jittered.end(), packets);
}
// Jittered packets should still be in order.
ASSERT_TRUE(IsTimeSorted(original));
ASSERT_TRUE(IsTimeSorted(jittered));
ASSERT_TRUE(IsSequenceNumberSorted(original));
ASSERT_TRUE(IsSequenceNumberSorted(jittered));
EXPECT_EQ(original.size(), jittered.size());
// Make sure jittered and original packets are in same order. Collect time
// difference (jitter) in stats, then check that mean jitter is close to zero
// and standard deviation of jitter is what we set it to.
Stats<double> jitter_us;
int64_t max_jitter_obtained_us = 0;
for (PacketsIt it1 = original.begin(), it2 = jittered.begin();
it1 != original.end() && it2 != jittered.end(); ++it1, ++it2) {
const MediaPacket* packet1 = static_cast<const MediaPacket*>(*it1);
const MediaPacket* packet2 = static_cast<const MediaPacket*>(*it2);
EXPECT_EQ(packet1->header().sequenceNumber,
packet2->header().sequenceNumber);
max_jitter_obtained_us =
std::max(max_jitter_obtained_us,
packet2->send_time_us() - packet1->send_time_us());
jitter_us.Push(packet2->send_time_us() - packet1->send_time_us());
}
EXPECT_NEAR(filter.MeanUs(), jitter_us.GetMean(),
max_jitter_ms * 1000.0 * 0.01);
EXPECT_NEAR(max_jitter_ms * 1000.0, max_jitter_obtained_us,
max_jitter_ms * 1000.0 * 0.01);
for (auto* packet : original)
delete packet;
for (auto* packet : jittered)
delete packet;
}
TEST(BweTestFramework_JitterFilterTest, Jitter0) {
TestJitterFilter(0);
}
TEST(BweTestFramework_JitterFilterTest, Jitter1) {
TestJitterFilter(1);
}
TEST(BweTestFramework_JitterFilterTest, Jitter5) {
TestJitterFilter(5);
}
TEST(BweTestFramework_JitterFilterTest, Jitter10) {
TestJitterFilter(10);
}
TEST(BweTestFramework_JitterFilterTest, Jitter1031) {
TestJitterFilter(1031);
}
static void TestReorderFilter(uint16_t reorder_percent) {
const uint16_t kPacketCount = 10000;
// Generate packets with 10 ms interval.
Packets packets;
int64_t now_ms = 0;
uint16_t sequence_number = 1;
for (uint16_t i = 0; i < kPacketCount; ++i, now_ms += 10) {
packets.push_back(new MediaPacket(now_ms * 1000, sequence_number++));
}
ASSERT_TRUE(IsTimeSorted(packets));
ASSERT_TRUE(IsSequenceNumberSorted(packets));
// Reorder packets, verify that send times are still in order.
ReorderFilter filter(NULL, 0);
filter.SetReorder(reorder_percent);
filter.RunFor(now_ms, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
// We measure the amount of reordering by summing the distance by which out-
// of-order packets have been moved in the stream.
uint16_t distance = 0;
uint16_t last_sequence_number = 0;
for (auto* packet : packets) {
const MediaPacket* media_packet = static_cast<const MediaPacket*>(packet);
uint16_t sequence_number = media_packet->header().sequenceNumber;
// The expected position for sequence number s is in position s-1.
if (sequence_number < last_sequence_number) {
distance += last_sequence_number - sequence_number;
}
last_sequence_number = sequence_number;
}
// The probability that two elements are swapped is p = reorder_percent / 100.
double p = static_cast<double>(reorder_percent) / 100;
// The expected number of swaps we perform is p * (PacketCount - 1),
// and each swap increases the distance by one.
double mean = p * (kPacketCount - 1);
// If pair i is chosen to be swapped with probability p, the variance for that
// pair is p * (1 - p). Since there are (kPacketCount - 1) independent pairs,
// the variance for the number of swaps is (kPacketCount - 1) * p * (1 - p).
double std_deviation = sqrt((kPacketCount - 1) * p * (1 - p));
EXPECT_NEAR(mean, distance, 3 * std_deviation);
for (auto* packet : packets)
delete packet;
}
TEST(BweTestFramework_ReorderFilterTest, Reorder0) {
// For 0% reordering, no packets should have been moved, so result is exact.
TestReorderFilter(0);
}
TEST(BweTestFramework_ReorderFilterTest, Reorder10) {
TestReorderFilter(10);
}
TEST(BweTestFramework_ReorderFilterTest, Reorder20) {
TestReorderFilter(20);
}
TEST(BweTestFramework_ReorderFilterTest, Reorder50) {
TestReorderFilter(50);
}
TEST(BweTestFramework_ReorderFilterTest, Reorder70) {
TestReorderFilter(70);
}
TEST(BweTestFramework_ReorderFilterTest, Reorder100) {
// Note that because the implementation works by optionally swapping two
// adjacent packets, when the likelihood of a swap is 1.0, a swap will always
// occur, so the stream will be in order except for the first packet, which
// has been moved to the end. Therefore we expect the result to be exact here.
TestReorderFilter(100.0);
}
class BweTestFramework_ChokeFilterTest : public ::testing::Test {
public:
BweTestFramework_ChokeFilterTest()
: now_ms_(0),
sequence_number_(0),
output_packets_(),
send_times_us_() {
}
virtual ~BweTestFramework_ChokeFilterTest() {
for (auto* packet : output_packets_)
delete packet;
}
protected:
void TestChoke(PacketProcessor* filter,
int64_t run_for_ms,
uint32_t packets_to_generate,
size_t expected_kbit_transmitted) {
// Generate a bunch of packets, apply choke, verify output is ordered.
Packets packets;
RTPHeader header;
for (uint32_t i = 0; i < packets_to_generate; ++i) {
int64_t send_time_ms = now_ms_ + (i * run_for_ms) / packets_to_generate;
header.sequenceNumber = sequence_number_++;
// Payload is 1000 bits.
packets.push_back(new MediaPacket(0, send_time_ms * 1000, 125, header));
send_times_us_.push_back(send_time_ms * 1000);
}
ASSERT_TRUE(IsTimeSorted(packets));
filter->RunFor(run_for_ms, &packets);
now_ms_ += run_for_ms;
output_packets_.splice(output_packets_.end(), packets);
ASSERT_TRUE(IsTimeSorted(output_packets_));
ASSERT_TRUE(IsSequenceNumberSorted(output_packets_));
// Sum up the transmitted bytes up until the current time.
size_t bytes_transmitted = 0;
while (!output_packets_.empty()) {
const Packet* packet = output_packets_.front();
if (packet->send_time_us() > now_ms_ * 1000) {
break;
}
bytes_transmitted += packet->payload_size();
delete output_packets_.front();
output_packets_.pop_front();
}
EXPECT_EQ(expected_kbit_transmitted, (bytes_transmitted * 8 + 500) / 1000);
}
void CheckMaxDelay(int64_t max_delay_ms) {
for (const auto* packet : output_packets_) {
const MediaPacket* media_packet = static_cast<const MediaPacket*>(packet);
int64_t delay_us = media_packet->send_time_us() -
send_times_us_[media_packet->header().sequenceNumber];
EXPECT_GE(max_delay_ms * 1000, delay_us);
}
}
private:
int64_t now_ms_;
uint16_t sequence_number_;
Packets output_packets_;
std::vector<int64_t> send_times_us_;
RTC_DISALLOW_COPY_AND_ASSIGN(BweTestFramework_ChokeFilterTest);
};
TEST_F(BweTestFramework_ChokeFilterTest, NoQueue) {
const int kCapacityKbps = 10;
const size_t kPacketSizeBytes = 125;
const int64_t kExpectedSendTimeUs =
(kPacketSizeBytes * 8 * 1000 + kCapacityKbps / 2) / kCapacityKbps;
uint16_t sequence_number = 0;
int64_t send_time_us = 0;
ChokeFilter filter(NULL, 0);
filter.set_capacity_kbps(10);
Packets packets;
RTPHeader header;
for (int i = 0; i < 2; ++i) {
header.sequenceNumber = sequence_number++;
// Payload is 1000 bits.
packets.push_back(
new MediaPacket(0, send_time_us, kPacketSizeBytes, header));
// Packets are sent far enough a part plus an extra millisecond so that they
// will never be in the choke queue at the same time.
send_time_us += kExpectedSendTimeUs + 1000;
}
ASSERT_TRUE(IsTimeSorted(packets));
filter.RunFor(2 * kExpectedSendTimeUs + 1000, &packets);
EXPECT_EQ(kExpectedSendTimeUs, packets.front()->send_time_us());
delete packets.front();
packets.pop_front();
EXPECT_EQ(2 * kExpectedSendTimeUs + 1000, packets.front()->send_time_us());
delete packets.front();
packets.pop_front();
}
TEST_F(BweTestFramework_ChokeFilterTest, Short) {
// 100ms, 100 packets, 10 kbps choke -> 1 kbit of data should have propagated.
// That is actually just a single packet, since each packet has 1000 bits of
// payload.
ChokeFilter filter(NULL, 0);
filter.set_capacity_kbps(10);
TestChoke(&filter, 100, 100, 1);
}
TEST_F(BweTestFramework_ChokeFilterTest, Medium) {
// 100ms, 10 packets, 10 kbps choke -> 1 packet through, or 1 kbit.
ChokeFilter filter(NULL, 0);
filter.set_capacity_kbps(10);
TestChoke(&filter, 100, 10, 1);
// 200ms, no new packets -> another packet through.
TestChoke(&filter, 100, 0, 1);
// 1000ms, no new packets -> 8 more packets.
TestChoke(&filter, 800, 0, 8);
// 2000ms, no new packets -> queue is empty so no output.
TestChoke(&filter, 1000, 0, 0);
}
TEST_F(BweTestFramework_ChokeFilterTest, Long) {
// 100ms, 100 packets in queue, 10 kbps choke -> 1 packet through, or 1 kbit.
ChokeFilter filter(NULL, 0);
filter.set_capacity_kbps(10);
TestChoke(&filter, 100, 100, 1);
// 200ms, no input, another packet through.
TestChoke(&filter, 100, 0, 1);
// 1000ms, no input, 8 packets through.
TestChoke(&filter, 800, 0, 8);
// 10000ms, no input, raise choke to 100 kbps. Remaining 90 packets in queue
// should be propagated, for a total of 90 kbps.
filter.set_capacity_kbps(100);
TestChoke(&filter, 9000, 0, 90);
// 10100ms, 20 more packets -> 10 packets or 10 kbit through.
TestChoke(&filter, 100, 20, 10);
// 10300ms, 10 more packets -> 20 packets out.
TestChoke(&filter, 200, 10, 20);
// 11300ms, no input, queue should be empty.
filter.set_capacity_kbps(10);
TestChoke(&filter, 1000, 0, 0);
}
TEST_F(BweTestFramework_ChokeFilterTest, MaxDelay) {
// 10 kbps choke, 500 ms delay cap
ChokeFilter filter(NULL, 0);
filter.set_capacity_kbps(10);
filter.set_max_delay_ms(500);
// 100ms, 100 packets in queue, 10 kbps choke -> 1 packet through, or 1 kbit.
TestChoke(&filter, 100, 100, 1);
CheckMaxDelay(500);
// 500ms, no input, 4 more packets through.
TestChoke(&filter, 400, 0, 4);
// 10000ms, no input, remaining packets should have been dropped.
TestChoke(&filter, 9500, 0, 0);
// 100 ms delay cap
filter.set_max_delay_ms(100);
// 10100ms, 50 more packets -> 1 packets or 1 kbit through.
TestChoke(&filter, 100, 50, 1);
CheckMaxDelay(100);
// 20000ms, no input, remaining packets in queue should have been dropped.
TestChoke(&filter, 9900, 0, 0);
// Reset delay cap (0 is no cap) and verify no packets are dropped.
filter.set_capacity_kbps(10);
filter.set_max_delay_ms(0);
TestChoke(&filter, 100, 100, 1);
TestChoke(&filter, 9900, 0, 99);
}
TEST_F(BweTestFramework_ChokeFilterTest, ShortTrace) {
// According to the input file 6 packets should be transmitted within
// 100 milliseconds.
TraceBasedDeliveryFilter filter(NULL, 0);
ASSERT_TRUE(filter.Init(test::ResourcePath("synthetic-trace", "rx")));
TestChoke(&filter, 100, 100, 6);
}
TEST_F(BweTestFramework_ChokeFilterTest, ShortTraceTwoWraps) {
// According to the input file 19 packets should be transmitted within
// 280 milliseconds (at the wrapping point two packets are sent back to back).
TraceBasedDeliveryFilter filter(NULL, 0);
ASSERT_TRUE(filter.Init(test::ResourcePath("synthetic-trace", "rx")));
TestChoke(&filter, 280, 100, 19);
}
TEST_F(BweTestFramework_ChokeFilterTest, ShortTraceMaxDelay) {
TraceBasedDeliveryFilter filter(NULL, 0);
filter.set_max_delay_ms(25);
ASSERT_TRUE(filter.Init(test::ResourcePath("synthetic-trace", "rx")));
// Uses all slots up to 110 ms. Several packets are being dropped.
TestChoke(&filter, 110, 20, 9);
CheckMaxDelay(25);
// Simulate enough time for the next slot (at 135 ms) to be used. This makes
// sure that a slot isn't missed between runs.
TestChoke(&filter, 25, 1, 1);
}
void TestVideoSender(VideoSender* sender,
int64_t run_for_ms,
uint32_t expected_packets,
uint32_t expected_payload_size,
size_t expected_total_payload_size) {
assert(sender);
Packets packets;
sender->RunFor(run_for_ms, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
ASSERT_TRUE(IsSequenceNumberSorted(packets));
EXPECT_EQ(expected_packets, packets.size());
int64_t send_time_us = -1;
size_t total_payload_size = 0;
uint32_t absolute_send_time = 0;
uint32_t absolute_send_time_wraps = 0;
uint32_t rtp_timestamp = 0;
uint32_t rtp_timestamp_wraps = 0;
for (const auto* packet : packets) {
const MediaPacket* media_packet = static_cast<const MediaPacket*>(packet);
EXPECT_LE(send_time_us, media_packet->send_time_us());
send_time_us = media_packet->send_time_us();
if (sender->source()->max_payload_size_bytes() !=
media_packet->payload_size()) {
EXPECT_EQ(expected_payload_size, media_packet->payload_size());
}
total_payload_size += media_packet->payload_size();
if (absolute_send_time >
media_packet->header().extension.absoluteSendTime) {
absolute_send_time_wraps++;
}
absolute_send_time = media_packet->header().extension.absoluteSendTime;
if (rtp_timestamp > media_packet->header().timestamp) {
rtp_timestamp_wraps++;
}
rtp_timestamp = media_packet->header().timestamp;
}
EXPECT_EQ(expected_total_payload_size, total_payload_size);
EXPECT_GE(1u, absolute_send_time_wraps);
EXPECT_GE(1u, rtp_timestamp_wraps);
for (auto* packet : packets)
delete packet;
}
// Random {-1, 0, +1} ms was added to frame timestamps.
TEST(BweTestFramework_VideoSenderTest, Fps1Kbps80_1s) {
// 1 fps, 80 kbps
VideoSource source(0, 1.0f, 80, 0x1234, 0);
VideoSender sender(NULL, &source, kNullEstimator);
EXPECT_EQ(80000u, source.bits_per_second());
// We're at 1 fps, so all packets should be generated on first call, giving 10
// packets of each 1000 bytes, total 10000 bytes.
TestVideoSender(&sender, 1, 9, 400, 10000);
// 998ms, should see no output here.
TestVideoSender(&sender, 997, 0, 0, 0);
// 1001ms, should get data for one more frame.
TestVideoSender(&sender, 3, 9, 400, 10000);
// 1998ms, should see no output here.
TestVideoSender(&sender, 997, 0, 0, 0);
// 2001ms, one more frame.
TestVideoSender(&sender, 3, 9, 400, 10000);
// 2998ms, should see nothing.
TestVideoSender(&sender, 997, 0, 0, 0);
}
TEST(BweTestFramework_VideoSenderTest, Fps1Kbps80_1s_Offset) {
// 1 fps, 80 kbps, offset 0.5 of a frame period, ==0.5s in this case.
VideoSource source(0, 1.0f, 80, 0x1234, 500);
VideoSender sender(NULL, &source, kNullEstimator);
EXPECT_EQ(80000u, source.bits_per_second());
// 498ms, no output.
TestVideoSender(&sender, 498, 0, 0, 0);
// 501ms, first frame (this is the offset we set), 10 packets of 1000 bytes.
TestVideoSender(&sender, 3, 9, 400, 10000);
// 1498ms, nothing.
TestVideoSender(&sender, 997, 0, 0, 0);
// 1501ms, second frame.
TestVideoSender(&sender, 3, 9, 400, 10000);
// 2498ms, nothing.
TestVideoSender(&sender, 997, 0, 0, 0);
// 2501ms, third frame.
TestVideoSender(&sender, 3, 9, 400, 10000);
// 3498ms, nothing.
TestVideoSender(&sender, 997, 0, 0, 0);
}
TEST(BweTestFramework_VideoSenderTest, Fps50Kpbs80_11s) {
// 50 fps, 80 kbps.
VideoSource source(0, 50.0f, 80, 0x1234, 0);
VideoSender sender(NULL, &source, kNullEstimator);
EXPECT_EQ(80000u, source.bits_per_second());
// 9981, should see 500 frames, 200 byte payloads, total 100000 bytes.
TestVideoSender(&sender, 9981, 500, 200, 100000);
// 9998ms, nothing.
TestVideoSender(&sender, 17, 0, 0, 0);
// 10001ms, 501st frame as a single packet.
TestVideoSender(&sender, 3, 1, 200, 200);
// 10981ms, 49 more frames.
TestVideoSender(&sender, 981, 49, 200, 9800);
// 10998ms, nothing.
TestVideoSender(&sender, 17, 0, 0, 0);
}
TEST(BweTestFramework_VideoSenderTest, Fps20Kpbs120_1s) {
// 20 fps, 120 kbps.
VideoSource source(0, 20.0f, 120, 0x1234, 0);
VideoSender sender(NULL, &source, kNullEstimator);
EXPECT_EQ(120000u, source.bits_per_second());
// 451ms, 10 frames with 750 byte payloads, total 7500 bytes.
TestVideoSender(&sender, 451, 10, 750, 7500);
// 498ms, nothing.
TestVideoSender(&sender, 47, 0, 0, 0);
// 501ms, one more frame.
TestVideoSender(&sender, 3, 1, 750, 750);
// 951ms, 9 more frames.
TestVideoSender(&sender, 450, 9, 750, 6750);
// 998ms, nothing.
TestVideoSender(&sender, 47, 0, 0, 0);
}
TEST(BweTestFramework_VideoSenderTest, Fps25Kbps820_20s) {
// 25 fps, 820 kbps.
VideoSource source(0, 25.0f, 820, 0x1234, 0);
VideoSender sender(NULL, &source, kNullEstimator);
EXPECT_EQ(820000u, source.bits_per_second());
// 9961ms, 250 frames. 820 kbps = 102500 bytes/s, so total should be 1025000.
// Each frame is 102500/25=4100 bytes, or 5 packets (4 @1000 bytes, 1 @100),
// so packet count should be 5*250=1250 and last packet of each frame has
// 100 bytes of payload.
TestVideoSender(&sender, 9961, 1000, 500, 1025000);
// 9998ms, nothing.
TestVideoSender(&sender, 37, 0, 0, 0);
// 19961ms, 250 more frames.
TestVideoSender(&sender, 9963, 1000, 500, 1025000);
// 19998ms, nothing.
TestVideoSender(&sender, 37, 0, 0, 0);
// 20001ms, one more frame, as described above (25fps == 40ms/frame).
TestVideoSender(&sender, 3, 4, 500, 4100);
// 20038ms, nothing.
TestVideoSender(&sender, 37, 0, 0, 0);
}
TEST(BweTestFramework_VideoSenderTest, TestAppendInOrder) {
// 1 fps, 80 kbps, 250ms offset.
VideoSource source1(0, 1.0f, 80, 0x1234, 250);
VideoSender sender1(NULL, &source1, kNullEstimator);
EXPECT_EQ(80000u, source1.bits_per_second());
Packets packets;
// Generate some packets, verify they are sorted.
sender1.RunFor(999, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
ASSERT_TRUE(IsSequenceNumberSorted(packets));
EXPECT_EQ(9u, packets.size());
// Generate some more packets and verify they are appended to end of list.
sender1.RunFor(1000, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
ASSERT_TRUE(IsSequenceNumberSorted(packets));
EXPECT_EQ(18u, packets.size());
// Another sender, 2 fps, 160 kbps, 150ms offset
VideoSource source2(0, 2.0f, 160, 0x2234, 150);
VideoSender sender2(NULL, &source2, kNullEstimator);
EXPECT_EQ(160000u, source2.bits_per_second());
// Generate some packets, verify that they are merged with the packets already
// on the list.
sender2.RunFor(999, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
EXPECT_EQ(36u, packets.size());
// Generate some more.
sender2.RunFor(1000, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
EXPECT_EQ(54u, packets.size());
for (auto* packet : packets)
delete packet;
}
TEST(BweTestFramework_VideoSenderTest, FeedbackIneffective) {
VideoSource source(0, 25.0f, 820, 0x1234, 0);
VideoSender sender(NULL, &source, kNullEstimator);
EXPECT_EQ(820000u, source.bits_per_second());
TestVideoSender(&sender, 9961, 1000, 500, 1025000);
// Make sure feedback has no effect on a regular video sender.
RembFeedback* feedback = new RembFeedback(0, 0, 0, 512000, RTCPReportBlock());
Packets packets;
packets.push_back(feedback);
sender.RunFor(0, &packets);
EXPECT_EQ(820000u, source.bits_per_second());
TestVideoSender(&sender, 10000, 1000, 500, 1025000);
}
TEST(BweTestFramework_AdaptiveVideoSenderTest, FeedbackChangesBitrate) {
AdaptiveVideoSource source(0, 25.0f, 820, 0x1234, 0);
VideoSender sender(NULL, &source, kRembEstimator);
EXPECT_EQ(820000u, source.bits_per_second());
TestVideoSender(&sender, 9961, 1000, 500, 1025000);
// Make sure we can reduce the bitrate.
RembFeedback* feedback = new RembFeedback(0, 0, 0, 512000, RTCPReportBlock());
Packets packets;
packets.push_back(feedback);
sender.RunFor(0, &packets);
EXPECT_EQ(512000u, source.bits_per_second());
TestVideoSender(&sender, 10000, 750, 160, 640000);
// Increase the bitrate to the initial bitrate and verify that the output is
// the same.
feedback = new RembFeedback(0, 0, 0, 820000, RTCPReportBlock());
packets.push_back(feedback);
sender.RunFor(10000, &packets);
EXPECT_EQ(820000u, source.bits_per_second());
for (auto* packet : packets)
delete packet;
}
TEST(BweTestFramework_AdaptiveVideoSenderTest, Paced_FeedbackChangesBitrate) {
AdaptiveVideoSource source(0, 25.0f, 820, 0x1234, 0);
PacedVideoSender sender(NULL, &source, kRembEstimator);
EXPECT_EQ(820000u, source.bits_per_second());
TestVideoSender(&sender, 9998, 1000, 500, 1025000);
// Make sure we can reduce the bitrate.
RembFeedback* feedback = new RembFeedback(0, 1, 0, 512000, RTCPReportBlock());
Packets packets;
packets.push_back(feedback);
sender.RunFor(10000, &packets);
ASSERT_EQ(512000u, source.bits_per_second());
TestVideoSender(&sender, 10000, 750, 160, 640000);
// Increase the bitrate to the initial bitrate and verify that the output is
// the same.
feedback = new RembFeedback(0, 0, 0, 820000, RTCPReportBlock());
packets.push_back(feedback);
sender.RunFor(10000, &packets);
EXPECT_EQ(820000u, source.bits_per_second());
for (auto* packet : packets)
delete packet;
}
} // namespace bwe
} // namespace testing
} // namespace webrtc