| /* |
| * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/tools/event_log_visualizer/analyzer.h" |
| |
| #include <algorithm> |
| #include <limits> |
| #include <map> |
| #include <sstream> |
| #include <string> |
| #include <utility> |
| |
| #include "webrtc/api/call/audio_receive_stream.h" |
| #include "webrtc/api/call/audio_send_stream.h" |
| #include "webrtc/base/checks.h" |
| #include "webrtc/base/logging.h" |
| #include "webrtc/base/rate_statistics.h" |
| #include "webrtc/call.h" |
| #include "webrtc/common_types.h" |
| #include "webrtc/modules/congestion_controller/include/congestion_controller.h" |
| #include "webrtc/modules/rtp_rtcp/include/rtp_rtcp.h" |
| #include "webrtc/modules/rtp_rtcp/include/rtp_rtcp_defines.h" |
| #include "webrtc/modules/rtp_rtcp/source/rtp_utility.h" |
| #include "webrtc/modules/rtp_rtcp/source/rtcp_utility.h" |
| #include "webrtc/modules/rtp_rtcp/source/rtcp_packet/transport_feedback.h" |
| #include "webrtc/video_receive_stream.h" |
| #include "webrtc/video_send_stream.h" |
| |
| namespace webrtc { |
| namespace plotting { |
| |
| namespace { |
| |
| std::string SsrcToString(uint32_t ssrc) { |
| std::stringstream ss; |
| ss << "SSRC " << ssrc; |
| return ss.str(); |
| } |
| |
| // Checks whether an SSRC is contained in the list of desired SSRCs. |
| // Note that an empty SSRC list matches every SSRC. |
| bool MatchingSsrc(uint32_t ssrc, const std::vector<uint32_t>& desired_ssrc) { |
| if (desired_ssrc.size() == 0) |
| return true; |
| return std::find(desired_ssrc.begin(), desired_ssrc.end(), ssrc) != |
| desired_ssrc.end(); |
| } |
| |
| double AbsSendTimeToMicroseconds(int64_t abs_send_time) { |
| // The timestamp is a fixed point representation with 6 bits for seconds |
| // and 18 bits for fractions of a second. Thus, we divide by 2^18 to get the |
| // time in seconds and then multiply by 1000000 to convert to microseconds. |
| static constexpr double kTimestampToMicroSec = |
| 1000000.0 / static_cast<double>(1ul << 18); |
| return abs_send_time * kTimestampToMicroSec; |
| } |
| |
| // Computes the difference |later| - |earlier| where |later| and |earlier| |
| // are counters that wrap at |modulus|. The difference is chosen to have the |
| // least absolute value. For example if |modulus| is 8, then the difference will |
| // be chosen in the range [-3, 4]. If |modulus| is 9, then the difference will |
| // be in [-4, 4]. |
| int64_t WrappingDifference(uint32_t later, uint32_t earlier, int64_t modulus) { |
| RTC_DCHECK_LE(1, modulus); |
| RTC_DCHECK_LT(later, modulus); |
| RTC_DCHECK_LT(earlier, modulus); |
| int64_t difference = |
| static_cast<int64_t>(later) - static_cast<int64_t>(earlier); |
| int64_t max_difference = modulus / 2; |
| int64_t min_difference = max_difference - modulus + 1; |
| if (difference > max_difference) { |
| difference -= modulus; |
| } |
| if (difference < min_difference) { |
| difference += modulus; |
| } |
| if (difference > max_difference / 2 || difference < min_difference / 2) { |
| LOG(LS_WARNING) << "Difference between" << later << " and " << earlier |
| << " expected to be in the range (" << min_difference / 2 |
| << "," << max_difference / 2 << ") but is " << difference |
| << ". Correct unwrapping is uncertain."; |
| } |
| return difference; |
| } |
| |
| void RegisterHeaderExtensions( |
| const std::vector<webrtc::RtpExtension>& extensions, |
| webrtc::RtpHeaderExtensionMap* extension_map) { |
| extension_map->Erase(); |
| for (const webrtc::RtpExtension& extension : extensions) { |
| extension_map->Register(webrtc::StringToRtpExtensionType(extension.uri), |
| extension.id); |
| } |
| } |
| |
| constexpr float kLeftMargin = 0.01f; |
| constexpr float kRightMargin = 0.02f; |
| constexpr float kBottomMargin = 0.02f; |
| constexpr float kTopMargin = 0.05f; |
| |
| class PacketSizeBytes { |
| public: |
| using DataType = LoggedRtpPacket; |
| using ResultType = size_t; |
| size_t operator()(const LoggedRtpPacket& packet) { |
| return packet.total_length; |
| } |
| }; |
| |
| class SequenceNumberDiff { |
| public: |
| using DataType = LoggedRtpPacket; |
| using ResultType = int64_t; |
| int64_t operator()(const LoggedRtpPacket& old_packet, |
| const LoggedRtpPacket& new_packet) { |
| return WrappingDifference(new_packet.header.sequenceNumber, |
| old_packet.header.sequenceNumber, 1ul << 16); |
| } |
| }; |
| |
| class NetworkDelayDiff { |
| public: |
| class AbsSendTime { |
| public: |
| using DataType = LoggedRtpPacket; |
| using ResultType = double; |
| double operator()(const LoggedRtpPacket& old_packet, |
| const LoggedRtpPacket& new_packet) { |
| if (old_packet.header.extension.hasAbsoluteSendTime && |
| new_packet.header.extension.hasAbsoluteSendTime) { |
| int64_t send_time_diff = WrappingDifference( |
| new_packet.header.extension.absoluteSendTime, |
| old_packet.header.extension.absoluteSendTime, 1ul << 24); |
| int64_t recv_time_diff = new_packet.timestamp - old_packet.timestamp; |
| return static_cast<double>(recv_time_diff - |
| AbsSendTimeToMicroseconds(send_time_diff)) / |
| 1000; |
| } else { |
| return 0; |
| } |
| } |
| }; |
| |
| class CaptureTime { |
| public: |
| using DataType = LoggedRtpPacket; |
| using ResultType = double; |
| double operator()(const LoggedRtpPacket& old_packet, |
| const LoggedRtpPacket& new_packet) { |
| int64_t send_time_diff = WrappingDifference( |
| new_packet.header.timestamp, old_packet.header.timestamp, 1ull << 32); |
| int64_t recv_time_diff = new_packet.timestamp - old_packet.timestamp; |
| |
| const double kVideoSampleRate = 90000; |
| // TODO(terelius): We treat all streams as video for now, even though |
| // audio might be sampled at e.g. 16kHz, because it is really difficult to |
| // figure out the true sampling rate of a stream. The effect is that the |
| // delay will be scaled incorrectly for non-video streams. |
| |
| double delay_change = |
| static_cast<double>(recv_time_diff) / 1000 - |
| static_cast<double>(send_time_diff) / kVideoSampleRate * 1000; |
| if (delay_change < -10000 || 10000 < delay_change) { |
| LOG(LS_WARNING) << "Very large delay change. Timestamps correct?"; |
| LOG(LS_WARNING) << "Old capture time " << old_packet.header.timestamp |
| << ", received time " << old_packet.timestamp; |
| LOG(LS_WARNING) << "New capture time " << new_packet.header.timestamp |
| << ", received time " << new_packet.timestamp; |
| LOG(LS_WARNING) << "Receive time difference " << recv_time_diff << " = " |
| << static_cast<double>(recv_time_diff) / 1000000 << "s"; |
| LOG(LS_WARNING) << "Send time difference " << send_time_diff << " = " |
| << static_cast<double>(send_time_diff) / |
| kVideoSampleRate |
| << "s"; |
| } |
| return delay_change; |
| } |
| }; |
| }; |
| |
| template <typename Extractor> |
| class Accumulated { |
| public: |
| using DataType = typename Extractor::DataType; |
| using ResultType = typename Extractor::ResultType; |
| ResultType operator()(const DataType& old_packet, |
| const DataType& new_packet) { |
| sum += extract(old_packet, new_packet); |
| return sum; |
| } |
| |
| private: |
| Extractor extract; |
| ResultType sum = 0; |
| }; |
| |
| // For each element in data, use |Extractor| to extract a y-coordinate and |
| // store the result in a TimeSeries. |
| template <typename Extractor> |
| void Pointwise(const std::vector<typename Extractor::DataType>& data, |
| uint64_t begin_time, |
| TimeSeries* result) { |
| Extractor extract; |
| for (size_t i = 0; i < data.size(); i++) { |
| float x = static_cast<float>(data[i].timestamp - begin_time) / 1000000; |
| float y = extract(data[i]); |
| result->points.emplace_back(x, y); |
| } |
| } |
| |
| // For each pair of adjacent elements in |data|, use |Extractor| to extract a |
| // y-coordinate and store the result in a TimeSeries. Note that the x-coordinate |
| // will be the time of the second element in the pair. |
| template <typename Extractor> |
| void Pairwise(const std::vector<typename Extractor::DataType>& data, |
| uint64_t begin_time, |
| TimeSeries* result) { |
| Extractor extract; |
| for (size_t i = 1; i < data.size(); i++) { |
| float x = static_cast<float>(data[i].timestamp - begin_time) / 1000000; |
| float y = extract(data[i - 1], data[i]); |
| result->points.emplace_back(x, y); |
| } |
| } |
| |
| // Calculates a moving average of |data| and stores the result in a TimeSeries. |
| // A data point is generated every |step| microseconds from |begin_time| |
| // to |end_time|. The value of each data point is the average of the data |
| // during the preceeding |window_duration_us| microseconds. |
| template <typename Extractor> |
| void MovingAverage(const std::vector<typename Extractor::DataType>& data, |
| uint64_t begin_time, |
| uint64_t end_time, |
| uint64_t window_duration_us, |
| uint64_t step, |
| float y_scaling, |
| webrtc::plotting::TimeSeries* result) { |
| size_t window_index_begin = 0; |
| size_t window_index_end = 0; |
| typename Extractor::ResultType sum_in_window = 0; |
| Extractor extract; |
| |
| for (uint64_t t = begin_time; t < end_time + step; t += step) { |
| while (window_index_end < data.size() && |
| data[window_index_end].timestamp < t) { |
| sum_in_window += extract(data[window_index_end]); |
| ++window_index_end; |
| } |
| while (window_index_begin < data.size() && |
| data[window_index_begin].timestamp < t - window_duration_us) { |
| sum_in_window -= extract(data[window_index_begin]); |
| ++window_index_begin; |
| } |
| float window_duration_s = static_cast<float>(window_duration_us) / 1000000; |
| float x = static_cast<float>(t - begin_time) / 1000000; |
| float y = sum_in_window / window_duration_s * y_scaling; |
| result->points.emplace_back(x, y); |
| } |
| } |
| |
| } // namespace |
| |
| EventLogAnalyzer::EventLogAnalyzer(const ParsedRtcEventLog& log) |
| : parsed_log_(log), window_duration_(250000), step_(10000) { |
| uint64_t first_timestamp = std::numeric_limits<uint64_t>::max(); |
| uint64_t last_timestamp = std::numeric_limits<uint64_t>::min(); |
| |
| // Maps a stream identifier consisting of ssrc and direction |
| // to the header extensions used by that stream, |
| std::map<StreamId, RtpHeaderExtensionMap> extension_maps; |
| |
| PacketDirection direction; |
| uint8_t header[IP_PACKET_SIZE]; |
| size_t header_length; |
| size_t total_length; |
| |
| for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { |
| ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); |
| if (event_type != ParsedRtcEventLog::VIDEO_RECEIVER_CONFIG_EVENT && |
| event_type != ParsedRtcEventLog::VIDEO_SENDER_CONFIG_EVENT && |
| event_type != ParsedRtcEventLog::AUDIO_RECEIVER_CONFIG_EVENT && |
| event_type != ParsedRtcEventLog::AUDIO_SENDER_CONFIG_EVENT && |
| event_type != ParsedRtcEventLog::LOG_START && |
| event_type != ParsedRtcEventLog::LOG_END) { |
| uint64_t timestamp = parsed_log_.GetTimestamp(i); |
| first_timestamp = std::min(first_timestamp, timestamp); |
| last_timestamp = std::max(last_timestamp, timestamp); |
| } |
| |
| switch (parsed_log_.GetEventType(i)) { |
| case ParsedRtcEventLog::VIDEO_RECEIVER_CONFIG_EVENT: { |
| VideoReceiveStream::Config config(nullptr); |
| parsed_log_.GetVideoReceiveConfig(i, &config); |
| StreamId stream(config.rtp.remote_ssrc, kIncomingPacket); |
| RegisterHeaderExtensions(config.rtp.extensions, |
| &extension_maps[stream]); |
| video_ssrcs_.insert(stream); |
| for (auto kv : config.rtp.rtx) { |
| StreamId rtx_stream(kv.second.ssrc, kIncomingPacket); |
| RegisterHeaderExtensions(config.rtp.extensions, |
| &extension_maps[rtx_stream]); |
| video_ssrcs_.insert(rtx_stream); |
| rtx_ssrcs_.insert(rtx_stream); |
| } |
| break; |
| } |
| case ParsedRtcEventLog::VIDEO_SENDER_CONFIG_EVENT: { |
| VideoSendStream::Config config(nullptr); |
| parsed_log_.GetVideoSendConfig(i, &config); |
| for (auto ssrc : config.rtp.ssrcs) { |
| StreamId stream(ssrc, kOutgoingPacket); |
| RegisterHeaderExtensions(config.rtp.extensions, |
| &extension_maps[stream]); |
| video_ssrcs_.insert(stream); |
| } |
| for (auto ssrc : config.rtp.rtx.ssrcs) { |
| StreamId rtx_stream(ssrc, kOutgoingPacket); |
| RegisterHeaderExtensions(config.rtp.extensions, |
| &extension_maps[rtx_stream]); |
| video_ssrcs_.insert(rtx_stream); |
| rtx_ssrcs_.insert(rtx_stream); |
| } |
| break; |
| } |
| case ParsedRtcEventLog::AUDIO_RECEIVER_CONFIG_EVENT: { |
| AudioReceiveStream::Config config; |
| // TODO(terelius): Parse the audio configs once we have them. |
| break; |
| } |
| case ParsedRtcEventLog::AUDIO_SENDER_CONFIG_EVENT: { |
| AudioSendStream::Config config(nullptr); |
| // TODO(terelius): Parse the audio configs once we have them. |
| break; |
| } |
| case ParsedRtcEventLog::RTP_EVENT: { |
| MediaType media_type; |
| parsed_log_.GetRtpHeader(i, &direction, &media_type, header, |
| &header_length, &total_length); |
| // Parse header to get SSRC. |
| RtpUtility::RtpHeaderParser rtp_parser(header, header_length); |
| RTPHeader parsed_header; |
| rtp_parser.Parse(&parsed_header); |
| StreamId stream(parsed_header.ssrc, direction); |
| // Look up the extension_map and parse it again to get the extensions. |
| if (extension_maps.count(stream) == 1) { |
| RtpHeaderExtensionMap* extension_map = &extension_maps[stream]; |
| rtp_parser.Parse(&parsed_header, extension_map); |
| } |
| uint64_t timestamp = parsed_log_.GetTimestamp(i); |
| rtp_packets_[stream].push_back( |
| LoggedRtpPacket(timestamp, parsed_header, total_length)); |
| break; |
| } |
| case ParsedRtcEventLog::RTCP_EVENT: { |
| uint8_t packet[IP_PACKET_SIZE]; |
| MediaType media_type; |
| parsed_log_.GetRtcpPacket(i, &direction, &media_type, packet, |
| &total_length); |
| |
| RtpUtility::RtpHeaderParser rtp_parser(packet, total_length); |
| RTPHeader parsed_header; |
| RTC_CHECK(rtp_parser.ParseRtcp(&parsed_header)); |
| uint32_t ssrc = parsed_header.ssrc; |
| |
| RTCPUtility::RTCPParserV2 rtcp_parser(packet, total_length, true); |
| RTC_CHECK(rtcp_parser.IsValid()); |
| |
| RTCPUtility::RTCPPacketTypes packet_type = rtcp_parser.Begin(); |
| while (packet_type != RTCPUtility::RTCPPacketTypes::kInvalid) { |
| switch (packet_type) { |
| case RTCPUtility::RTCPPacketTypes::kTransportFeedback: { |
| // Currently feedback is logged twice, both for audio and video. |
| // Only act on one of them. |
| if (media_type == MediaType::VIDEO) { |
| std::unique_ptr<rtcp::RtcpPacket> rtcp_packet( |
| rtcp_parser.ReleaseRtcpPacket()); |
| StreamId stream(ssrc, direction); |
| uint64_t timestamp = parsed_log_.GetTimestamp(i); |
| rtcp_packets_[stream].push_back(LoggedRtcpPacket( |
| timestamp, kRtcpTransportFeedback, std::move(rtcp_packet))); |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| rtcp_parser.Iterate(); |
| packet_type = rtcp_parser.PacketType(); |
| } |
| break; |
| } |
| case ParsedRtcEventLog::LOG_START: { |
| break; |
| } |
| case ParsedRtcEventLog::LOG_END: { |
| break; |
| } |
| case ParsedRtcEventLog::BWE_PACKET_LOSS_EVENT: { |
| BwePacketLossEvent bwe_update; |
| bwe_update.timestamp = parsed_log_.GetTimestamp(i); |
| parsed_log_.GetBwePacketLossEvent(i, &bwe_update.new_bitrate, |
| &bwe_update.fraction_loss, |
| &bwe_update.expected_packets); |
| bwe_loss_updates_.push_back(bwe_update); |
| break; |
| } |
| case ParsedRtcEventLog::BWE_PACKET_DELAY_EVENT: { |
| break; |
| } |
| case ParsedRtcEventLog::AUDIO_PLAYOUT_EVENT: { |
| break; |
| } |
| case ParsedRtcEventLog::UNKNOWN_EVENT: { |
| break; |
| } |
| } |
| } |
| |
| if (last_timestamp < first_timestamp) { |
| // No useful events in the log. |
| first_timestamp = last_timestamp = 0; |
| } |
| begin_time_ = first_timestamp; |
| end_time_ = last_timestamp; |
| call_duration_s_ = static_cast<float>(end_time_ - begin_time_) / 1000000; |
| } |
| |
| class BitrateObserver : public CongestionController::Observer, |
| public RemoteBitrateObserver { |
| public: |
| BitrateObserver() : last_bitrate_bps_(0), bitrate_updated_(false) {} |
| |
| void OnNetworkChanged(uint32_t bitrate_bps, |
| uint8_t fraction_loss, |
| int64_t rtt_ms) override { |
| last_bitrate_bps_ = bitrate_bps; |
| bitrate_updated_ = true; |
| } |
| |
| void OnReceiveBitrateChanged(const std::vector<uint32_t>& ssrcs, |
| uint32_t bitrate) override {} |
| |
| uint32_t last_bitrate_bps() const { return last_bitrate_bps_; } |
| bool GetAndResetBitrateUpdated() { |
| bool bitrate_updated = bitrate_updated_; |
| bitrate_updated_ = false; |
| return bitrate_updated; |
| } |
| |
| private: |
| uint32_t last_bitrate_bps_; |
| bool bitrate_updated_; |
| }; |
| |
| bool EventLogAnalyzer::IsRtxSsrc(StreamId stream_id) const { |
| return rtx_ssrcs_.count(stream_id) == 1; |
| } |
| |
| bool EventLogAnalyzer::IsVideoSsrc(StreamId stream_id) const { |
| return video_ssrcs_.count(stream_id) == 1; |
| } |
| |
| bool EventLogAnalyzer::IsAudioSsrc(StreamId stream_id) const { |
| return audio_ssrcs_.count(stream_id) == 1; |
| } |
| |
| std::string EventLogAnalyzer::GetStreamName(StreamId stream_id) const { |
| std::stringstream name; |
| if (IsAudioSsrc(stream_id)) { |
| name << "Audio "; |
| } else if (IsVideoSsrc(stream_id)) { |
| name << "Video "; |
| } else { |
| name << "Unknown "; |
| } |
| if (IsRtxSsrc(stream_id)) |
| name << "RTX "; |
| name << SsrcToString(stream_id.GetSsrc()); |
| return name.str(); |
| } |
| |
| void EventLogAnalyzer::CreatePacketGraph(PacketDirection desired_direction, |
| Plot* plot) { |
| for (auto& kv : rtp_packets_) { |
| StreamId stream_id = kv.first; |
| const std::vector<LoggedRtpPacket>& packet_stream = kv.second; |
| // Filter on direction and SSRC. |
| if (stream_id.GetDirection() != desired_direction || |
| !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) { |
| continue; |
| } |
| |
| TimeSeries time_series; |
| time_series.label = GetStreamName(stream_id); |
| time_series.style = BAR_GRAPH; |
| Pointwise<PacketSizeBytes>(packet_stream, begin_time_, &time_series); |
| plot->series_list_.push_back(std::move(time_series)); |
| } |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "Packet size (bytes)", kBottomMargin, |
| kTopMargin); |
| if (desired_direction == webrtc::PacketDirection::kIncomingPacket) { |
| plot->SetTitle("Incoming RTP packets"); |
| } else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) { |
| plot->SetTitle("Outgoing RTP packets"); |
| } |
| } |
| |
| template <typename T> |
| void EventLogAnalyzer::CreateAccumulatedPacketsTimeSeries( |
| PacketDirection desired_direction, |
| Plot* plot, |
| const std::map<StreamId, std::vector<T>>& packets, |
| const std::string& label_prefix) { |
| for (auto& kv : packets) { |
| StreamId stream_id = kv.first; |
| const std::vector<T>& packet_stream = kv.second; |
| // Filter on direction and SSRC. |
| if (stream_id.GetDirection() != desired_direction || |
| !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) { |
| continue; |
| } |
| |
| TimeSeries time_series; |
| time_series.label = label_prefix + " " + GetStreamName(stream_id); |
| time_series.style = LINE_GRAPH; |
| |
| for (size_t i = 0; i < packet_stream.size(); i++) { |
| float x = static_cast<float>(packet_stream[i].timestamp - begin_time_) / |
| 1000000; |
| time_series.points.emplace_back(x, i); |
| time_series.points.emplace_back(x, i + 1); |
| } |
| |
| plot->series_list_.push_back(std::move(time_series)); |
| } |
| } |
| |
| void EventLogAnalyzer::CreateAccumulatedPacketsGraph( |
| PacketDirection desired_direction, |
| Plot* plot) { |
| CreateAccumulatedPacketsTimeSeries(desired_direction, plot, rtp_packets_, |
| "RTP"); |
| CreateAccumulatedPacketsTimeSeries(desired_direction, plot, rtcp_packets_, |
| "RTCP"); |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "Received Packets", kBottomMargin, kTopMargin); |
| if (desired_direction == webrtc::PacketDirection::kIncomingPacket) { |
| plot->SetTitle("Accumulated Incoming RTP/RTCP packets"); |
| } else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) { |
| plot->SetTitle("Accumulated Outgoing RTP/RTCP packets"); |
| } |
| } |
| |
| // For each SSRC, plot the time between the consecutive playouts. |
| void EventLogAnalyzer::CreatePlayoutGraph(Plot* plot) { |
| std::map<uint32_t, TimeSeries> time_series; |
| std::map<uint32_t, uint64_t> last_playout; |
| |
| uint32_t ssrc; |
| |
| for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { |
| ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); |
| if (event_type == ParsedRtcEventLog::AUDIO_PLAYOUT_EVENT) { |
| parsed_log_.GetAudioPlayout(i, &ssrc); |
| uint64_t timestamp = parsed_log_.GetTimestamp(i); |
| if (MatchingSsrc(ssrc, desired_ssrc_)) { |
| float x = static_cast<float>(timestamp - begin_time_) / 1000000; |
| float y = static_cast<float>(timestamp - last_playout[ssrc]) / 1000; |
| if (time_series[ssrc].points.size() == 0) { |
| // There were no previusly logged playout for this SSRC. |
| // Generate a point, but place it on the x-axis. |
| y = 0; |
| } |
| time_series[ssrc].points.push_back(TimeSeriesPoint(x, y)); |
| last_playout[ssrc] = timestamp; |
| } |
| } |
| } |
| |
| // Set labels and put in graph. |
| for (auto& kv : time_series) { |
| kv.second.label = SsrcToString(kv.first); |
| kv.second.style = BAR_GRAPH; |
| plot->series_list_.push_back(std::move(kv.second)); |
| } |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "Time since last playout (ms)", kBottomMargin, |
| kTopMargin); |
| plot->SetTitle("Audio playout"); |
| } |
| |
| // For each SSRC, plot the time between the consecutive playouts. |
| void EventLogAnalyzer::CreateSequenceNumberGraph(Plot* plot) { |
| for (auto& kv : rtp_packets_) { |
| StreamId stream_id = kv.first; |
| const std::vector<LoggedRtpPacket>& packet_stream = kv.second; |
| // Filter on direction and SSRC. |
| if (stream_id.GetDirection() != kIncomingPacket || |
| !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) { |
| continue; |
| } |
| |
| TimeSeries time_series; |
| time_series.label = GetStreamName(stream_id); |
| time_series.style = BAR_GRAPH; |
| Pairwise<SequenceNumberDiff>(packet_stream, begin_time_, &time_series); |
| plot->series_list_.push_back(std::move(time_series)); |
| } |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "Difference since last packet", kBottomMargin, |
| kTopMargin); |
| plot->SetTitle("Sequence number"); |
| } |
| |
| void EventLogAnalyzer::CreateIncomingPacketLossGraph(Plot* plot) { |
| for (auto& kv : rtp_packets_) { |
| StreamId stream_id = kv.first; |
| const std::vector<LoggedRtpPacket>& packet_stream = kv.second; |
| // Filter on direction and SSRC. |
| if (stream_id.GetDirection() != kIncomingPacket || |
| !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) { |
| continue; |
| } |
| |
| TimeSeries time_series; |
| time_series.label = GetStreamName(stream_id); |
| time_series.style = LINE_DOT_GRAPH; |
| const uint64_t kWindowUs = 1000000; |
| const LoggedRtpPacket* first_in_window = &packet_stream.front(); |
| const LoggedRtpPacket* last_in_window = &packet_stream.front(); |
| int packets_in_window = 0; |
| for (const LoggedRtpPacket& packet : packet_stream) { |
| if (packet.timestamp > first_in_window->timestamp + kWindowUs) { |
| uint16_t expected_num_packets = last_in_window->header.sequenceNumber - |
| first_in_window->header.sequenceNumber + 1; |
| float fraction_lost = (expected_num_packets - packets_in_window) / |
| static_cast<float>(expected_num_packets); |
| float y = fraction_lost * 100; |
| float x = |
| static_cast<float>(last_in_window->timestamp - begin_time_) / |
| 1000000; |
| time_series.points.emplace_back(x, y); |
| first_in_window = &packet; |
| last_in_window = &packet; |
| packets_in_window = 1; |
| continue; |
| } |
| ++packets_in_window; |
| last_in_window = &packet; |
| } |
| plot->series_list_.push_back(std::move(time_series)); |
| } |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "Estimated loss rate (%)", kBottomMargin, |
| kTopMargin); |
| plot->SetTitle("Estimated incoming loss rate"); |
| } |
| |
| void EventLogAnalyzer::CreateDelayChangeGraph(Plot* plot) { |
| for (auto& kv : rtp_packets_) { |
| StreamId stream_id = kv.first; |
| const std::vector<LoggedRtpPacket>& packet_stream = kv.second; |
| // Filter on direction and SSRC. |
| if (stream_id.GetDirection() != kIncomingPacket || |
| !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_) || |
| IsAudioSsrc(stream_id) || !IsVideoSsrc(stream_id) || |
| IsRtxSsrc(stream_id)) { |
| continue; |
| } |
| |
| TimeSeries capture_time_data; |
| capture_time_data.label = GetStreamName(stream_id) + " capture-time"; |
| capture_time_data.style = BAR_GRAPH; |
| Pairwise<NetworkDelayDiff::CaptureTime>(packet_stream, begin_time_, |
| &capture_time_data); |
| plot->series_list_.push_back(std::move(capture_time_data)); |
| |
| TimeSeries send_time_data; |
| send_time_data.label = GetStreamName(stream_id) + " abs-send-time"; |
| send_time_data.style = BAR_GRAPH; |
| Pairwise<NetworkDelayDiff::AbsSendTime>(packet_stream, begin_time_, |
| &send_time_data); |
| plot->series_list_.push_back(std::move(send_time_data)); |
| } |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "Latency change (ms)", kBottomMargin, |
| kTopMargin); |
| plot->SetTitle("Network latency change between consecutive packets"); |
| } |
| |
| void EventLogAnalyzer::CreateAccumulatedDelayChangeGraph(Plot* plot) { |
| for (auto& kv : rtp_packets_) { |
| StreamId stream_id = kv.first; |
| const std::vector<LoggedRtpPacket>& packet_stream = kv.second; |
| // Filter on direction and SSRC. |
| if (stream_id.GetDirection() != kIncomingPacket || |
| !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_) || |
| IsAudioSsrc(stream_id) || !IsVideoSsrc(stream_id) || |
| IsRtxSsrc(stream_id)) { |
| continue; |
| } |
| |
| TimeSeries capture_time_data; |
| capture_time_data.label = GetStreamName(stream_id) + " capture-time"; |
| capture_time_data.style = LINE_GRAPH; |
| Pairwise<Accumulated<NetworkDelayDiff::CaptureTime>>( |
| packet_stream, begin_time_, &capture_time_data); |
| plot->series_list_.push_back(std::move(capture_time_data)); |
| |
| TimeSeries send_time_data; |
| send_time_data.label = GetStreamName(stream_id) + " abs-send-time"; |
| send_time_data.style = LINE_GRAPH; |
| Pairwise<Accumulated<NetworkDelayDiff::AbsSendTime>>( |
| packet_stream, begin_time_, &send_time_data); |
| plot->series_list_.push_back(std::move(send_time_data)); |
| } |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "Latency change (ms)", kBottomMargin, |
| kTopMargin); |
| plot->SetTitle("Accumulated network latency change"); |
| } |
| |
| // Plot the fraction of packets lost (as perceived by the loss-based BWE). |
| void EventLogAnalyzer::CreateFractionLossGraph(Plot* plot) { |
| plot->series_list_.push_back(TimeSeries()); |
| for (auto& bwe_update : bwe_loss_updates_) { |
| float x = static_cast<float>(bwe_update.timestamp - begin_time_) / 1000000; |
| float y = static_cast<float>(bwe_update.fraction_loss) / 255 * 100; |
| plot->series_list_.back().points.emplace_back(x, y); |
| } |
| plot->series_list_.back().label = "Fraction lost"; |
| plot->series_list_.back().style = LINE_DOT_GRAPH; |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 10, "Percent lost packets", kBottomMargin, |
| kTopMargin); |
| plot->SetTitle("Reported packet loss"); |
| } |
| |
| // Plot the total bandwidth used by all RTP streams. |
| void EventLogAnalyzer::CreateTotalBitrateGraph( |
| PacketDirection desired_direction, |
| Plot* plot) { |
| struct TimestampSize { |
| TimestampSize(uint64_t t, size_t s) : timestamp(t), size(s) {} |
| uint64_t timestamp; |
| size_t size; |
| }; |
| std::vector<TimestampSize> packets; |
| |
| PacketDirection direction; |
| size_t total_length; |
| |
| // Extract timestamps and sizes for the relevant packets. |
| for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { |
| ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); |
| if (event_type == ParsedRtcEventLog::RTP_EVENT) { |
| parsed_log_.GetRtpHeader(i, &direction, nullptr, nullptr, nullptr, |
| &total_length); |
| if (direction == desired_direction) { |
| uint64_t timestamp = parsed_log_.GetTimestamp(i); |
| packets.push_back(TimestampSize(timestamp, total_length)); |
| } |
| } |
| } |
| |
| size_t window_index_begin = 0; |
| size_t window_index_end = 0; |
| size_t bytes_in_window = 0; |
| |
| // Calculate a moving average of the bitrate and store in a TimeSeries. |
| plot->series_list_.push_back(TimeSeries()); |
| for (uint64_t time = begin_time_; time < end_time_ + step_; time += step_) { |
| while (window_index_end < packets.size() && |
| packets[window_index_end].timestamp < time) { |
| bytes_in_window += packets[window_index_end].size; |
| ++window_index_end; |
| } |
| while (window_index_begin < packets.size() && |
| packets[window_index_begin].timestamp < time - window_duration_) { |
| RTC_DCHECK_LE(packets[window_index_begin].size, bytes_in_window); |
| bytes_in_window -= packets[window_index_begin].size; |
| ++window_index_begin; |
| } |
| float window_duration_in_seconds = |
| static_cast<float>(window_duration_) / 1000000; |
| float x = static_cast<float>(time - begin_time_) / 1000000; |
| float y = bytes_in_window * 8 / window_duration_in_seconds / 1000; |
| plot->series_list_.back().points.push_back(TimeSeriesPoint(x, y)); |
| } |
| |
| // Set labels. |
| if (desired_direction == webrtc::PacketDirection::kIncomingPacket) { |
| plot->series_list_.back().label = "Incoming bitrate"; |
| } else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) { |
| plot->series_list_.back().label = "Outgoing bitrate"; |
| } |
| plot->series_list_.back().style = LINE_GRAPH; |
| |
| // Overlay the send-side bandwidth estimate over the outgoing bitrate. |
| if (desired_direction == kOutgoingPacket) { |
| plot->series_list_.push_back(TimeSeries()); |
| for (auto& bwe_update : bwe_loss_updates_) { |
| float x = |
| static_cast<float>(bwe_update.timestamp - begin_time_) / 1000000; |
| float y = static_cast<float>(bwe_update.new_bitrate) / 1000; |
| plot->series_list_.back().points.emplace_back(x, y); |
| } |
| plot->series_list_.back().label = "Loss-based estimate"; |
| plot->series_list_.back().style = LINE_GRAPH; |
| } |
| plot->series_list_.back().style = LINE_GRAPH; |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin); |
| if (desired_direction == webrtc::PacketDirection::kIncomingPacket) { |
| plot->SetTitle("Incoming RTP bitrate"); |
| } else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) { |
| plot->SetTitle("Outgoing RTP bitrate"); |
| } |
| } |
| |
| // For each SSRC, plot the bandwidth used by that stream. |
| void EventLogAnalyzer::CreateStreamBitrateGraph( |
| PacketDirection desired_direction, |
| Plot* plot) { |
| for (auto& kv : rtp_packets_) { |
| StreamId stream_id = kv.first; |
| const std::vector<LoggedRtpPacket>& packet_stream = kv.second; |
| // Filter on direction and SSRC. |
| if (stream_id.GetDirection() != desired_direction || |
| !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) { |
| continue; |
| } |
| |
| TimeSeries time_series; |
| time_series.label = GetStreamName(stream_id); |
| time_series.style = LINE_GRAPH; |
| double bytes_to_kilobits = 8.0 / 1000; |
| MovingAverage<PacketSizeBytes>(packet_stream, begin_time_, end_time_, |
| window_duration_, step_, bytes_to_kilobits, |
| &time_series); |
| plot->series_list_.push_back(std::move(time_series)); |
| } |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin); |
| if (desired_direction == webrtc::PacketDirection::kIncomingPacket) { |
| plot->SetTitle("Incoming bitrate per stream"); |
| } else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) { |
| plot->SetTitle("Outgoing bitrate per stream"); |
| } |
| } |
| |
| void EventLogAnalyzer::CreateBweSimulationGraph(Plot* plot) { |
| std::map<uint64_t, const LoggedRtpPacket*> outgoing_rtp; |
| std::map<uint64_t, const LoggedRtcpPacket*> incoming_rtcp; |
| |
| for (const auto& kv : rtp_packets_) { |
| if (kv.first.GetDirection() == PacketDirection::kOutgoingPacket) { |
| for (const LoggedRtpPacket& rtp_packet : kv.second) |
| outgoing_rtp.insert(std::make_pair(rtp_packet.timestamp, &rtp_packet)); |
| } |
| } |
| |
| for (const auto& kv : rtcp_packets_) { |
| if (kv.first.GetDirection() == PacketDirection::kIncomingPacket) { |
| for (const LoggedRtcpPacket& rtcp_packet : kv.second) |
| incoming_rtcp.insert( |
| std::make_pair(rtcp_packet.timestamp, &rtcp_packet)); |
| } |
| } |
| |
| SimulatedClock clock(0); |
| BitrateObserver observer; |
| RtcEventLogNullImpl null_event_log; |
| CongestionController cc(&clock, &observer, &observer, &null_event_log); |
| // TODO(holmer): Log the call config and use that here instead. |
| static const uint32_t kDefaultStartBitrateBps = 300000; |
| cc.SetBweBitrates(0, kDefaultStartBitrateBps, -1); |
| |
| TimeSeries time_series; |
| time_series.label = "Delay-based estimate"; |
| time_series.style = LINE_DOT_GRAPH; |
| TimeSeries acked_time_series; |
| acked_time_series.label = "Acked bitrate"; |
| acked_time_series.style = LINE_DOT_GRAPH; |
| |
| auto rtp_iterator = outgoing_rtp.begin(); |
| auto rtcp_iterator = incoming_rtcp.begin(); |
| |
| auto NextRtpTime = [&]() { |
| if (rtp_iterator != outgoing_rtp.end()) |
| return static_cast<int64_t>(rtp_iterator->first); |
| return std::numeric_limits<int64_t>::max(); |
| }; |
| |
| auto NextRtcpTime = [&]() { |
| if (rtcp_iterator != incoming_rtcp.end()) |
| return static_cast<int64_t>(rtcp_iterator->first); |
| return std::numeric_limits<int64_t>::max(); |
| }; |
| |
| auto NextProcessTime = [&]() { |
| if (rtcp_iterator != incoming_rtcp.end() || |
| rtp_iterator != outgoing_rtp.end()) { |
| return clock.TimeInMicroseconds() + |
| std::max<int64_t>(cc.TimeUntilNextProcess() * 1000, 0); |
| } |
| return std::numeric_limits<int64_t>::max(); |
| }; |
| |
| RateStatistics acked_bitrate(1000, 8000); |
| |
| int64_t time_us = std::min(NextRtpTime(), NextRtcpTime()); |
| while (time_us != std::numeric_limits<int64_t>::max()) { |
| clock.AdvanceTimeMicroseconds(time_us - clock.TimeInMicroseconds()); |
| if (clock.TimeInMicroseconds() >= NextRtcpTime()) { |
| RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtcpTime()); |
| const LoggedRtcpPacket& rtcp = *rtcp_iterator->second; |
| if (rtcp.type == kRtcpTransportFeedback) { |
| TransportFeedbackObserver* observer = cc.GetTransportFeedbackObserver(); |
| observer->OnTransportFeedback(*static_cast<rtcp::TransportFeedback*>( |
| rtcp.packet.get())); |
| std::vector<PacketInfo> feedback = |
| observer->GetTransportFeedbackVector(); |
| rtc::Optional<uint32_t> bitrate_bps; |
| if (!feedback.empty()) { |
| for (const PacketInfo& packet : feedback) |
| acked_bitrate.Update(packet.payload_size, packet.arrival_time_ms); |
| bitrate_bps = acked_bitrate.Rate(feedback.back().arrival_time_ms); |
| } |
| uint32_t y = 0; |
| if (bitrate_bps) |
| y = *bitrate_bps / 1000; |
| float x = static_cast<float>(clock.TimeInMicroseconds() - begin_time_) / |
| 1000000; |
| acked_time_series.points.emplace_back(x, y); |
| } |
| ++rtcp_iterator; |
| } |
| if (clock.TimeInMicroseconds() >= NextRtpTime()) { |
| RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtpTime()); |
| const LoggedRtpPacket& rtp = *rtp_iterator->second; |
| if (rtp.header.extension.hasTransportSequenceNumber) { |
| RTC_DCHECK(rtp.header.extension.hasTransportSequenceNumber); |
| cc.GetTransportFeedbackObserver()->AddPacket( |
| rtp.header.extension.transportSequenceNumber, rtp.total_length, |
| PacketInfo::kNotAProbe); |
| rtc::SentPacket sent_packet( |
| rtp.header.extension.transportSequenceNumber, rtp.timestamp / 1000); |
| cc.OnSentPacket(sent_packet); |
| } |
| ++rtp_iterator; |
| } |
| if (clock.TimeInMicroseconds() >= NextProcessTime()) { |
| RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextProcessTime()); |
| cc.Process(); |
| } |
| if (observer.GetAndResetBitrateUpdated()) { |
| uint32_t y = observer.last_bitrate_bps() / 1000; |
| float x = static_cast<float>(clock.TimeInMicroseconds() - begin_time_) / |
| 1000000; |
| time_series.points.emplace_back(x, y); |
| } |
| time_us = std::min({NextRtpTime(), NextRtcpTime(), NextProcessTime()}); |
| } |
| // Add the data set to the plot. |
| plot->series_list_.push_back(std::move(time_series)); |
| plot->series_list_.push_back(std::move(acked_time_series)); |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 10, "Bitrate (kbps)", kBottomMargin, kTopMargin); |
| plot->SetTitle("Simulated BWE behavior"); |
| } |
| |
| void EventLogAnalyzer::CreateNetworkDelayFeedbackGraph(Plot* plot) { |
| std::map<uint64_t, const LoggedRtpPacket*> outgoing_rtp; |
| std::map<uint64_t, const LoggedRtcpPacket*> incoming_rtcp; |
| |
| for (const auto& kv : rtp_packets_) { |
| if (kv.first.GetDirection() == PacketDirection::kOutgoingPacket) { |
| for (const LoggedRtpPacket& rtp_packet : kv.second) |
| outgoing_rtp.insert(std::make_pair(rtp_packet.timestamp, &rtp_packet)); |
| } |
| } |
| |
| for (const auto& kv : rtcp_packets_) { |
| if (kv.first.GetDirection() == PacketDirection::kIncomingPacket) { |
| for (const LoggedRtcpPacket& rtcp_packet : kv.second) |
| incoming_rtcp.insert( |
| std::make_pair(rtcp_packet.timestamp, &rtcp_packet)); |
| } |
| } |
| |
| SimulatedClock clock(0); |
| TransportFeedbackAdapter feedback_adapter(&clock); |
| |
| TimeSeries time_series; |
| time_series.label = "Network Delay Change"; |
| time_series.style = LINE_DOT_GRAPH; |
| int64_t estimated_base_delay_ms = std::numeric_limits<int64_t>::max(); |
| |
| auto rtp_iterator = outgoing_rtp.begin(); |
| auto rtcp_iterator = incoming_rtcp.begin(); |
| |
| auto NextRtpTime = [&]() { |
| if (rtp_iterator != outgoing_rtp.end()) |
| return static_cast<int64_t>(rtp_iterator->first); |
| return std::numeric_limits<int64_t>::max(); |
| }; |
| |
| auto NextRtcpTime = [&]() { |
| if (rtcp_iterator != incoming_rtcp.end()) |
| return static_cast<int64_t>(rtcp_iterator->first); |
| return std::numeric_limits<int64_t>::max(); |
| }; |
| |
| int64_t time_us = std::min(NextRtpTime(), NextRtcpTime()); |
| while (time_us != std::numeric_limits<int64_t>::max()) { |
| clock.AdvanceTimeMicroseconds(time_us - clock.TimeInMicroseconds()); |
| if (clock.TimeInMicroseconds() >= NextRtcpTime()) { |
| RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtcpTime()); |
| const LoggedRtcpPacket& rtcp = *rtcp_iterator->second; |
| if (rtcp.type == kRtcpTransportFeedback) { |
| feedback_adapter.OnTransportFeedback( |
| *static_cast<rtcp::TransportFeedback*>(rtcp.packet.get())); |
| std::vector<PacketInfo> feedback = |
| feedback_adapter.GetTransportFeedbackVector(); |
| for (const PacketInfo& packet : feedback) { |
| int64_t y = packet.arrival_time_ms - packet.send_time_ms; |
| float x = |
| static_cast<float>(clock.TimeInMicroseconds() - begin_time_) / |
| 1000000; |
| estimated_base_delay_ms = std::min(y, estimated_base_delay_ms); |
| time_series.points.emplace_back(x, y); |
| } |
| } |
| ++rtcp_iterator; |
| } |
| if (clock.TimeInMicroseconds() >= NextRtpTime()) { |
| RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtpTime()); |
| const LoggedRtpPacket& rtp = *rtp_iterator->second; |
| if (rtp.header.extension.hasTransportSequenceNumber) { |
| RTC_DCHECK(rtp.header.extension.hasTransportSequenceNumber); |
| feedback_adapter.AddPacket(rtp.header.extension.transportSequenceNumber, |
| rtp.total_length, 0); |
| feedback_adapter.OnSentPacket( |
| rtp.header.extension.transportSequenceNumber, rtp.timestamp / 1000); |
| } |
| ++rtp_iterator; |
| } |
| time_us = std::min(NextRtpTime(), NextRtcpTime()); |
| } |
| // We assume that the base network delay (w/o queues) is the min delay |
| // observed during the call. |
| for (TimeSeriesPoint& point : time_series.points) |
| point.y -= estimated_base_delay_ms; |
| // Add the data set to the plot. |
| plot->series_list_.push_back(std::move(time_series)); |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 10, "Delay (ms)", kBottomMargin, kTopMargin); |
| plot->SetTitle("Network Delay Change."); |
| } |
| } // namespace plotting |
| } // namespace webrtc |