blob: 7d9f3a9fceccec66824241e7cd51a30207d6aa3c [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_coding/neteq/decision_logic.h"
#include <stdio.h>
#include <cstdint>
#include <memory>
#include <optional>
#include "api/neteq/neteq.h"
#include "api/neteq/neteq_controller.h"
#include "modules/audio_coding/neteq/packet_arrival_history.h"
#include "modules/audio_coding/neteq/packet_buffer.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
namespace webrtc {
namespace {
constexpr int kPostponeDecodingLevel = 50;
constexpr int kTargetLevelWindowMs = 100;
// The granularity of delay adjustments (accelerate/preemptive expand) is 15ms,
// but round up since the clock has a granularity of 10ms.
constexpr int kDelayAdjustmentGranularityMs = 20;
constexpr int kPacketHistorySizeMs = 2000;
constexpr size_t kCngTimeoutMs = 1000;
std::unique_ptr<DelayManager> CreateDelayManager(
const Environment& env,
const NetEqController::Config& neteq_config) {
DelayManager::Config config(env.field_trials());
config.max_packets_in_buffer = neteq_config.max_packets_in_buffer;
config.base_minimum_delay_ms = neteq_config.base_min_delay_ms;
config.Log();
return std::make_unique<DelayManager>(config, neteq_config.tick_timer);
}
bool IsTimestretch(NetEq::Mode mode) {
return mode == NetEq::Mode::kAccelerateSuccess ||
mode == NetEq::Mode::kAccelerateLowEnergy ||
mode == NetEq::Mode::kPreemptiveExpandSuccess ||
mode == NetEq::Mode::kPreemptiveExpandLowEnergy;
}
bool IsCng(NetEq::Mode mode) {
return mode == NetEq::Mode::kRfc3389Cng ||
mode == NetEq::Mode::kCodecInternalCng;
}
bool IsExpand(NetEq::Mode mode) {
return mode == NetEq::Mode::kExpand || mode == NetEq::Mode::kCodecPlc;
}
} // namespace
DecisionLogic::DecisionLogic(const Environment& env,
NetEqController::Config config)
: DecisionLogic(config,
CreateDelayManager(env, config),
std::make_unique<BufferLevelFilter>()) {}
DecisionLogic::DecisionLogic(
NetEqController::Config config,
std::unique_ptr<DelayManager> delay_manager,
std::unique_ptr<BufferLevelFilter> buffer_level_filter,
std::unique_ptr<PacketArrivalHistory> packet_arrival_history)
: delay_manager_(std::move(delay_manager)),
buffer_level_filter_(std::move(buffer_level_filter)),
packet_arrival_history_(
packet_arrival_history
? std::move(packet_arrival_history)
: std::make_unique<PacketArrivalHistory>(config.tick_timer,
kPacketHistorySizeMs)),
tick_timer_(config.tick_timer),
disallow_time_stretching_(!config.allow_time_stretching),
timescale_countdown_(
tick_timer_->GetNewCountdown(kMinTimescaleInterval + 1)) {}
DecisionLogic::~DecisionLogic() = default;
void DecisionLogic::SoftReset() {
packet_length_samples_ = 0;
sample_memory_ = 0;
prev_time_scale_ = false;
timescale_countdown_ =
tick_timer_->GetNewCountdown(kMinTimescaleInterval + 1);
time_stretched_cn_samples_ = 0;
delay_manager_->Reset();
buffer_level_filter_->Reset();
packet_arrival_history_->Reset();
}
void DecisionLogic::SetSampleRate(int fs_hz, size_t output_size_samples) {
// TODO(hlundin): Change to an enumerator and skip assert.
RTC_DCHECK(fs_hz == 8000 || fs_hz == 16000 || fs_hz == 32000 ||
fs_hz == 48000);
sample_rate_khz_ = fs_hz / 1000;
output_size_samples_ = output_size_samples;
packet_arrival_history_->set_sample_rate(fs_hz);
}
NetEq::Operation DecisionLogic::GetDecision(const NetEqStatus& status,
bool* reset_decoder) {
prev_time_scale_ = prev_time_scale_ && IsTimestretch(status.last_mode);
if (prev_time_scale_) {
timescale_countdown_ = tick_timer_->GetNewCountdown(kMinTimescaleInterval);
}
if (!IsCng(status.last_mode) && !IsExpand(status.last_mode)) {
FilterBufferLevel(status.packet_buffer_info.span_samples);
}
// Guard for errors, to avoid getting stuck in error mode.
if (status.last_mode == NetEq::Mode::kError) {
if (!status.next_packet) {
return NetEq::Operation::kExpand;
} else {
// Use kUndefined to flag for a reset.
return NetEq::Operation::kUndefined;
}
}
if (status.next_packet && status.next_packet->is_cng) {
return CngOperation(status);
}
// Handle the case with no packet at all available (except maybe DTMF).
if (!status.next_packet) {
return NoPacket(status);
}
if (PostponeDecode(status)) {
return NoPacket(status);
}
const uint32_t five_seconds_samples =
static_cast<uint32_t>(5000 * sample_rate_khz_);
// Check if the required packet is available.
if (status.target_timestamp == status.next_packet->timestamp) {
return ExpectedPacketAvailable(status);
}
if (!PacketBuffer::IsObsoleteTimestamp(status.next_packet->timestamp,
status.target_timestamp,
five_seconds_samples)) {
return FuturePacketAvailable(status);
}
// This implies that available_timestamp < target_timestamp, which can
// happen when a new stream or codec is received. Signal for a reset.
return NetEq::Operation::kUndefined;
}
int DecisionLogic::TargetLevelMs() const {
return delay_manager_->TargetDelayMs();
}
int DecisionLogic::UnlimitedTargetLevelMs() const {
return delay_manager_->UnlimitedTargetLevelMs();
}
int DecisionLogic::GetFilteredBufferLevel() const {
return buffer_level_filter_->filtered_current_level();
}
std::optional<int> DecisionLogic::PacketArrived(int fs_hz,
bool should_update_stats,
const PacketArrivedInfo& info) {
buffer_flush_ = buffer_flush_ || info.buffer_flush;
if (!should_update_stats || info.is_cng_or_dtmf) {
return std::nullopt;
}
if (info.packet_length_samples > 0 && fs_hz > 0 &&
info.packet_length_samples != packet_length_samples_) {
packet_length_samples_ = info.packet_length_samples;
delay_manager_->SetPacketAudioLength(packet_length_samples_ * 1000 / fs_hz);
}
bool inserted = packet_arrival_history_->Insert(info.main_timestamp,
info.packet_length_samples);
if (!inserted || packet_arrival_history_->size() < 2) {
// No meaningful delay estimate unless at least 2 packets have arrived.
return std::nullopt;
}
int arrival_delay_ms =
packet_arrival_history_->GetDelayMs(info.main_timestamp);
bool reordered =
!packet_arrival_history_->IsNewestRtpTimestamp(info.main_timestamp);
delay_manager_->Update(arrival_delay_ms, reordered);
return arrival_delay_ms;
}
void DecisionLogic::FilterBufferLevel(size_t buffer_size_samples) {
buffer_level_filter_->SetTargetBufferLevel(TargetLevelMs());
int time_stretched_samples = time_stretched_cn_samples_;
if (prev_time_scale_) {
time_stretched_samples += sample_memory_;
}
if (buffer_flush_) {
buffer_level_filter_->SetFilteredBufferLevel(buffer_size_samples);
buffer_flush_ = false;
} else {
buffer_level_filter_->Update(buffer_size_samples, time_stretched_samples);
}
prev_time_scale_ = false;
time_stretched_cn_samples_ = 0;
}
NetEq::Operation DecisionLogic::CngOperation(
NetEqController::NetEqStatus status) {
// Signed difference between target and available timestamp.
int32_t timestamp_diff = static_cast<int32_t>(
static_cast<uint32_t>(status.generated_noise_samples +
status.target_timestamp) -
status.next_packet->timestamp);
int optimal_level_samp = TargetLevelMs() * sample_rate_khz_;
const int64_t excess_waiting_time_samp =
-static_cast<int64_t>(timestamp_diff) - optimal_level_samp;
if (excess_waiting_time_samp > optimal_level_samp / 2) {
// The waiting time for this packet will be longer than 1.5
// times the wanted buffer delay. Apply fast-forward to cut the
// waiting time down to the optimal.
noise_fast_forward_ = rtc::saturated_cast<size_t>(noise_fast_forward_ +
excess_waiting_time_samp);
timestamp_diff =
rtc::saturated_cast<int32_t>(timestamp_diff + excess_waiting_time_samp);
}
if (timestamp_diff < 0 && status.last_mode == NetEq::Mode::kRfc3389Cng) {
// Not time to play this packet yet. Wait another round before using this
// packet. Keep on playing CNG from previous CNG parameters.
return NetEq::Operation::kRfc3389CngNoPacket;
} else {
// Otherwise, go for the CNG packet now.
noise_fast_forward_ = 0;
return NetEq::Operation::kRfc3389Cng;
}
}
NetEq::Operation DecisionLogic::NoPacket(NetEqController::NetEqStatus status) {
switch (status.last_mode) {
case NetEq::Mode::kRfc3389Cng:
return NetEq::Operation::kRfc3389CngNoPacket;
case NetEq::Mode::kCodecInternalCng: {
// Stop CNG after a timeout.
if (status.generated_noise_samples > kCngTimeoutMs * sample_rate_khz_) {
return NetEq::Operation::kExpand;
}
return NetEq::Operation::kCodecInternalCng;
}
default:
return status.play_dtmf ? NetEq::Operation::kDtmf
: NetEq::Operation::kExpand;
}
}
NetEq::Operation DecisionLogic::ExpectedPacketAvailable(
NetEqController::NetEqStatus status) {
if (!disallow_time_stretching_ && status.last_mode != NetEq::Mode::kExpand &&
!status.play_dtmf) {
const int playout_delay_ms = GetPlayoutDelayMs(status);
const int64_t low_limit = TargetLevelMs();
const int64_t high_limit = low_limit +
packet_arrival_history_->GetMaxDelayMs() +
kDelayAdjustmentGranularityMs;
if (playout_delay_ms >= high_limit * 4) {
return NetEq::Operation::kFastAccelerate;
}
if (TimescaleAllowed()) {
if (playout_delay_ms >= high_limit) {
return NetEq::Operation::kAccelerate;
}
if (playout_delay_ms < low_limit) {
return NetEq::Operation::kPreemptiveExpand;
}
}
}
return NetEq::Operation::kNormal;
}
NetEq::Operation DecisionLogic::FuturePacketAvailable(
NetEqController::NetEqStatus status) {
// Required packet is not available, but a future packet is.
// Check if we should continue with an ongoing concealment because the new
// packet is too far into the future.
const int buffer_delay_samples =
status.packet_buffer_info.span_samples_wait_time;
const int buffer_delay_ms = buffer_delay_samples / sample_rate_khz_;
const int high_limit = TargetLevelMs() + kTargetLevelWindowMs / 2;
const bool above_target_delay = buffer_delay_ms > high_limit;
if ((PacketTooEarly(status) && !above_target_delay)) {
return NoPacket(status);
}
uint32_t timestamp_leap =
status.next_packet->timestamp - status.target_timestamp;
if (timestamp_leap != status.generated_noise_samples) {
// The delay was adjusted, reinitialize the buffer level filter.
buffer_level_filter_->SetFilteredBufferLevel(buffer_delay_samples);
}
// Time to play the next packet.
switch (status.last_mode) {
case NetEq::Mode::kExpand:
return NetEq::Operation::kMerge;
case NetEq::Mode::kCodecPlc:
case NetEq::Mode::kRfc3389Cng:
case NetEq::Mode::kCodecInternalCng:
return NetEq::Operation::kNormal;
default:
return status.play_dtmf ? NetEq::Operation::kDtmf
: NetEq::Operation::kExpand;
}
}
bool DecisionLogic::UnderTargetLevel() const {
return buffer_level_filter_->filtered_current_level() <
TargetLevelMs() * sample_rate_khz_;
}
bool DecisionLogic::PostponeDecode(NetEqController::NetEqStatus status) const {
// Make sure we don't restart audio too soon after CNG or expand to avoid
// running out of data right away again.
const size_t min_buffer_level_samples =
TargetLevelMs() * sample_rate_khz_ * kPostponeDecodingLevel / 100;
const size_t buffer_level_samples =
status.packet_buffer_info.span_samples_wait_time;
if (buffer_level_samples >= min_buffer_level_samples) {
return false;
}
// Don't postpone decoding if there is a future DTX packet in the packet
// buffer.
if (status.packet_buffer_info.dtx_or_cng) {
return false;
}
// Continue CNG until the buffer is at least at the minimum level.
if (IsCng(status.last_mode)) {
return true;
}
// Only continue expand if the mute factor is low enough (otherwise the
// expansion was short enough to not be noticable). Note that the MuteFactor
// is in Q14, so a value of 16384 corresponds to 1.
if (IsExpand(status.last_mode) && status.expand_mutefactor < 16384 / 2) {
return true;
}
return false;
}
bool DecisionLogic::PacketTooEarly(NetEqController::NetEqStatus status) const {
const uint32_t timestamp_leap =
status.next_packet->timestamp - status.target_timestamp;
return timestamp_leap > status.generated_noise_samples;
}
int DecisionLogic::GetPlayoutDelayMs(
NetEqController::NetEqStatus status) const {
uint32_t playout_timestamp =
status.target_timestamp - status.sync_buffer_samples;
return packet_arrival_history_->GetDelayMs(playout_timestamp);
}
} // namespace webrtc