blob: 31da60cbc3062a1e01fe935bb282405bfe60767c [file] [log] [blame]
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <list>
#include <memory>
#include <numeric>
#include "api/scoped_refptr.h"
#include "modules/audio_device/include/audio_device.h"
#include "modules/audio_device/include/mock_audio_transport.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/event.h"
#include "rtc_base/format_macros.h"
#include "rtc_base/synchronization/mutex.h"
#include "rtc_base/time_utils.h"
#include "sdk/android/generated_native_unittests_jni/BuildInfo_jni.h"
#include "sdk/android/native_api/audio_device_module/audio_device_android.h"
#include "sdk/android/native_unittests/application_context_provider.h"
#include "sdk/android/src/jni/audio_device/audio_common.h"
#include "sdk/android/src/jni/audio_device/audio_device_module.h"
#include "sdk/android/src/jni/audio_device/opensles_common.h"
#include "sdk/android/src/jni/jni_helpers.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/testsupport/file_utils.h"
using std::cout;
using std::endl;
using ::testing::_;
using ::testing::AtLeast;
using ::testing::Gt;
using ::testing::Invoke;
using ::testing::NiceMock;
using ::testing::NotNull;
using ::testing::Return;
// #define ENABLE_DEBUG_PRINTF
#ifdef ENABLE_DEBUG_PRINTF
#define PRINTD(...) fprintf(stderr, __VA_ARGS__);
#else
#define PRINTD(...) ((void)0)
#endif
#define PRINT(...) fprintf(stderr, __VA_ARGS__);
namespace webrtc {
namespace jni {
// Number of callbacks (input or output) the tests waits for before we set
// an event indicating that the test was OK.
static const size_t kNumCallbacks = 10;
// Max amount of time we wait for an event to be set while counting callbacks.
static const int kTestTimeOutInMilliseconds = 10 * 1000;
// Average number of audio callbacks per second assuming 10ms packet size.
static const size_t kNumCallbacksPerSecond = 100;
// Play out a test file during this time (unit is in seconds).
static const int kFilePlayTimeInSec = 5;
static const size_t kBitsPerSample = 16;
static const size_t kBytesPerSample = kBitsPerSample / 8;
// Run the full-duplex test during this time (unit is in seconds).
// Note that first |kNumIgnoreFirstCallbacks| are ignored.
static const int kFullDuplexTimeInSec = 5;
// Wait for the callback sequence to stabilize by ignoring this amount of the
// initial callbacks (avoids initial FIFO access).
// Only used in the RunPlayoutAndRecordingInFullDuplex test.
static const size_t kNumIgnoreFirstCallbacks = 50;
// Sets the number of impulses per second in the latency test.
static const int kImpulseFrequencyInHz = 1;
// Length of round-trip latency measurements. Number of transmitted impulses
// is kImpulseFrequencyInHz * kMeasureLatencyTimeInSec - 1.
static const int kMeasureLatencyTimeInSec = 11;
// Utilized in round-trip latency measurements to avoid capturing noise samples.
static const int kImpulseThreshold = 1000;
static const char kTag[] = "[..........] ";
enum TransportType {
kPlayout = 0x1,
kRecording = 0x2,
};
// Interface for processing the audio stream. Real implementations can e.g.
// run audio in loopback, read audio from a file or perform latency
// measurements.
class AudioStreamInterface {
public:
virtual void Write(const void* source, size_t num_frames) = 0;
virtual void Read(void* destination, size_t num_frames) = 0;
protected:
virtual ~AudioStreamInterface() {}
};
// Reads audio samples from a PCM file where the file is stored in memory at
// construction.
class FileAudioStream : public AudioStreamInterface {
public:
FileAudioStream(size_t num_callbacks,
const std::string& file_name,
int sample_rate)
: file_size_in_bytes_(0), sample_rate_(sample_rate), file_pos_(0) {
file_size_in_bytes_ = test::GetFileSize(file_name);
sample_rate_ = sample_rate;
EXPECT_GE(file_size_in_callbacks(), num_callbacks)
<< "Size of test file is not large enough to last during the test.";
const size_t num_16bit_samples =
test::GetFileSize(file_name) / kBytesPerSample;
file_.reset(new int16_t[num_16bit_samples]);
FILE* audio_file = fopen(file_name.c_str(), "rb");
EXPECT_NE(audio_file, nullptr);
size_t num_samples_read =
fread(file_.get(), sizeof(int16_t), num_16bit_samples, audio_file);
EXPECT_EQ(num_samples_read, num_16bit_samples);
fclose(audio_file);
}
// AudioStreamInterface::Write() is not implemented.
void Write(const void* source, size_t num_frames) override {}
// Read samples from file stored in memory (at construction) and copy
// |num_frames| (<=> 10ms) to the |destination| byte buffer.
void Read(void* destination, size_t num_frames) override {
memcpy(destination, static_cast<int16_t*>(&file_[file_pos_]),
num_frames * sizeof(int16_t));
file_pos_ += num_frames;
}
int file_size_in_seconds() const {
return static_cast<int>(file_size_in_bytes_ /
(kBytesPerSample * sample_rate_));
}
size_t file_size_in_callbacks() const {
return file_size_in_seconds() * kNumCallbacksPerSecond;
}
private:
size_t file_size_in_bytes_;
int sample_rate_;
std::unique_ptr<int16_t[]> file_;
size_t file_pos_;
};
// Simple first in first out (FIFO) class that wraps a list of 16-bit audio
// buffers of fixed size and allows Write and Read operations. The idea is to
// store recorded audio buffers (using Write) and then read (using Read) these
// stored buffers with as short delay as possible when the audio layer needs
// data to play out. The number of buffers in the FIFO will stabilize under
// normal conditions since there will be a balance between Write and Read calls.
// The container is a std::list container and access is protected with a lock
// since both sides (playout and recording) are driven by its own thread.
class FifoAudioStream : public AudioStreamInterface {
public:
explicit FifoAudioStream(size_t frames_per_buffer)
: frames_per_buffer_(frames_per_buffer),
bytes_per_buffer_(frames_per_buffer_ * sizeof(int16_t)),
fifo_(new AudioBufferList),
largest_size_(0),
total_written_elements_(0),
write_count_(0) {
EXPECT_NE(fifo_.get(), nullptr);
}
~FifoAudioStream() { Flush(); }
// Allocate new memory, copy |num_frames| samples from |source| into memory
// and add pointer to the memory location to end of the list.
// Increases the size of the FIFO by one element.
void Write(const void* source, size_t num_frames) override {
ASSERT_EQ(num_frames, frames_per_buffer_);
PRINTD("+");
if (write_count_++ < kNumIgnoreFirstCallbacks) {
return;
}
int16_t* memory = new int16_t[frames_per_buffer_];
memcpy(static_cast<int16_t*>(&memory[0]), source, bytes_per_buffer_);
MutexLock lock(&lock_);
fifo_->push_back(memory);
const size_t size = fifo_->size();
if (size > largest_size_) {
largest_size_ = size;
PRINTD("(%" RTC_PRIuS ")", largest_size_);
}
total_written_elements_ += size;
}
// Read pointer to data buffer from front of list, copy |num_frames| of stored
// data into |destination| and delete the utilized memory allocation.
// Decreases the size of the FIFO by one element.
void Read(void* destination, size_t num_frames) override {
ASSERT_EQ(num_frames, frames_per_buffer_);
PRINTD("-");
MutexLock lock(&lock_);
if (fifo_->empty()) {
memset(destination, 0, bytes_per_buffer_);
} else {
int16_t* memory = fifo_->front();
fifo_->pop_front();
memcpy(destination, static_cast<int16_t*>(&memory[0]), bytes_per_buffer_);
delete memory;
}
}
size_t size() const { return fifo_->size(); }
size_t largest_size() const { return largest_size_; }
size_t average_size() const {
return (total_written_elements_ == 0)
? 0.0
: 0.5 + static_cast<float>(total_written_elements_) /
(write_count_ - kNumIgnoreFirstCallbacks);
}
private:
void Flush() {
for (auto it = fifo_->begin(); it != fifo_->end(); ++it) {
delete *it;
}
fifo_->clear();
}
using AudioBufferList = std::list<int16_t*>;
Mutex lock_;
const size_t frames_per_buffer_;
const size_t bytes_per_buffer_;
std::unique_ptr<AudioBufferList> fifo_;
size_t largest_size_;
size_t total_written_elements_;
size_t write_count_;
};
// Inserts periodic impulses and measures the latency between the time of
// transmission and time of receiving the same impulse.
// Usage requires a special hardware called Audio Loopback Dongle.
// See http://source.android.com/devices/audio/loopback.html for details.
class LatencyMeasuringAudioStream : public AudioStreamInterface {
public:
explicit LatencyMeasuringAudioStream(size_t frames_per_buffer)
: frames_per_buffer_(frames_per_buffer),
bytes_per_buffer_(frames_per_buffer_ * sizeof(int16_t)),
play_count_(0),
rec_count_(0),
pulse_time_(0) {}
// Insert periodic impulses in first two samples of |destination|.
void Read(void* destination, size_t num_frames) override {
ASSERT_EQ(num_frames, frames_per_buffer_);
if (play_count_ == 0) {
PRINT("[");
}
play_count_++;
memset(destination, 0, bytes_per_buffer_);
if (play_count_ % (kNumCallbacksPerSecond / kImpulseFrequencyInHz) == 0) {
if (pulse_time_ == 0) {
pulse_time_ = rtc::TimeMillis();
}
PRINT(".");
const int16_t impulse = std::numeric_limits<int16_t>::max();
int16_t* ptr16 = static_cast<int16_t*>(destination);
for (size_t i = 0; i < 2; ++i) {
ptr16[i] = impulse;
}
}
}
// Detect received impulses in |source|, derive time between transmission and
// detection and add the calculated delay to list of latencies.
void Write(const void* source, size_t num_frames) override {
ASSERT_EQ(num_frames, frames_per_buffer_);
rec_count_++;
if (pulse_time_ == 0) {
// Avoid detection of new impulse response until a new impulse has
// been transmitted (sets |pulse_time_| to value larger than zero).
return;
}
const int16_t* ptr16 = static_cast<const int16_t*>(source);
std::vector<int16_t> vec(ptr16, ptr16 + num_frames);
// Find max value in the audio buffer.
int max = *std::max_element(vec.begin(), vec.end());
// Find index (element position in vector) of the max element.
int index_of_max =
std::distance(vec.begin(), std::find(vec.begin(), vec.end(), max));
if (max > kImpulseThreshold) {
PRINTD("(%d,%d)", max, index_of_max);
int64_t now_time = rtc::TimeMillis();
int extra_delay = IndexToMilliseconds(static_cast<double>(index_of_max));
PRINTD("[%d]", static_cast<int>(now_time - pulse_time_));
PRINTD("[%d]", extra_delay);
// Total latency is the difference between transmit time and detection
// tome plus the extra delay within the buffer in which we detected the
// received impulse. It is transmitted at sample 0 but can be received
// at sample N where N > 0. The term |extra_delay| accounts for N and it
// is a value between 0 and 10ms.
latencies_.push_back(now_time - pulse_time_ + extra_delay);
pulse_time_ = 0;
} else {
PRINTD("-");
}
}
size_t num_latency_values() const { return latencies_.size(); }
int min_latency() const {
if (latencies_.empty())
return 0;
return *std::min_element(latencies_.begin(), latencies_.end());
}
int max_latency() const {
if (latencies_.empty())
return 0;
return *std::max_element(latencies_.begin(), latencies_.end());
}
int average_latency() const {
if (latencies_.empty())
return 0;
return 0.5 + static_cast<double>(
std::accumulate(latencies_.begin(), latencies_.end(), 0)) /
latencies_.size();
}
void PrintResults() const {
PRINT("] ");
for (auto it = latencies_.begin(); it != latencies_.end(); ++it) {
PRINT("%d ", *it);
}
PRINT("\n");
PRINT("%s[min, max, avg]=[%d, %d, %d] ms\n", kTag, min_latency(),
max_latency(), average_latency());
}
int IndexToMilliseconds(double index) const {
return static_cast<int>(10.0 * (index / frames_per_buffer_) + 0.5);
}
private:
const size_t frames_per_buffer_;
const size_t bytes_per_buffer_;
size_t play_count_;
size_t rec_count_;
int64_t pulse_time_;
std::vector<int> latencies_;
};
// Mocks the AudioTransport object and proxies actions for the two callbacks
// (RecordedDataIsAvailable and NeedMorePlayData) to different implementations
// of AudioStreamInterface.
class MockAudioTransportAndroid : public test::MockAudioTransport {
public:
explicit MockAudioTransportAndroid(int type)
: num_callbacks_(0),
type_(type),
play_count_(0),
rec_count_(0),
audio_stream_(nullptr) {}
virtual ~MockAudioTransportAndroid() {}
// Set default actions of the mock object. We are delegating to fake
// implementations (of AudioStreamInterface) here.
void HandleCallbacks(rtc::Event* test_is_done,
AudioStreamInterface* audio_stream,
int num_callbacks) {
test_is_done_ = test_is_done;
audio_stream_ = audio_stream;
num_callbacks_ = num_callbacks;
if (play_mode()) {
ON_CALL(*this, NeedMorePlayData(_, _, _, _, _, _, _, _))
.WillByDefault(
Invoke(this, &MockAudioTransportAndroid::RealNeedMorePlayData));
}
if (rec_mode()) {
ON_CALL(*this, RecordedDataIsAvailable(_, _, _, _, _, _, _, _, _, _))
.WillByDefault(Invoke(
this, &MockAudioTransportAndroid::RealRecordedDataIsAvailable));
}
}
int32_t RealRecordedDataIsAvailable(const void* audioSamples,
const size_t nSamples,
const size_t nBytesPerSample,
const size_t nChannels,
const uint32_t samplesPerSec,
const uint32_t totalDelayMS,
const int32_t clockDrift,
const uint32_t currentMicLevel,
const bool keyPressed,
const uint32_t& newMicLevel) {
EXPECT_TRUE(rec_mode()) << "No test is expecting these callbacks.";
rec_count_++;
// Process the recorded audio stream if an AudioStreamInterface
// implementation exists.
if (audio_stream_) {
audio_stream_->Write(audioSamples, nSamples);
}
if (ReceivedEnoughCallbacks()) {
test_is_done_->Set();
}
return 0;
}
int32_t RealNeedMorePlayData(const size_t nSamples,
const size_t nBytesPerSample,
const size_t nChannels,
const uint32_t samplesPerSec,
void* audioSamples,
size_t& nSamplesOut, // NOLINT
int64_t* elapsed_time_ms,
int64_t* ntp_time_ms) {
EXPECT_TRUE(play_mode()) << "No test is expecting these callbacks.";
play_count_++;
nSamplesOut = nSamples;
// Read (possibly processed) audio stream samples to be played out if an
// AudioStreamInterface implementation exists.
if (audio_stream_) {
audio_stream_->Read(audioSamples, nSamples);
}
if (ReceivedEnoughCallbacks()) {
test_is_done_->Set();
}
return 0;
}
bool ReceivedEnoughCallbacks() {
bool recording_done = false;
if (rec_mode())
recording_done = rec_count_ >= num_callbacks_;
else
recording_done = true;
bool playout_done = false;
if (play_mode())
playout_done = play_count_ >= num_callbacks_;
else
playout_done = true;
return recording_done && playout_done;
}
bool play_mode() const { return type_ & kPlayout; }
bool rec_mode() const { return type_ & kRecording; }
private:
rtc::Event* test_is_done_;
size_t num_callbacks_;
int type_;
size_t play_count_;
size_t rec_count_;
AudioStreamInterface* audio_stream_;
std::unique_ptr<LatencyMeasuringAudioStream> latency_audio_stream_;
};
// AudioDeviceTest test fixture.
class AudioDeviceTest : public ::testing::Test {
protected:
AudioDeviceTest() {
// One-time initialization of JVM and application context. Ensures that we
// can do calls between C++ and Java. Initializes both Java and OpenSL ES
// implementations.
// Creates an audio device using a default audio layer.
jni_ = AttachCurrentThreadIfNeeded();
context_ = test::GetAppContextForTest(jni_);
audio_device_ = CreateJavaAudioDeviceModule(jni_, context_.obj());
EXPECT_NE(audio_device_.get(), nullptr);
EXPECT_EQ(0, audio_device_->Init());
audio_manager_ = GetAudioManager(jni_, context_);
UpdateParameters();
}
virtual ~AudioDeviceTest() { EXPECT_EQ(0, audio_device_->Terminate()); }
int total_delay_ms() const { return 10; }
void UpdateParameters() {
int input_sample_rate = GetDefaultSampleRate(jni_, audio_manager_);
int output_sample_rate = GetDefaultSampleRate(jni_, audio_manager_);
bool stereo_playout_is_available;
bool stereo_record_is_available;
audio_device_->StereoPlayoutIsAvailable(&stereo_playout_is_available);
audio_device_->StereoRecordingIsAvailable(&stereo_record_is_available);
GetAudioParameters(jni_, context_, audio_manager_, input_sample_rate,
output_sample_rate, stereo_playout_is_available,
stereo_record_is_available, &input_parameters_,
&output_parameters_);
}
void SetActiveAudioLayer(AudioDeviceModule::AudioLayer audio_layer) {
audio_device_ = CreateAudioDevice(audio_layer);
EXPECT_NE(audio_device_.get(), nullptr);
EXPECT_EQ(0, audio_device_->Init());
UpdateParameters();
}
int playout_sample_rate() const { return output_parameters_.sample_rate(); }
int record_sample_rate() const { return input_parameters_.sample_rate(); }
size_t playout_channels() const { return output_parameters_.channels(); }
size_t record_channels() const { return input_parameters_.channels(); }
size_t playout_frames_per_10ms_buffer() const {
return output_parameters_.frames_per_10ms_buffer();
}
size_t record_frames_per_10ms_buffer() const {
return input_parameters_.frames_per_10ms_buffer();
}
rtc::scoped_refptr<AudioDeviceModule> audio_device() const {
return audio_device_;
}
rtc::scoped_refptr<AudioDeviceModule> CreateAudioDevice(
AudioDeviceModule::AudioLayer audio_layer) {
#if defined(WEBRTC_AUDIO_DEVICE_INCLUDE_ANDROID_AAUDIO)
if (audio_layer == AudioDeviceModule::kAndroidAAudioAudio) {
return rtc::scoped_refptr<AudioDeviceModule>(
CreateAAudioAudioDeviceModule(jni_, context_.obj()));
}
#endif
if (audio_layer == AudioDeviceModule::kAndroidJavaAudio) {
return rtc::scoped_refptr<AudioDeviceModule>(
CreateJavaAudioDeviceModule(jni_, context_.obj()));
} else if (audio_layer == AudioDeviceModule::kAndroidOpenSLESAudio) {
return rtc::scoped_refptr<AudioDeviceModule>(
CreateOpenSLESAudioDeviceModule(jni_, context_.obj()));
} else if (audio_layer ==
AudioDeviceModule::kAndroidJavaInputAndOpenSLESOutputAudio) {
return rtc::scoped_refptr<AudioDeviceModule>(
CreateJavaInputAndOpenSLESOutputAudioDeviceModule(jni_,
context_.obj()));
} else {
return nullptr;
}
}
// Returns file name relative to the resource root given a sample rate.
std::string GetFileName(int sample_rate) {
EXPECT_TRUE(sample_rate == 48000 || sample_rate == 44100);
char fname[64];
snprintf(fname, sizeof(fname), "audio_device/audio_short%d",
sample_rate / 1000);
std::string file_name(webrtc::test::ResourcePath(fname, "pcm"));
EXPECT_TRUE(test::FileExists(file_name));
#ifdef ENABLE_PRINTF
PRINT("file name: %s\n", file_name.c_str());
const size_t bytes = test::GetFileSize(file_name);
PRINT("file size: %" RTC_PRIuS " [bytes]\n", bytes);
PRINT("file size: %" RTC_PRIuS " [samples]\n", bytes / kBytesPerSample);
const int seconds =
static_cast<int>(bytes / (sample_rate * kBytesPerSample));
PRINT("file size: %d [secs]\n", seconds);
PRINT("file size: %" RTC_PRIuS " [callbacks]\n",
seconds * kNumCallbacksPerSecond);
#endif
return file_name;
}
AudioDeviceModule::AudioLayer GetActiveAudioLayer() const {
AudioDeviceModule::AudioLayer audio_layer;
EXPECT_EQ(0, audio_device()->ActiveAudioLayer(&audio_layer));
return audio_layer;
}
int TestDelayOnAudioLayer(
const AudioDeviceModule::AudioLayer& layer_to_test) {
rtc::scoped_refptr<AudioDeviceModule> audio_device;
audio_device = CreateAudioDevice(layer_to_test);
EXPECT_NE(audio_device.get(), nullptr);
uint16_t playout_delay;
EXPECT_EQ(0, audio_device->PlayoutDelay(&playout_delay));
return playout_delay;
}
AudioDeviceModule::AudioLayer TestActiveAudioLayer(
const AudioDeviceModule::AudioLayer& layer_to_test) {
rtc::scoped_refptr<AudioDeviceModule> audio_device;
audio_device = CreateAudioDevice(layer_to_test);
EXPECT_NE(audio_device.get(), nullptr);
AudioDeviceModule::AudioLayer active;
EXPECT_EQ(0, audio_device->ActiveAudioLayer(&active));
return active;
}
// One way to ensure that the engine object is valid is to create an
// SL Engine interface since it exposes creation methods of all the OpenSL ES
// object types and it is only supported on the engine object. This method
// also verifies that the engine interface supports at least one interface.
// Note that, the test below is not a full test of the SLEngineItf object
// but only a simple sanity test to check that the global engine object is OK.
void ValidateSLEngine(SLObjectItf engine_object) {
EXPECT_NE(nullptr, engine_object);
// Get the SL Engine interface which is exposed by the engine object.
SLEngineItf engine;
SLresult result =
(*engine_object)->GetInterface(engine_object, SL_IID_ENGINE, &engine);
EXPECT_EQ(result, SL_RESULT_SUCCESS) << "GetInterface() on engine failed";
// Ensure that the SL Engine interface exposes at least one interface.
SLuint32 object_id = SL_OBJECTID_ENGINE;
SLuint32 num_supported_interfaces = 0;
result = (*engine)->QueryNumSupportedInterfaces(engine, object_id,
&num_supported_interfaces);
EXPECT_EQ(result, SL_RESULT_SUCCESS)
<< "QueryNumSupportedInterfaces() failed";
EXPECT_GE(num_supported_interfaces, 1u);
}
// Volume control is currently only supported for the Java output audio layer.
// For OpenSL ES, the internal stream volume is always on max level and there
// is no need for this test to set it to max.
bool AudioLayerSupportsVolumeControl() const {
return GetActiveAudioLayer() == AudioDeviceModule::kAndroidJavaAudio;
}
void SetMaxPlayoutVolume() {
if (!AudioLayerSupportsVolumeControl())
return;
uint32_t max_volume;
EXPECT_EQ(0, audio_device()->MaxSpeakerVolume(&max_volume));
EXPECT_EQ(0, audio_device()->SetSpeakerVolume(max_volume));
}
void DisableBuiltInAECIfAvailable() {
if (audio_device()->BuiltInAECIsAvailable()) {
EXPECT_EQ(0, audio_device()->EnableBuiltInAEC(false));
}
}
void StartPlayout() {
EXPECT_FALSE(audio_device()->PlayoutIsInitialized());
EXPECT_FALSE(audio_device()->Playing());
EXPECT_EQ(0, audio_device()->InitPlayout());
EXPECT_TRUE(audio_device()->PlayoutIsInitialized());
EXPECT_EQ(0, audio_device()->StartPlayout());
EXPECT_TRUE(audio_device()->Playing());
}
void StopPlayout() {
EXPECT_EQ(0, audio_device()->StopPlayout());
EXPECT_FALSE(audio_device()->Playing());
EXPECT_FALSE(audio_device()->PlayoutIsInitialized());
}
void StartRecording() {
EXPECT_FALSE(audio_device()->RecordingIsInitialized());
EXPECT_FALSE(audio_device()->Recording());
EXPECT_EQ(0, audio_device()->InitRecording());
EXPECT_TRUE(audio_device()->RecordingIsInitialized());
EXPECT_EQ(0, audio_device()->StartRecording());
EXPECT_TRUE(audio_device()->Recording());
}
void StopRecording() {
EXPECT_EQ(0, audio_device()->StopRecording());
EXPECT_FALSE(audio_device()->Recording());
}
int GetMaxSpeakerVolume() const {
uint32_t max_volume(0);
EXPECT_EQ(0, audio_device()->MaxSpeakerVolume(&max_volume));
return max_volume;
}
int GetMinSpeakerVolume() const {
uint32_t min_volume(0);
EXPECT_EQ(0, audio_device()->MinSpeakerVolume(&min_volume));
return min_volume;
}
int GetSpeakerVolume() const {
uint32_t volume(0);
EXPECT_EQ(0, audio_device()->SpeakerVolume(&volume));
return volume;
}
JNIEnv* jni_;
ScopedJavaLocalRef<jobject> context_;
rtc::Event test_is_done_;
rtc::scoped_refptr<AudioDeviceModule> audio_device_;
ScopedJavaLocalRef<jobject> audio_manager_;
AudioParameters output_parameters_;
AudioParameters input_parameters_;
};
TEST_F(AudioDeviceTest, ConstructDestruct) {
// Using the test fixture to create and destruct the audio device module.
}
// Verify that it is possible to explicitly create the two types of supported
// ADMs. These two tests overrides the default selection of native audio layer
// by ignoring if the device supports low-latency output or not.
TEST_F(AudioDeviceTest, CorrectAudioLayerIsUsedForCombinedJavaOpenSLCombo) {
AudioDeviceModule::AudioLayer expected_layer =
AudioDeviceModule::kAndroidJavaInputAndOpenSLESOutputAudio;
AudioDeviceModule::AudioLayer active_layer =
TestActiveAudioLayer(expected_layer);
EXPECT_EQ(expected_layer, active_layer);
}
TEST_F(AudioDeviceTest, CorrectAudioLayerIsUsedForJavaInBothDirections) {
AudioDeviceModule::AudioLayer expected_layer =
AudioDeviceModule::kAndroidJavaAudio;
AudioDeviceModule::AudioLayer active_layer =
TestActiveAudioLayer(expected_layer);
EXPECT_EQ(expected_layer, active_layer);
}
TEST_F(AudioDeviceTest, CorrectAudioLayerIsUsedForOpenSLInBothDirections) {
AudioDeviceModule::AudioLayer expected_layer =
AudioDeviceModule::kAndroidOpenSLESAudio;
AudioDeviceModule::AudioLayer active_layer =
TestActiveAudioLayer(expected_layer);
EXPECT_EQ(expected_layer, active_layer);
}
// TODO(bugs.webrtc.org/8914)
// TODO(phensman): Add test for AAudio/Java combination when this combination
// is supported.
#if !defined(WEBRTC_AUDIO_DEVICE_INCLUDE_ANDROID_AAUDIO)
#define MAYBE_CorrectAudioLayerIsUsedForAAudioInBothDirections \
DISABLED_CorrectAudioLayerIsUsedForAAudioInBothDirections
#else
#define MAYBE_CorrectAudioLayerIsUsedForAAudioInBothDirections \
CorrectAudioLayerIsUsedForAAudioInBothDirections
#endif
TEST_F(AudioDeviceTest,
MAYBE_CorrectAudioLayerIsUsedForAAudioInBothDirections) {
AudioDeviceModule::AudioLayer expected_layer =
AudioDeviceModule::kAndroidAAudioAudio;
AudioDeviceModule::AudioLayer active_layer =
TestActiveAudioLayer(expected_layer);
EXPECT_EQ(expected_layer, active_layer);
}
// The Android ADM supports two different delay reporting modes. One for the
// low-latency output path (in combination with OpenSL ES), and one for the
// high-latency output path (Java backends in both directions). These two tests
// verifies that the audio device reports correct delay estimate given the
// selected audio layer. Note that, this delay estimate will only be utilized
// if the HW AEC is disabled.
// Delay should be 75 ms in high latency and 25 ms in low latency.
TEST_F(AudioDeviceTest, UsesCorrectDelayEstimateForHighLatencyOutputPath) {
EXPECT_EQ(75, TestDelayOnAudioLayer(AudioDeviceModule::kAndroidJavaAudio));
}
TEST_F(AudioDeviceTest, UsesCorrectDelayEstimateForLowLatencyOutputPath) {
EXPECT_EQ(25,
TestDelayOnAudioLayer(
AudioDeviceModule::kAndroidJavaInputAndOpenSLESOutputAudio));
}
TEST_F(AudioDeviceTest, InitTerminate) {
// Initialization is part of the test fixture.
EXPECT_TRUE(audio_device()->Initialized());
EXPECT_EQ(0, audio_device()->Terminate());
EXPECT_FALSE(audio_device()->Initialized());
}
TEST_F(AudioDeviceTest, Devices) {
// Device enumeration is not supported. Verify fixed values only.
EXPECT_EQ(1, audio_device()->PlayoutDevices());
EXPECT_EQ(1, audio_device()->RecordingDevices());
}
TEST_F(AudioDeviceTest, IsAcousticEchoCancelerSupported) {
PRINT("%sAcoustic Echo Canceler support: %s\n", kTag,
audio_device()->BuiltInAECIsAvailable() ? "Yes" : "No");
}
TEST_F(AudioDeviceTest, IsNoiseSuppressorSupported) {
PRINT("%sNoise Suppressor support: %s\n", kTag,
audio_device()->BuiltInNSIsAvailable() ? "Yes" : "No");
}
// Verify that playout side is configured for mono by default.
TEST_F(AudioDeviceTest, UsesMonoPlayoutByDefault) {
EXPECT_EQ(1u, output_parameters_.channels());
}
// Verify that recording side is configured for mono by default.
TEST_F(AudioDeviceTest, UsesMonoRecordingByDefault) {
EXPECT_EQ(1u, input_parameters_.channels());
}
TEST_F(AudioDeviceTest, SpeakerVolumeShouldBeAvailable) {
// The OpenSL ES output audio path does not support volume control.
if (!AudioLayerSupportsVolumeControl())
return;
bool available;
EXPECT_EQ(0, audio_device()->SpeakerVolumeIsAvailable(&available));
EXPECT_TRUE(available);
}
TEST_F(AudioDeviceTest, MaxSpeakerVolumeIsPositive) {
// The OpenSL ES output audio path does not support volume control.
if (!AudioLayerSupportsVolumeControl())
return;
StartPlayout();
EXPECT_GT(GetMaxSpeakerVolume(), 0);
StopPlayout();
}
TEST_F(AudioDeviceTest, MinSpeakerVolumeIsZero) {
// The OpenSL ES output audio path does not support volume control.
if (!AudioLayerSupportsVolumeControl())
return;
EXPECT_EQ(GetMinSpeakerVolume(), 0);
}
TEST_F(AudioDeviceTest, DefaultSpeakerVolumeIsWithinMinMax) {
// The OpenSL ES output audio path does not support volume control.
if (!AudioLayerSupportsVolumeControl())
return;
const int default_volume = GetSpeakerVolume();
EXPECT_GE(default_volume, GetMinSpeakerVolume());
EXPECT_LE(default_volume, GetMaxSpeakerVolume());
}
TEST_F(AudioDeviceTest, SetSpeakerVolumeActuallySetsVolume) {
// The OpenSL ES output audio path does not support volume control.
if (!AudioLayerSupportsVolumeControl())
return;
const int default_volume = GetSpeakerVolume();
const int max_volume = GetMaxSpeakerVolume();
EXPECT_EQ(0, audio_device()->SetSpeakerVolume(max_volume));
int new_volume = GetSpeakerVolume();
EXPECT_EQ(new_volume, max_volume);
EXPECT_EQ(0, audio_device()->SetSpeakerVolume(default_volume));
}
// Tests that playout can be initiated, started and stopped. No audio callback
// is registered in this test.
TEST_F(AudioDeviceTest, StartStopPlayout) {
StartPlayout();
StopPlayout();
StartPlayout();
StopPlayout();
}
// Tests that recording can be initiated, started and stopped. No audio callback
// is registered in this test.
TEST_F(AudioDeviceTest, StartStopRecording) {
StartRecording();
StopRecording();
StartRecording();
StopRecording();
}
// Verify that calling StopPlayout() will leave us in an uninitialized state
// which will require a new call to InitPlayout(). This test does not call
// StartPlayout() while being uninitialized since doing so will hit a
// RTC_DCHECK and death tests are not supported on Android.
TEST_F(AudioDeviceTest, StopPlayoutRequiresInitToRestart) {
EXPECT_EQ(0, audio_device()->InitPlayout());
EXPECT_EQ(0, audio_device()->StartPlayout());
EXPECT_EQ(0, audio_device()->StopPlayout());
EXPECT_FALSE(audio_device()->PlayoutIsInitialized());
}
// Verify that calling StopRecording() will leave us in an uninitialized state
// which will require a new call to InitRecording(). This test does not call
// StartRecording() while being uninitialized since doing so will hit a
// RTC_DCHECK and death tests are not supported on Android.
TEST_F(AudioDeviceTest, StopRecordingRequiresInitToRestart) {
EXPECT_EQ(0, audio_device()->InitRecording());
EXPECT_EQ(0, audio_device()->StartRecording());
EXPECT_EQ(0, audio_device()->StopRecording());
EXPECT_FALSE(audio_device()->RecordingIsInitialized());
}
// Start playout and verify that the native audio layer starts asking for real
// audio samples to play out using the NeedMorePlayData callback.
TEST_F(AudioDeviceTest, StartPlayoutVerifyCallbacks) {
MockAudioTransportAndroid mock(kPlayout);
mock.HandleCallbacks(&test_is_done_, nullptr, kNumCallbacks);
EXPECT_CALL(mock, NeedMorePlayData(playout_frames_per_10ms_buffer(),
kBytesPerSample, playout_channels(),
playout_sample_rate(), NotNull(), _, _, _))
.Times(AtLeast(kNumCallbacks));
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
StartPlayout();
test_is_done_.Wait(kTestTimeOutInMilliseconds);
StopPlayout();
}
// Start recording and verify that the native audio layer starts feeding real
// audio samples via the RecordedDataIsAvailable callback.
TEST_F(AudioDeviceTest, StartRecordingVerifyCallbacks) {
MockAudioTransportAndroid mock(kRecording);
mock.HandleCallbacks(&test_is_done_, nullptr, kNumCallbacks);
EXPECT_CALL(
mock, RecordedDataIsAvailable(NotNull(), record_frames_per_10ms_buffer(),
kBytesPerSample, record_channels(),
record_sample_rate(), _, 0, 0, false, _))
.Times(AtLeast(kNumCallbacks));
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
StartRecording();
test_is_done_.Wait(kTestTimeOutInMilliseconds);
StopRecording();
}
// Start playout and recording (full-duplex audio) and verify that audio is
// active in both directions.
TEST_F(AudioDeviceTest, StartPlayoutAndRecordingVerifyCallbacks) {
MockAudioTransportAndroid mock(kPlayout | kRecording);
mock.HandleCallbacks(&test_is_done_, nullptr, kNumCallbacks);
EXPECT_CALL(mock, NeedMorePlayData(playout_frames_per_10ms_buffer(),
kBytesPerSample, playout_channels(),
playout_sample_rate(), NotNull(), _, _, _))
.Times(AtLeast(kNumCallbacks));
EXPECT_CALL(
mock, RecordedDataIsAvailable(NotNull(), record_frames_per_10ms_buffer(),
kBytesPerSample, record_channels(),
record_sample_rate(), _, 0, 0, false, _))
.Times(AtLeast(kNumCallbacks));
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
StartPlayout();
StartRecording();
test_is_done_.Wait(kTestTimeOutInMilliseconds);
StopRecording();
StopPlayout();
}
// Start playout and read audio from an external PCM file when the audio layer
// asks for data to play out. Real audio is played out in this test but it does
// not contain any explicit verification that the audio quality is perfect.
TEST_F(AudioDeviceTest, RunPlayoutWithFileAsSource) {
// TODO(henrika): extend test when mono output is supported.
EXPECT_EQ(1u, playout_channels());
NiceMock<MockAudioTransportAndroid> mock(kPlayout);
const int num_callbacks = kFilePlayTimeInSec * kNumCallbacksPerSecond;
std::string file_name = GetFileName(playout_sample_rate());
std::unique_ptr<FileAudioStream> file_audio_stream(
new FileAudioStream(num_callbacks, file_name, playout_sample_rate()));
mock.HandleCallbacks(&test_is_done_, file_audio_stream.get(), num_callbacks);
// SetMaxPlayoutVolume();
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
StartPlayout();
test_is_done_.Wait(kTestTimeOutInMilliseconds);
StopPlayout();
}
// It should be possible to create an OpenSL engine object if OpenSL ES based
// audio is requested in any direction.
TEST_F(AudioDeviceTest, TestCreateOpenSLEngine) {
// Verify that the global (singleton) OpenSL Engine can be acquired.
OpenSLEngineManager engine_manager;
SLObjectItf engine_object = engine_manager.GetOpenSLEngine();
EXPECT_NE(nullptr, engine_object);
// Perform a simple sanity check of the created engine object.
ValidateSLEngine(engine_object);
}
// The audio device module only suppors the same sample rate in both directions.
// In addition, in full-duplex low-latency mode (OpenSL ES), both input and
// output must use the same native buffer size to allow for usage of the fast
// audio track in Android.
TEST_F(AudioDeviceTest, VerifyAudioParameters) {
EXPECT_EQ(output_parameters_.sample_rate(), input_parameters_.sample_rate());
SetActiveAudioLayer(AudioDeviceModule::kAndroidOpenSLESAudio);
EXPECT_EQ(output_parameters_.frames_per_buffer(),
input_parameters_.frames_per_buffer());
}
TEST_F(AudioDeviceTest, ShowAudioParameterInfo) {
const bool low_latency_out = false;
const bool low_latency_in = false;
PRINT("PLAYOUT:\n");
PRINT("%saudio layer: %s\n", kTag,
low_latency_out ? "Low latency OpenSL" : "Java/JNI based AudioTrack");
PRINT("%ssample rate: %d Hz\n", kTag, output_parameters_.sample_rate());
PRINT("%schannels: %" RTC_PRIuS "\n", kTag, output_parameters_.channels());
PRINT("%sframes per buffer: %" RTC_PRIuS " <=> %.2f ms\n", kTag,
output_parameters_.frames_per_buffer(),
output_parameters_.GetBufferSizeInMilliseconds());
PRINT("RECORD: \n");
PRINT("%saudio layer: %s\n", kTag,
low_latency_in ? "Low latency OpenSL" : "Java/JNI based AudioRecord");
PRINT("%ssample rate: %d Hz\n", kTag, input_parameters_.sample_rate());
PRINT("%schannels: %" RTC_PRIuS "\n", kTag, input_parameters_.channels());
PRINT("%sframes per buffer: %" RTC_PRIuS " <=> %.2f ms\n", kTag,
input_parameters_.frames_per_buffer(),
input_parameters_.GetBufferSizeInMilliseconds());
}
// Add device-specific information to the test for logging purposes.
TEST_F(AudioDeviceTest, ShowDeviceInfo) {
std::string model =
JavaToNativeString(jni_, Java_BuildInfo_getDeviceModel(jni_));
std::string brand = JavaToNativeString(jni_, Java_BuildInfo_getBrand(jni_));
std::string manufacturer =
JavaToNativeString(jni_, Java_BuildInfo_getDeviceManufacturer(jni_));
PRINT("%smodel: %s\n", kTag, model.c_str());
PRINT("%sbrand: %s\n", kTag, brand.c_str());
PRINT("%smanufacturer: %s\n", kTag, manufacturer.c_str());
}
// Add Android build information to the test for logging purposes.
TEST_F(AudioDeviceTest, ShowBuildInfo) {
std::string release =
JavaToNativeString(jni_, Java_BuildInfo_getBuildRelease(jni_));
std::string build_id =
JavaToNativeString(jni_, Java_BuildInfo_getAndroidBuildId(jni_));
std::string build_type =
JavaToNativeString(jni_, Java_BuildInfo_getBuildType(jni_));
int sdk = Java_BuildInfo_getSdkVersion(jni_);
PRINT("%sbuild release: %s\n", kTag, release.c_str());
PRINT("%sbuild id: %s\n", kTag, build_id.c_str());
PRINT("%sbuild type: %s\n", kTag, build_type.c_str());
PRINT("%sSDK version: %d\n", kTag, sdk);
}
// Basic test of the AudioParameters class using default construction where
// all members are set to zero.
TEST_F(AudioDeviceTest, AudioParametersWithDefaultConstruction) {
AudioParameters params;
EXPECT_FALSE(params.is_valid());
EXPECT_EQ(0, params.sample_rate());
EXPECT_EQ(0U, params.channels());
EXPECT_EQ(0U, params.frames_per_buffer());
EXPECT_EQ(0U, params.frames_per_10ms_buffer());
EXPECT_EQ(0U, params.GetBytesPerFrame());
EXPECT_EQ(0U, params.GetBytesPerBuffer());
EXPECT_EQ(0U, params.GetBytesPer10msBuffer());
EXPECT_EQ(0.0f, params.GetBufferSizeInMilliseconds());
}
// Basic test of the AudioParameters class using non default construction.
TEST_F(AudioDeviceTest, AudioParametersWithNonDefaultConstruction) {
const int kSampleRate = 48000;
const size_t kChannels = 1;
const size_t kFramesPerBuffer = 480;
const size_t kFramesPer10msBuffer = 480;
const size_t kBytesPerFrame = 2;
const float kBufferSizeInMs = 10.0f;
AudioParameters params(kSampleRate, kChannels, kFramesPerBuffer);
EXPECT_TRUE(params.is_valid());
EXPECT_EQ(kSampleRate, params.sample_rate());
EXPECT_EQ(kChannels, params.channels());
EXPECT_EQ(kFramesPerBuffer, params.frames_per_buffer());
EXPECT_EQ(static_cast<size_t>(kSampleRate / 100),
params.frames_per_10ms_buffer());
EXPECT_EQ(kBytesPerFrame, params.GetBytesPerFrame());
EXPECT_EQ(kBytesPerFrame * kFramesPerBuffer, params.GetBytesPerBuffer());
EXPECT_EQ(kBytesPerFrame * kFramesPer10msBuffer,
params.GetBytesPer10msBuffer());
EXPECT_EQ(kBufferSizeInMs, params.GetBufferSizeInMilliseconds());
}
// Start playout and recording and store recorded data in an intermediate FIFO
// buffer from which the playout side then reads its samples in the same order
// as they were stored. Under ideal circumstances, a callback sequence would
// look like: ...+-+-+-+-+-+-+-..., where '+' means 'packet recorded' and '-'
// means 'packet played'. Under such conditions, the FIFO would only contain
// one packet on average. However, under more realistic conditions, the size
// of the FIFO will vary more due to an unbalance between the two sides.
// This test tries to verify that the device maintains a balanced callback-
// sequence by running in loopback for kFullDuplexTimeInSec seconds while
// measuring the size (max and average) of the FIFO. The size of the FIFO is
// increased by the recording side and decreased by the playout side.
// TODO(henrika): tune the final test parameters after running tests on several
// different devices.
// Disabling this test on bots since it is difficult to come up with a robust
// test condition that all worked as intended. The main issue is that, when
// swarming is used, an initial latency can be built up when the both sides
// starts at different times. Hence, the test can fail even if audio works
// as intended. Keeping the test so it can be enabled manually.
// http://bugs.webrtc.org/7744
TEST_F(AudioDeviceTest, DISABLED_RunPlayoutAndRecordingInFullDuplex) {
EXPECT_EQ(record_channels(), playout_channels());
EXPECT_EQ(record_sample_rate(), playout_sample_rate());
NiceMock<MockAudioTransportAndroid> mock(kPlayout | kRecording);
std::unique_ptr<FifoAudioStream> fifo_audio_stream(
new FifoAudioStream(playout_frames_per_10ms_buffer()));
mock.HandleCallbacks(&test_is_done_, fifo_audio_stream.get(),
kFullDuplexTimeInSec * kNumCallbacksPerSecond);
SetMaxPlayoutVolume();
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
StartRecording();
StartPlayout();
test_is_done_.Wait(
std::max(kTestTimeOutInMilliseconds, 1000 * kFullDuplexTimeInSec));
StopPlayout();
StopRecording();
// These thresholds are set rather high to accomodate differences in hardware
// in several devices, so this test can be used in swarming.
// See http://bugs.webrtc.org/6464
EXPECT_LE(fifo_audio_stream->average_size(), 60u);
EXPECT_LE(fifo_audio_stream->largest_size(), 70u);
}
// Measures loopback latency and reports the min, max and average values for
// a full duplex audio session.
// The latency is measured like so:
// - Insert impulses periodically on the output side.
// - Detect the impulses on the input side.
// - Measure the time difference between the transmit time and receive time.
// - Store time differences in a vector and calculate min, max and average.
// This test requires a special hardware called Audio Loopback Dongle.
// See http://source.android.com/devices/audio/loopback.html for details.
TEST_F(AudioDeviceTest, DISABLED_MeasureLoopbackLatency) {
EXPECT_EQ(record_channels(), playout_channels());
EXPECT_EQ(record_sample_rate(), playout_sample_rate());
NiceMock<MockAudioTransportAndroid> mock(kPlayout | kRecording);
std::unique_ptr<LatencyMeasuringAudioStream> latency_audio_stream(
new LatencyMeasuringAudioStream(playout_frames_per_10ms_buffer()));
mock.HandleCallbacks(&test_is_done_, latency_audio_stream.get(),
kMeasureLatencyTimeInSec * kNumCallbacksPerSecond);
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
SetMaxPlayoutVolume();
DisableBuiltInAECIfAvailable();
StartRecording();
StartPlayout();
test_is_done_.Wait(
std::max(kTestTimeOutInMilliseconds, 1000 * kMeasureLatencyTimeInSec));
StopPlayout();
StopRecording();
// Verify that the correct number of transmitted impulses are detected.
EXPECT_EQ(latency_audio_stream->num_latency_values(),
static_cast<size_t>(
kImpulseFrequencyInHz * kMeasureLatencyTimeInSec - 1));
latency_audio_stream->PrintResults();
}
TEST(JavaAudioDeviceTest, TestRunningTwoAdmsSimultaneously) {
JNIEnv* jni = AttachCurrentThreadIfNeeded();
ScopedJavaLocalRef<jobject> context = test::GetAppContextForTest(jni);
// Create and start the first ADM.
rtc::scoped_refptr<AudioDeviceModule> adm_1 =
CreateJavaAudioDeviceModule(jni, context.obj());
EXPECT_EQ(0, adm_1->Init());
EXPECT_EQ(0, adm_1->InitRecording());
EXPECT_EQ(0, adm_1->StartRecording());
// Create and start a second ADM. Expect this to fail due to the microphone
// already being in use.
rtc::scoped_refptr<AudioDeviceModule> adm_2 =
CreateJavaAudioDeviceModule(jni, context.obj());
int32_t err = adm_2->Init();
err |= adm_2->InitRecording();
err |= adm_2->StartRecording();
EXPECT_NE(0, err);
// Stop and terminate second adm.
adm_2->StopRecording();
adm_2->Terminate();
// Stop first ADM.
EXPECT_EQ(0, adm_1->StopRecording());
EXPECT_EQ(0, adm_1->Terminate());
}
} // namespace jni
} // namespace webrtc