blob: b27016a1dca438d5c28142fe3bf60d20a1be92b2 [file] [log] [blame]
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
#include <memory>
#include <string>
#include <vector>
#include "api/turn_customizer.h"
#include "p2p/base/port_allocator.h"
#include "p2p/client/relay_port_factory_interface.h"
#include "p2p/client/turn_port_factory.h"
#include "rtc_base/checks.h"
#include "rtc_base/network.h"
#include "rtc_base/system/rtc_export.h"
#include "rtc_base/thread.h"
namespace cricket {
class RTC_EXPORT BasicPortAllocator : public PortAllocator {
// note: The (optional) relay_port_factory is owned by caller
// and must have a life time that exceeds that of BasicPortAllocator.
BasicPortAllocator(rtc::NetworkManager* network_manager,
rtc::PacketSocketFactory* socket_factory,
webrtc::TurnCustomizer* customizer = nullptr,
RelayPortFactoryInterface* relay_port_factory = nullptr);
explicit BasicPortAllocator(rtc::NetworkManager* network_manager);
BasicPortAllocator(rtc::NetworkManager* network_manager,
const ServerAddresses& stun_servers);
BasicPortAllocator(rtc::NetworkManager* network_manager,
rtc::PacketSocketFactory* socket_factory,
const ServerAddresses& stun_servers);
~BasicPortAllocator() override;
// Set to kDefaultNetworkIgnoreMask by default.
void SetNetworkIgnoreMask(int network_ignore_mask) override;
int network_ignore_mask() const {
return network_ignore_mask_;
rtc::NetworkManager* network_manager() const {
return network_manager_;
// If socket_factory() is set to NULL each PortAllocatorSession
// creates its own socket factory.
rtc::PacketSocketFactory* socket_factory() {
return socket_factory_;
PortAllocatorSession* CreateSessionInternal(
const std::string& content_name,
int component,
const std::string& ice_ufrag,
const std::string& ice_pwd) override;
// Convenience method that adds a TURN server to the configuration.
void AddTurnServer(const RelayServerConfig& turn_server);
RelayPortFactoryInterface* relay_port_factory() {
return relay_port_factory_;
void OnIceRegathering(PortAllocatorSession* session,
IceRegatheringReason reason);
// This function makes sure that relay_port_factory_ is set properly.
void InitRelayPortFactory(RelayPortFactoryInterface* relay_port_factory);
bool MdnsObfuscationEnabled() const override;
rtc::NetworkManager* network_manager_;
rtc::PacketSocketFactory* socket_factory_;
int network_ignore_mask_ = rtc::kDefaultNetworkIgnoreMask;
// This is the factory being used.
RelayPortFactoryInterface* relay_port_factory_;
// This instance is created if caller does pass a factory.
std::unique_ptr<RelayPortFactoryInterface> default_relay_port_factory_;
struct PortConfiguration;
class AllocationSequence;
enum class SessionState {
GATHERING, // Actively allocating ports and gathering candidates.
CLEARED, // Current allocation process has been stopped but may start
// new ones.
STOPPED // This session has completely stopped, no new allocation
// process will be started.
class RTC_EXPORT BasicPortAllocatorSession : public PortAllocatorSession,
public rtc::MessageHandler {
BasicPortAllocatorSession(BasicPortAllocator* allocator,
const std::string& content_name,
int component,
const std::string& ice_ufrag,
const std::string& ice_pwd);
~BasicPortAllocatorSession() override;
virtual BasicPortAllocator* allocator();
rtc::Thread* network_thread() { return network_thread_; }
rtc::PacketSocketFactory* socket_factory() { return socket_factory_; }
// If the new filter allows new types of candidates compared to the previous
// filter, gathered candidates that were discarded because of not matching the
// previous filter will be signaled if they match the new one.
// We do not perform any regathering since the port allocator flags decide
// the type of candidates to gather and the candidate filter only controls the
// signaling of candidates. As a result, with the candidate filter changed
// alone, all newly allowed candidates for signaling should already be
// gathered by the respective cricket::Port.
void SetCandidateFilter(uint32_t filter) override;
void StartGettingPorts() override;
void StopGettingPorts() override;
void ClearGettingPorts() override;
bool IsGettingPorts() override;
bool IsCleared() const override;
bool IsStopped() const override;
// These will all be cricket::Ports.
std::vector<PortInterface*> ReadyPorts() const override;
std::vector<Candidate> ReadyCandidates() const override;
bool CandidatesAllocationDone() const override;
void RegatherOnFailedNetworks() override;
void GetCandidateStatsFromReadyPorts(
CandidateStatsList* candidate_stats_list) const override;
void SetStunKeepaliveIntervalForReadyPorts(
const absl::optional<int>& stun_keepalive_interval) override;
void PruneAllPorts() override;
void UpdateIceParametersInternal() override;
// Starts the process of getting the port configurations.
virtual void GetPortConfigurations();
// Adds a port configuration that is now ready. Once we have one for each
// network (or a timeout occurs), we will start allocating ports.
virtual void ConfigReady(PortConfiguration* config);
// MessageHandler. Can be overriden if message IDs do not conflict.
void OnMessage(rtc::Message* message) override;
class PortData {
enum State {
STATE_INPROGRESS, // Still gathering candidates.
STATE_COMPLETE, // All candidates allocated and ready for process.
STATE_ERROR, // Error in gathering candidates.
STATE_PRUNED // Pruned by higher priority ports on the same network
// interface. Only TURN ports may be pruned.
PortData() {}
PortData(Port* port, AllocationSequence* seq)
: port_(port), sequence_(seq) {}
Port* port() const { return port_; }
AllocationSequence* sequence() const { return sequence_; }
bool has_pairable_candidate() const { return has_pairable_candidate_; }
State state() const { return state_; }
bool complete() const { return state_ == STATE_COMPLETE; }
bool error() const { return state_ == STATE_ERROR; }
bool pruned() const { return state_ == STATE_PRUNED; }
bool inprogress() const { return state_ == STATE_INPROGRESS; }
// Returns true if this port is ready to be used.
bool ready() const {
return has_pairable_candidate_ && state_ != STATE_ERROR &&
state_ != STATE_PRUNED;
// Sets the state to "PRUNED" and prunes the Port.
void Prune() {
state_ = STATE_PRUNED;
if (port()) {
void set_has_pairable_candidate(bool has_pairable_candidate) {
if (has_pairable_candidate) {
has_pairable_candidate_ = has_pairable_candidate;
void set_state(State state) {
state_ = state;
Port* port_ = nullptr;
AllocationSequence* sequence_ = nullptr;
bool has_pairable_candidate_ = false;
State state_ = STATE_INPROGRESS;
void OnConfigReady(PortConfiguration* config);
void OnConfigStop();
void AllocatePorts();
void OnAllocate();
void DoAllocate(bool disable_equivalent_phases);
void OnNetworksChanged();
void OnAllocationSequenceObjectsCreated();
void DisableEquivalentPhases(rtc::Network* network,
PortConfiguration* config,
uint32_t* flags);
void AddAllocatedPort(Port* port,
AllocationSequence* seq,
bool prepare_address);
void OnCandidateReady(Port* port, const Candidate& c);
void OnCandidateError(Port* port, const IceCandidateErrorEvent& event);
void OnPortComplete(Port* port);
void OnPortError(Port* port);
void OnProtocolEnabled(AllocationSequence* seq, ProtocolType proto);
void OnPortDestroyed(PortInterface* port);
void MaybeSignalCandidatesAllocationDone();
void OnPortAllocationComplete(AllocationSequence* seq);
PortData* FindPort(Port* port);
std::vector<rtc::Network*> GetNetworks();
std::vector<rtc::Network*> GetFailedNetworks();
void Regather(const std::vector<rtc::Network*>& networks,
bool disable_equivalent_phases,
IceRegatheringReason reason);
bool CheckCandidateFilter(const Candidate& c) const;
bool CandidatePairable(const Candidate& c, const Port* port) const;
std::vector<PortData*> GetUnprunedPorts(
const std::vector<rtc::Network*>& networks);
// Prunes ports and signal the remote side to remove the candidates that
// were previously signaled from these ports.
void PrunePortsAndRemoveCandidates(
const std::vector<PortData*>& port_data_list);
// Gets filtered and sanitized candidates generated from a port and
// append to |candidates|.
void GetCandidatesFromPort(const PortData& data,
std::vector<Candidate>* candidates) const;
Port* GetBestTurnPortForNetwork(const std::string& network_name) const;
// Returns true if at least one TURN port is pruned.
bool PruneTurnPorts(Port* newly_pairable_turn_port);
bool PruneNewlyPairableTurnPort(PortData* newly_pairable_turn_port);
BasicPortAllocator* allocator_;
rtc::Thread* network_thread_;
std::unique_ptr<rtc::PacketSocketFactory> owned_socket_factory_;
rtc::PacketSocketFactory* socket_factory_;
bool allocation_started_;
bool network_manager_started_;
bool allocation_sequences_created_;
std::vector<PortConfiguration*> configs_;
std::vector<AllocationSequence*> sequences_;
std::vector<PortData> ports_;
std::vector<IceCandidateErrorEvent> candidate_error_events_;
uint32_t candidate_filter_ = CF_ALL;
// Policy on how to prune turn ports, taken from the port allocator.
webrtc::PortPrunePolicy turn_port_prune_policy_;
SessionState state_ = SessionState::CLEARED;
friend class AllocationSequence;
// Records configuration information useful in creating ports.
// TODO(deadbeef): Rename "relay" to "turn_server" in this struct.
struct RTC_EXPORT PortConfiguration : public rtc::MessageData {
// TODO(jiayl): remove |stun_address| when Chrome is updated.
rtc::SocketAddress stun_address;
ServerAddresses stun_servers;
std::string username;
std::string password;
bool use_turn_server_as_stun_server_disabled = false;
typedef std::vector<RelayServerConfig> RelayList;
RelayList relays;
// TODO(jiayl): remove this ctor when Chrome is updated.
PortConfiguration(const rtc::SocketAddress& stun_address,
const std::string& username,
const std::string& password);
PortConfiguration(const ServerAddresses& stun_servers,
const std::string& username,
const std::string& password);
~PortConfiguration() override;
// Returns addresses of both the explicitly configured STUN servers,
// and TURN servers that should be used as STUN servers.
ServerAddresses StunServers();
// Adds another relay server, with the given ports and modifier, to the list.
void AddRelay(const RelayServerConfig& config);
// Determines whether the given relay server supports the given protocol.
bool SupportsProtocol(const RelayServerConfig& relay,
ProtocolType type) const;
bool SupportsProtocol(ProtocolType type) const;
// Helper method returns the server addresses for the matching RelayType and
// Protocol type.
ServerAddresses GetRelayServerAddresses(ProtocolType type) const;
class UDPPort;
class TurnPort;
// Performs the allocation of ports, in a sequenced (timed) manner, for a given
// network and IP address.
class AllocationSequence : public rtc::MessageHandler,
public sigslot::has_slots<> {
enum State {
kInit, // Initial state.
kRunning, // Started allocating ports.
kStopped, // Stopped from running.
kCompleted, // All ports are allocated.
// kInit --> kRunning --> {kCompleted|kStopped}
AllocationSequence(BasicPortAllocatorSession* session,
rtc::Network* network,
PortConfiguration* config,
uint32_t flags);
~AllocationSequence() override;
void Init();
void Clear();
void OnNetworkFailed();
State state() const { return state_; }
rtc::Network* network() const { return network_; }
bool network_failed() const { return network_failed_; }
void set_network_failed() { network_failed_ = true; }
// Disables the phases for a new sequence that this one already covers for an
// equivalent network setup.
void DisableEquivalentPhases(rtc::Network* network,
PortConfiguration* config,
uint32_t* flags);
// Starts and stops the sequence. When started, it will continue allocating
// new ports on its own timed schedule.
void Start();
void Stop();
// MessageHandler
void OnMessage(rtc::Message* msg) override;
// Signal from AllocationSequence, when it's done with allocating ports.
// This signal is useful, when port allocation fails which doesn't result
// in any candidates. Using this signal BasicPortAllocatorSession can send
// its candidate discovery conclusion signal. Without this signal,
// BasicPortAllocatorSession doesn't have any event to trigger signal. This
// can also be achieved by starting timer in BPAS.
sigslot::signal1<AllocationSequence*> SignalPortAllocationComplete;
// For testing.
void CreateTurnPort(const RelayServerConfig& config);
typedef std::vector<ProtocolType> ProtocolList;
bool IsFlagSet(uint32_t flag) { return ((flags_ & flag) != 0); }
void CreateUDPPorts();
void CreateTCPPorts();
void CreateStunPorts();
void CreateRelayPorts();
void OnReadPacket(rtc::AsyncPacketSocket* socket,
const char* data,
size_t size,
const rtc::SocketAddress& remote_addr,
const int64_t& packet_time_us);
void OnPortDestroyed(PortInterface* port);
BasicPortAllocatorSession* session_;
bool network_failed_ = false;
rtc::Network* network_;
// Compared with the new best IP in DisableEquivalentPhases.
rtc::IPAddress previous_best_ip_;
PortConfiguration* config_;
State state_;
uint32_t flags_;
ProtocolList protocols_;
std::unique_ptr<rtc::AsyncPacketSocket> udp_socket_;
// There will be only one udp port per AllocationSequence.
UDPPort* udp_port_;
std::vector<Port*> relay_ports_;
int phase_;
} // namespace cricket