blob: d1999f349c79f6701206ce29a2fb8a87f9b04a23 [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/network.h"
#include <stdlib.h>
#include <algorithm>
#include <memory>
#include <vector>
#include "absl/algorithm/container.h"
#include "absl/strings/match.h"
#include "absl/strings/string_view.h"
#include "rtc_base/checks.h"
#include "rtc_base/net_helpers.h"
#include "rtc_base/net_test_helpers.h"
#include "rtc_base/network_monitor.h"
#include "rtc_base/network_monitor_factory.h"
#include "rtc_base/physical_socket_server.h"
#if defined(WEBRTC_POSIX)
#include <net/if.h>
#include <sys/types.h>
#include "rtc_base/ifaddrs_converter.h"
#endif // defined(WEBRTC_POSIX)
#include "rtc_base/gunit.h"
#include "test/gmock.h"
#if defined(WEBRTC_WIN)
#include "rtc_base/logging.h" // For RTC_LOG_GLE
#endif
#include "test/field_trial.h"
#include "test/scoped_key_value_config.h"
using ::testing::Contains;
using ::testing::Not;
using ::testing::UnorderedElementsAre;
using ::testing::UnorderedElementsAreArray;
namespace rtc {
#define MAYBE_SKIP_IPV4 \
if (!HasIPv4Enabled()) { \
RTC_LOG(LS_INFO) << "No IPv4... skipping"; \
return; \
}
namespace {
IPAddress IPFromString(absl::string_view str) {
IPAddress ip;
RTC_CHECK(IPFromString(str, &ip));
return ip;
}
class FakeNetworkMonitor : public NetworkMonitorInterface {
public:
void Start() override { started_ = true; }
void Stop() override { started_ = false; }
bool started() { return started_; }
InterfaceInfo GetInterfaceInfo(absl::string_view if_name) override {
InterfaceInfo if_info = {
.adapter_type = ADAPTER_TYPE_UNKNOWN,
.available = absl::c_count(unavailable_adapters_, if_name) == 0,
};
if (absl::StartsWith(if_name, "wifi")) {
if_info.adapter_type = ADAPTER_TYPE_WIFI;
} else if (absl::StartsWith(if_name, "cellular")) {
if_info.adapter_type = ADAPTER_TYPE_CELLULAR;
}
return if_info;
}
// Used to test IsAdapterAvailable.
void set_unavailable_adapters(std::vector<std::string> unavailable_adapters) {
unavailable_adapters_ = unavailable_adapters;
}
bool SupportsBindSocketToNetwork() const override { return true; }
NetworkBindingResult BindSocketToNetwork(int socket_fd,
const IPAddress& address,
absl::string_view if_name) override {
if (absl::c_count(addresses_, address) > 0) {
return NetworkBindingResult::SUCCESS;
}
for (auto const& iter : adapters_) {
if (if_name.find(iter) != absl::string_view::npos) {
return NetworkBindingResult::SUCCESS;
}
}
return NetworkBindingResult::ADDRESS_NOT_FOUND;
}
void set_ip_addresses(std::vector<IPAddress> addresses) {
addresses_ = addresses;
}
void set_adapters(std::vector<std::string> adapters) { adapters_ = adapters; }
void InovkeNetworksChangedCallbackForTesting() {
InvokeNetworksChangedCallback();
}
private:
bool started_ = false;
std::vector<std::string> adapters_;
std::vector<std::string> unavailable_adapters_;
std::vector<IPAddress> addresses_;
};
class FakeNetworkMonitorFactory : public NetworkMonitorFactory {
public:
FakeNetworkMonitorFactory() {}
NetworkMonitorInterface* CreateNetworkMonitor(
const webrtc::FieldTrialsView& field_trials) override {
return new FakeNetworkMonitor();
}
};
bool SameNameAndPrefix(const rtc::Network& a, const rtc::Network& b) {
if (a.name() != b.name()) {
RTC_LOG(LS_INFO) << "Different interface names.";
return false;
}
if (a.prefix_length() != b.prefix_length() || a.prefix() != b.prefix()) {
RTC_LOG(LS_INFO) << "Different IP prefixes.";
return false;
}
return true;
}
std::vector<const Network*> CopyNetworkPointers(
const std::vector<std::unique_ptr<Network>>& owning_list) {
std::vector<const Network*> ptr_list;
ptr_list.reserve(owning_list.size());
for (const auto& network : owning_list) {
ptr_list.push_back(network.get());
}
return ptr_list;
}
} // namespace
class NetworkTest : public ::testing::Test, public sigslot::has_slots<> {
public:
NetworkTest() : callback_called_(false) {}
void OnNetworksChanged() { callback_called_ = true; }
NetworkManager::Stats MergeNetworkList(
BasicNetworkManager& network_manager,
std::vector<std::unique_ptr<Network>> list,
bool* changed) {
NetworkManager::Stats stats;
network_manager.MergeNetworkList(std::move(list), changed, &stats);
return stats;
}
bool IsIgnoredNetwork(BasicNetworkManager& network_manager,
const Network& network) {
RTC_DCHECK_RUN_ON(network_manager.thread_);
return network_manager.IsIgnoredNetwork(network);
}
IPAddress QueryDefaultLocalAddress(BasicNetworkManager& network_manager,
int family) {
RTC_DCHECK_RUN_ON(network_manager.thread_);
return network_manager.QueryDefaultLocalAddress(family);
}
std::vector<std::unique_ptr<Network>> GetNetworks(
const BasicNetworkManager& network_manager,
bool include_ignored) {
RTC_DCHECK_RUN_ON(network_manager.thread_);
std::vector<std::unique_ptr<Network>> list;
network_manager.CreateNetworks(include_ignored, &list);
return list;
}
FakeNetworkMonitor* GetNetworkMonitor(BasicNetworkManager& network_manager) {
RTC_DCHECK_RUN_ON(network_manager.thread_);
return static_cast<FakeNetworkMonitor*>(
network_manager.network_monitor_.get());
}
void ClearNetworks(BasicNetworkManager& network_manager) {
network_manager.networks_.clear();
network_manager.networks_map_.clear();
}
AdapterType GetAdapterType(BasicNetworkManager& network_manager) {
std::vector<const Network*> list = network_manager.GetNetworks();
RTC_CHECK_EQ(1, list.size());
return list[0]->type();
}
#if defined(WEBRTC_POSIX)
// Separated from CreateNetworks for tests.
static void CallConvertIfAddrs(
const BasicNetworkManager& network_manager,
struct ifaddrs* interfaces,
bool include_ignored,
std::vector<std::unique_ptr<Network>>* networks) {
RTC_DCHECK_RUN_ON(network_manager.thread_);
// Use the base IfAddrsConverter for test cases.
std::unique_ptr<IfAddrsConverter> ifaddrs_converter(new IfAddrsConverter());
network_manager.ConvertIfAddrs(interfaces, ifaddrs_converter.get(),
include_ignored, networks);
}
struct sockaddr_in6* CreateIpv6Addr(absl::string_view ip_string,
uint32_t scope_id) {
struct sockaddr_in6* ipv6_addr =
static_cast<struct sockaddr_in6*>(malloc(sizeof(struct sockaddr_in6)));
memset(ipv6_addr, 0, sizeof(struct sockaddr_in6));
ipv6_addr->sin6_family = AF_INET6;
ipv6_addr->sin6_scope_id = scope_id;
IPAddress ip;
IPFromString(ip_string, &ip);
ipv6_addr->sin6_addr = ip.ipv6_address();
return ipv6_addr;
}
// Pointers created here need to be released via ReleaseIfAddrs.
struct ifaddrs* AddIpv6Address(struct ifaddrs* list,
char* if_name,
absl::string_view ipv6_address,
absl::string_view ipv6_netmask,
uint32_t scope_id) {
struct ifaddrs* if_addr = new struct ifaddrs;
memset(if_addr, 0, sizeof(struct ifaddrs));
if_addr->ifa_name = if_name;
if_addr->ifa_addr = reinterpret_cast<struct sockaddr*>(
CreateIpv6Addr(ipv6_address, scope_id));
if_addr->ifa_netmask =
reinterpret_cast<struct sockaddr*>(CreateIpv6Addr(ipv6_netmask, 0));
if_addr->ifa_next = list;
if_addr->ifa_flags = IFF_RUNNING;
return if_addr;
}
struct ifaddrs* InstallIpv6Network(char* if_name,
absl::string_view ipv6_address,
absl::string_view ipv6_mask,
BasicNetworkManager& network_manager) {
ifaddrs* addr_list = nullptr;
addr_list = AddIpv6Address(addr_list, if_name, ipv6_address, ipv6_mask, 0);
std::vector<std::unique_ptr<Network>> result;
bool changed;
NetworkManager::Stats stats;
CallConvertIfAddrs(network_manager, addr_list, true, &result);
network_manager.MergeNetworkList(std::move(result), &changed, &stats);
return addr_list;
}
struct sockaddr_in* CreateIpv4Addr(absl::string_view ip_string) {
struct sockaddr_in* ipv4_addr =
static_cast<struct sockaddr_in*>(malloc(sizeof(struct sockaddr_in)));
memset(ipv4_addr, 0, sizeof(struct sockaddr_in));
ipv4_addr->sin_family = AF_INET;
IPAddress ip;
IPFromString(ip_string, &ip);
ipv4_addr->sin_addr = ip.ipv4_address();
return ipv4_addr;
}
// Pointers created here need to be released via ReleaseIfAddrs.
struct ifaddrs* AddIpv4Address(struct ifaddrs* list,
char* if_name,
absl::string_view ipv4_address,
absl::string_view ipv4_netmask) {
struct ifaddrs* if_addr = new struct ifaddrs;
memset(if_addr, 0, sizeof(struct ifaddrs));
if_addr->ifa_name = if_name;
if_addr->ifa_addr =
reinterpret_cast<struct sockaddr*>(CreateIpv4Addr(ipv4_address));
if_addr->ifa_netmask =
reinterpret_cast<struct sockaddr*>(CreateIpv4Addr(ipv4_netmask));
if_addr->ifa_next = list;
if_addr->ifa_flags = IFF_RUNNING;
return if_addr;
}
struct ifaddrs* InstallIpv4Network(char* if_name,
absl::string_view ipv4_address,
absl::string_view ipv4_mask,
BasicNetworkManager& network_manager) {
ifaddrs* addr_list = nullptr;
addr_list = AddIpv4Address(addr_list, if_name, ipv4_address, ipv4_mask);
std::vector<std::unique_ptr<Network>> result;
bool changed;
NetworkManager::Stats stats;
CallConvertIfAddrs(network_manager, addr_list, true, &result);
network_manager.MergeNetworkList(std::move(result), &changed, &stats);
return addr_list;
}
void ReleaseIfAddrs(struct ifaddrs* list) {
struct ifaddrs* if_addr = list;
while (if_addr != nullptr) {
struct ifaddrs* next_addr = if_addr->ifa_next;
free(if_addr->ifa_addr);
free(if_addr->ifa_netmask);
delete if_addr;
if_addr = next_addr;
}
}
#endif // defined(WEBRTC_POSIX)
protected:
webrtc::test::ScopedKeyValueConfig field_trials_;
rtc::AutoThread main_thread_;
bool callback_called_;
};
class TestBasicNetworkManager : public BasicNetworkManager {
public:
TestBasicNetworkManager(NetworkMonitorFactory* network_monitor_factory,
SocketFactory* socket_factory,
const webrtc::FieldTrialsView& field_trials)
: BasicNetworkManager(network_monitor_factory,
socket_factory,
&field_trials) {}
using BasicNetworkManager::QueryDefaultLocalAddress;
using BasicNetworkManager::set_default_local_addresses;
};
// Test that the Network ctor works properly.
TEST_F(NetworkTest, TestNetworkConstruct) {
Network ipv4_network1("test_eth0", "Test Network Adapter 1",
IPAddress(0x12345600U), 24);
EXPECT_EQ("test_eth0", ipv4_network1.name());
EXPECT_EQ("Test Network Adapter 1", ipv4_network1.description());
EXPECT_EQ(IPAddress(0x12345600U), ipv4_network1.prefix());
EXPECT_EQ(24, ipv4_network1.prefix_length());
EXPECT_EQ(AF_INET, ipv4_network1.family());
EXPECT_FALSE(ipv4_network1.ignored());
}
TEST_F(NetworkTest, TestIsIgnoredNetworkIgnoresIPsStartingWith0) {
Network ipv4_network1("test_eth0", "Test Network Adapter 1",
IPAddress(0x12345600U), 24, ADAPTER_TYPE_ETHERNET);
Network ipv4_network2("test_eth1", "Test Network Adapter 2",
IPAddress(0x010000U), 24, ADAPTER_TYPE_ETHERNET);
PhysicalSocketServer socket_server;
BasicNetworkManager network_manager(&socket_server);
network_manager.StartUpdating();
EXPECT_FALSE(IsIgnoredNetwork(network_manager, ipv4_network1));
EXPECT_TRUE(IsIgnoredNetwork(network_manager, ipv4_network2));
}
// TODO(phoglund): Remove when ignore list goes away.
TEST_F(NetworkTest, TestIgnoreList) {
Network ignore_me("ignore_me", "Ignore me please!", IPAddress(0x12345600U),
24);
Network include_me("include_me", "Include me please!", IPAddress(0x12345600U),
24);
PhysicalSocketServer socket_server;
BasicNetworkManager default_network_manager(&socket_server);
default_network_manager.StartUpdating();
EXPECT_FALSE(IsIgnoredNetwork(default_network_manager, ignore_me));
EXPECT_FALSE(IsIgnoredNetwork(default_network_manager, include_me));
BasicNetworkManager ignoring_network_manager(&socket_server);
std::vector<std::string> ignore_list;
ignore_list.push_back("ignore_me");
ignoring_network_manager.set_network_ignore_list(ignore_list);
ignoring_network_manager.StartUpdating();
EXPECT_TRUE(IsIgnoredNetwork(ignoring_network_manager, ignore_me));
EXPECT_FALSE(IsIgnoredNetwork(ignoring_network_manager, include_me));
}
// Test is failing on Windows opt: b/11288214
TEST_F(NetworkTest, DISABLED_TestCreateNetworks) {
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&socket_server);
std::vector<std::unique_ptr<Network>> result = GetNetworks(manager, true);
// We should be able to bind to any addresses we find.
for (auto it = result.begin(); it != result.end(); ++it) {
sockaddr_storage storage;
memset(&storage, 0, sizeof(storage));
IPAddress ip = (*it)->GetBestIP();
SocketAddress bindaddress(ip, 0);
bindaddress.SetScopeID((*it)->scope_id());
// TODO(thaloun): Use rtc::Socket once it supports IPv6.
int fd = static_cast<int>(socket(ip.family(), SOCK_STREAM, IPPROTO_TCP));
if (fd > 0) {
size_t ipsize = bindaddress.ToSockAddrStorage(&storage);
EXPECT_GE(ipsize, 0U);
int success = ::bind(fd, reinterpret_cast<sockaddr*>(&storage),
static_cast<int>(ipsize));
#if defined(WEBRTC_WIN)
if (success)
RTC_LOG_GLE(LS_ERROR) << "Socket bind failed.";
#endif
EXPECT_EQ(0, success);
#if defined(WEBRTC_WIN)
closesocket(fd);
#else
close(fd);
#endif
}
}
}
// Test StartUpdating() and StopUpdating(). network_permission_state starts with
// ALLOWED.
TEST_F(NetworkTest, TestUpdateNetworks) {
PhysicalSocketServer socket_server;
BasicNetworkManager manager(nullptr, &socket_server, &field_trials_);
manager.SignalNetworksChanged.connect(static_cast<NetworkTest*>(this),
&NetworkTest::OnNetworksChanged);
EXPECT_EQ(NetworkManager::ENUMERATION_ALLOWED,
manager.enumeration_permission());
manager.StartUpdating();
Thread::Current()->ProcessMessages(0);
EXPECT_TRUE(callback_called_);
callback_called_ = false;
// Callback should be triggered immediately when StartUpdating
// is called, after network update signal is already sent.
manager.StartUpdating();
EXPECT_TRUE(manager.started());
Thread::Current()->ProcessMessages(0);
EXPECT_TRUE(callback_called_);
manager.StopUpdating();
EXPECT_TRUE(manager.started());
manager.StopUpdating();
EXPECT_EQ(NetworkManager::ENUMERATION_ALLOWED,
manager.enumeration_permission());
EXPECT_FALSE(manager.started());
manager.StopUpdating();
EXPECT_FALSE(manager.started());
callback_called_ = false;
// Callback should be triggered immediately after StartUpdating is called
// when start_count_ is reset to 0.
manager.StartUpdating();
Thread::Current()->ProcessMessages(0);
EXPECT_TRUE(callback_called_);
}
// Verify that MergeNetworkList() merges network lists properly.
TEST_F(NetworkTest, TestBasicMergeNetworkList) {
Network ipv4_network1("test_eth0", "Test Network Adapter 1",
IPAddress(0x12345600U), 24);
Network ipv4_network2("test_eth1", "Test Network Adapter 2",
IPAddress(0x00010000U), 16);
ipv4_network1.AddIP(IPAddress(0x12345678));
ipv4_network2.AddIP(IPAddress(0x00010004));
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&socket_server);
// Add ipv4_network1 to the list of networks.
std::vector<std::unique_ptr<Network>> list;
list.push_back(std::make_unique<Network>(ipv4_network1));
bool changed;
NetworkManager::Stats stats =
MergeNetworkList(manager, std::move(list), &changed);
EXPECT_TRUE(changed);
EXPECT_EQ(stats.ipv6_network_count, 0);
EXPECT_EQ(stats.ipv4_network_count, 1);
list.clear(); // It is fine to call .clear() on a moved-from vector.
std::vector<const rtc::Network*> current = manager.GetNetworks();
EXPECT_EQ(1U, current.size());
EXPECT_TRUE(SameNameAndPrefix(ipv4_network1, *current[0]));
const Network* net1 = current[0];
uint16_t net_id1 = net1->id();
EXPECT_EQ(1, net_id1);
// Replace ipv4_network1 with ipv4_network2.
list.push_back(std::make_unique<Network>(ipv4_network2));
stats = MergeNetworkList(manager, std::move(list), &changed);
EXPECT_TRUE(changed);
EXPECT_EQ(stats.ipv6_network_count, 0);
EXPECT_EQ(stats.ipv4_network_count, 1);
list.clear();
current = manager.GetNetworks();
EXPECT_EQ(1U, current.size());
EXPECT_TRUE(SameNameAndPrefix(ipv4_network2, *current[0]));
const Network* net2 = current[0];
uint16_t net_id2 = net2->id();
// Network id will increase.
EXPECT_LT(net_id1, net_id2);
// Add Network2 back.
list.push_back(std::make_unique<Network>(ipv4_network1));
list.push_back(std::make_unique<Network>(ipv4_network2));
stats = MergeNetworkList(manager, std::move(list), &changed);
EXPECT_TRUE(changed);
EXPECT_EQ(stats.ipv6_network_count, 0);
EXPECT_EQ(stats.ipv4_network_count, 2);
list.clear();
// Verify that we get previous instances of Network objects.
current = manager.GetNetworks();
EXPECT_EQ(2U, current.size());
EXPECT_TRUE((net1 == current[0] && net2 == current[1]) ||
(net1 == current[1] && net2 == current[0]));
EXPECT_TRUE((net_id1 == current[0]->id() && net_id2 == current[1]->id()) ||
(net_id1 == current[1]->id() && net_id2 == current[0]->id()));
// Call MergeNetworkList() again and verify that we don't get update
// notification.
list.push_back(std::make_unique<Network>(ipv4_network2));
list.push_back(std::make_unique<Network>(ipv4_network1));
stats = MergeNetworkList(manager, std::move(list), &changed);
EXPECT_FALSE(changed);
EXPECT_EQ(stats.ipv6_network_count, 0);
EXPECT_EQ(stats.ipv4_network_count, 2);
list.clear();
// Verify that we get previous instances of Network objects.
current = manager.GetNetworks();
EXPECT_EQ(2U, current.size());
EXPECT_TRUE((net1 == current[0] && net2 == current[1]) ||
(net1 == current[1] && net2 == current[0]));
EXPECT_TRUE((net_id1 == current[0]->id() && net_id2 == current[1]->id()) ||
(net_id1 == current[1]->id() && net_id2 == current[0]->id()));
}
// Sets up some test IPv6 networks and appends them to list.
// Four networks are added - public and link local, for two interfaces.
void SetupNetworks(std::vector<std::unique_ptr<Network>>* list) {
IPAddress ip;
IPAddress prefix;
EXPECT_TRUE(IPFromString("abcd::1234:5678:abcd:ef12", &ip));
EXPECT_TRUE(IPFromString("abcd::", &prefix));
// First, fake link-locals.
Network ipv6_eth0_linklocalnetwork("test_eth0", "Test NetworkAdapter 1",
prefix, 64);
ipv6_eth0_linklocalnetwork.AddIP(ip);
EXPECT_TRUE(IPFromString("abcd::5678:abcd:ef12:3456", &ip));
Network ipv6_eth1_linklocalnetwork("test_eth1", "Test NetworkAdapter 2",
prefix, 64);
ipv6_eth1_linklocalnetwork.AddIP(ip);
// Public networks:
EXPECT_TRUE(IPFromString("2401:fa00:4:1000:be30:5bff:fee5:c3", &ip));
prefix = TruncateIP(ip, 64);
Network ipv6_eth0_publicnetwork1_ip1("test_eth0", "Test NetworkAdapter 1",
prefix, 64);
ipv6_eth0_publicnetwork1_ip1.AddIP(ip);
EXPECT_TRUE(IPFromString("2400:4030:1:2c00:be30:abcd:efab:cdef", &ip));
prefix = TruncateIP(ip, 64);
Network ipv6_eth1_publicnetwork1_ip1("test_eth1", "Test NetworkAdapter 1",
prefix, 64);
ipv6_eth1_publicnetwork1_ip1.AddIP(ip);
list->push_back(std::make_unique<Network>(ipv6_eth0_linklocalnetwork));
list->push_back(std::make_unique<Network>(ipv6_eth1_linklocalnetwork));
list->push_back(std::make_unique<Network>(ipv6_eth0_publicnetwork1_ip1));
list->push_back(std::make_unique<Network>(ipv6_eth1_publicnetwork1_ip1));
}
// Test that the basic network merging case works.
TEST_F(NetworkTest, TestIPv6MergeNetworkList) {
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&socket_server);
manager.SignalNetworksChanged.connect(static_cast<NetworkTest*>(this),
&NetworkTest::OnNetworksChanged);
std::vector<std::unique_ptr<Network>> networks;
SetupNetworks(&networks);
std::vector<const Network*> original_list = CopyNetworkPointers(networks);
bool changed = false;
NetworkManager::Stats stats =
MergeNetworkList(manager, std::move(networks), &changed);
EXPECT_TRUE(changed);
EXPECT_EQ(stats.ipv6_network_count, 4);
EXPECT_EQ(stats.ipv4_network_count, 0);
std::vector<const Network*> list = manager.GetNetworks();
// Verify that the original members are in the merged list.
EXPECT_THAT(list, UnorderedElementsAreArray(original_list));
}
// Tests that when two network lists that describe the same set of networks are
// merged, that the changed callback is not called, and that the original
// objects remain in the result list.
TEST_F(NetworkTest, TestNoChangeMerge) {
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&socket_server);
manager.SignalNetworksChanged.connect(static_cast<NetworkTest*>(this),
&NetworkTest::OnNetworksChanged);
std::vector<std::unique_ptr<Network>> networks;
SetupNetworks(&networks);
std::vector<const Network*> original_list = CopyNetworkPointers(networks);
bool changed = false;
MergeNetworkList(manager, std::move(networks), &changed);
EXPECT_TRUE(changed);
// Second list that describes the same networks but with new objects.
std::vector<std::unique_ptr<Network>> second_networks;
SetupNetworks(&second_networks);
std::vector<const Network*> second_list =
CopyNetworkPointers(second_networks);
changed = false;
MergeNetworkList(manager, std::move(second_networks), &changed);
EXPECT_FALSE(changed);
std::vector<const Network*> resulting_list = manager.GetNetworks();
// Verify that the original members are in the merged list.
EXPECT_THAT(resulting_list, UnorderedElementsAreArray(original_list));
// Doublecheck that the new networks aren't in the list.
for (const Network* network : second_list) {
EXPECT_THAT(resulting_list, Not(Contains(network)));
}
}
// Test that we can merge a network that is the same as another network but with
// a different IP. The original network should remain in the list, but have its
// IP changed.
TEST_F(NetworkTest, MergeWithChangedIP) {
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&socket_server);
manager.SignalNetworksChanged.connect(static_cast<NetworkTest*>(this),
&NetworkTest::OnNetworksChanged);
std::vector<std::unique_ptr<Network>> original_list;
SetupNetworks(&original_list);
// Make a network that we're going to change.
IPAddress ip;
EXPECT_TRUE(IPFromString("2401:fa01:4:1000:be30:faa:fee:faa", &ip));
IPAddress prefix = TruncateIP(ip, 64);
std::unique_ptr<Network> network_to_change = std::make_unique<Network>(
"test_eth0", "Test Network Adapter 1", prefix, 64);
std::unique_ptr<Network> changed_network =
std::make_unique<Network>(*network_to_change);
network_to_change->AddIP(ip);
IPAddress changed_ip;
EXPECT_TRUE(IPFromString("2401:fa01:4:1000:be30:f00:f00:f00", &changed_ip));
changed_network->AddIP(changed_ip);
const Network* const network_to_change_ptr = network_to_change.get();
original_list.push_back(std::move(network_to_change));
const size_t original_size = original_list.size();
bool changed = false;
MergeNetworkList(manager, std::move(original_list), &changed);
std::vector<std::unique_ptr<Network>> second_list;
SetupNetworks(&second_list);
second_list.push_back(std::move(changed_network));
changed = false;
MergeNetworkList(manager, std::move(second_list), &changed);
EXPECT_TRUE(changed);
std::vector<const Network*> list = manager.GetNetworks();
EXPECT_EQ(original_size, list.size());
// Make sure the original network is still in the merged list.
EXPECT_THAT(list, Contains(network_to_change_ptr));
EXPECT_EQ(changed_ip, network_to_change_ptr->GetIPs().at(0));
}
TEST_F(NetworkTest, TestMultipleIPMergeNetworkList) {
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&socket_server);
manager.SignalNetworksChanged.connect(static_cast<NetworkTest*>(this),
&NetworkTest::OnNetworksChanged);
std::vector<std::unique_ptr<Network>> original_list;
SetupNetworks(&original_list);
const Network* const network_ptr = original_list[2].get();
bool changed = false;
MergeNetworkList(manager, std::move(original_list), &changed);
EXPECT_TRUE(changed);
IPAddress ip;
IPAddress check_ip;
IPAddress prefix;
// Add a second IP to the public network on eth0 (2401:fa00:4:1000/64).
EXPECT_TRUE(IPFromString("2401:fa00:4:1000:be30:5bff:fee5:c6", &ip));
prefix = TruncateIP(ip, 64);
Network ipv6_eth0_publicnetwork1_ip2("test_eth0", "Test NetworkAdapter 1",
prefix, 64);
// This is the IP that already existed in the public network on eth0.
EXPECT_TRUE(IPFromString("2401:fa00:4:1000:be30:5bff:fee5:c3", &check_ip));
ipv6_eth0_publicnetwork1_ip2.AddIP(ip);
std::vector<std::unique_ptr<Network>> second_list;
SetupNetworks(&second_list);
second_list.push_back(
std::make_unique<Network>(ipv6_eth0_publicnetwork1_ip2));
changed = false;
const auto network_copy = std::make_unique<Network>(*second_list[2]);
MergeNetworkList(manager, std::move(second_list), &changed);
EXPECT_TRUE(changed);
// There should still be four networks.
std::vector<const Network*> list = manager.GetNetworks();
EXPECT_EQ(4U, list.size());
// Check the gathered IPs.
int matchcount = 0;
for (const Network* network : list) {
if (SameNameAndPrefix(*network, *network_copy)) {
++matchcount;
EXPECT_EQ(1, matchcount);
// This should be the same network object as before.
EXPECT_EQ(network, network_ptr);
// But with two addresses now.
EXPECT_THAT(network->GetIPs(),
UnorderedElementsAre(InterfaceAddress(check_ip),
InterfaceAddress(ip)));
} else {
// Check the IP didn't get added anywhere it wasn't supposed to.
EXPECT_THAT(network->GetIPs(), Not(Contains(InterfaceAddress(ip))));
}
}
}
// Test that merge correctly distinguishes multiple networks on an interface.
TEST_F(NetworkTest, TestMultiplePublicNetworksOnOneInterfaceMerge) {
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&socket_server);
manager.SignalNetworksChanged.connect(static_cast<NetworkTest*>(this),
&NetworkTest::OnNetworksChanged);
std::vector<std::unique_ptr<Network>> original_list;
SetupNetworks(&original_list);
bool changed = false;
MergeNetworkList(manager, std::move(original_list), &changed);
EXPECT_TRUE(changed);
IPAddress ip;
IPAddress prefix;
// A second network for eth0.
EXPECT_TRUE(IPFromString("2400:4030:1:2c00:be30:5bff:fee5:c3", &ip));
prefix = TruncateIP(ip, 64);
Network ipv6_eth0_publicnetwork2_ip1("test_eth0", "Test NetworkAdapter 1",
prefix, 64);
ipv6_eth0_publicnetwork2_ip1.AddIP(ip);
std::vector<std::unique_ptr<Network>> second_list;
SetupNetworks(&second_list);
second_list.push_back(
std::make_unique<Network>(ipv6_eth0_publicnetwork2_ip1));
changed = false;
MergeNetworkList(manager, std::move(second_list), &changed);
EXPECT_TRUE(changed);
// There should be five networks now.
std::vector<const Network*> list = manager.GetNetworks();
EXPECT_EQ(5U, list.size());
// Check the resulting addresses.
for (const Network* network : list) {
if (network->prefix() == ipv6_eth0_publicnetwork2_ip1.prefix() &&
network->name() == ipv6_eth0_publicnetwork2_ip1.name()) {
// Check the new network has 1 IP and that it's the correct one.
EXPECT_EQ(1U, network->GetIPs().size());
EXPECT_EQ(ip, network->GetIPs().at(0));
} else {
// Check the IP didn't get added anywhere it wasn't supposed to.
EXPECT_THAT(network->GetIPs(), Not(Contains(InterfaceAddress(ip))));
}
}
}
// Test that DumpNetworks does not crash.
TEST_F(NetworkTest, TestCreateAndDumpNetworks) {
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&socket_server);
manager.StartUpdating();
std::vector<std::unique_ptr<Network>> list = GetNetworks(manager, true);
bool changed;
MergeNetworkList(manager, std::move(list), &changed);
manager.DumpNetworks();
}
TEST_F(NetworkTest, TestIPv6Toggle) {
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&socket_server);
manager.StartUpdating();
bool ipv6_found = false;
for (const auto& network : GetNetworks(manager, true)) {
if (network->prefix().family() == AF_INET6) {
ipv6_found = true;
break;
}
}
EXPECT_TRUE(ipv6_found);
}
// Test that when network interfaces are sorted and given preference values,
// IPv6 comes first.
TEST_F(NetworkTest, IPv6NetworksPreferredOverIPv4) {
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&socket_server);
Network ipv4_network1("test_eth0", "Test Network Adapter 1",
IPAddress(0x12345600U), 24);
ipv4_network1.AddIP(IPAddress(0x12345600U));
IPAddress ip;
IPAddress prefix;
EXPECT_TRUE(IPFromString("2400:4030:1:2c00:be30:abcd:efab:cdef", &ip));
prefix = TruncateIP(ip, 64);
Network ipv6_eth1_publicnetwork1_ip1("test_eth1", "Test NetworkAdapter 2",
prefix, 64);
ipv6_eth1_publicnetwork1_ip1.AddIP(ip);
std::vector<std::unique_ptr<Network>> list;
list.push_back(std::make_unique<Network>(ipv4_network1));
list.push_back(std::make_unique<Network>(ipv6_eth1_publicnetwork1_ip1));
const Network* net1 = list[0].get();
const Network* net2 = list[1].get();
bool changed = false;
MergeNetworkList(manager, std::move(list), &changed);
ASSERT_TRUE(changed);
// After sorting IPv6 network should be higher order than IPv4 networks.
EXPECT_TRUE(net1->preference() < net2->preference());
}
// When two interfaces are equivalent in everything but name, they're expected
// to be preference-ordered by name. For example, "eth0" before "eth1".
TEST_F(NetworkTest, NetworksSortedByInterfaceName) {
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&socket_server, &field_trials_);
auto eth0 = std::make_unique<Network>("test_eth0", "Test Network Adapter 1",
IPAddress(0x65432100U), 24);
eth0->AddIP(IPAddress(0x65432100U));
auto eth1 = std::make_unique<Network>("test_eth1", "Test Network Adapter 2",
IPAddress(0x12345600U), 24);
eth1->AddIP(IPAddress(0x12345600U));
std::vector<std::unique_ptr<Network>> list;
const Network* eth0_ptr = eth0.get();
const Network* eth1_ptr = eth1.get();
// Add them to the list in the opposite of the expected sorted order, to
// ensure sorting actually occurs.
list.push_back(std::move(eth1));
list.push_back(std::move(eth0));
bool changed = false;
MergeNetworkList(manager, std::move(list), &changed);
ASSERT_TRUE(changed);
// "test_eth0" should be preferred over "test_eth1".
EXPECT_TRUE(eth0_ptr->preference() > eth1_ptr->preference());
}
TEST_F(NetworkTest, TestNetworkAdapterTypes) {
Network wifi("wlan0", "Wireless Adapter", IPAddress(0x12345600U), 24,
ADAPTER_TYPE_WIFI);
EXPECT_EQ(ADAPTER_TYPE_WIFI, wifi.type());
Network ethernet("eth0", "Ethernet", IPAddress(0x12345600U), 24,
ADAPTER_TYPE_ETHERNET);
EXPECT_EQ(ADAPTER_TYPE_ETHERNET, ethernet.type());
Network cellular("test_cell", "Cellular Adapter", IPAddress(0x12345600U), 24,
ADAPTER_TYPE_CELLULAR);
EXPECT_EQ(ADAPTER_TYPE_CELLULAR, cellular.type());
Network vpn("bridge_test", "VPN Adapter", IPAddress(0x12345600U), 24,
ADAPTER_TYPE_VPN);
EXPECT_EQ(ADAPTER_TYPE_VPN, vpn.type());
Network unknown("test", "Test Adapter", IPAddress(0x12345600U), 24,
ADAPTER_TYPE_UNKNOWN);
EXPECT_EQ(ADAPTER_TYPE_UNKNOWN, unknown.type());
}
#if defined(WEBRTC_POSIX)
// Verify that we correctly handle interfaces with no address.
TEST_F(NetworkTest, TestConvertIfAddrsNoAddress) {
ifaddrs list;
memset(&list, 0, sizeof(list));
list.ifa_name = const_cast<char*>("test_iface");
std::vector<std::unique_ptr<Network>> result;
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&socket_server);
manager.StartUpdating();
CallConvertIfAddrs(manager, &list, true, &result);
EXPECT_TRUE(result.empty());
}
// Verify that if there are two addresses on one interface, only one network
// is generated.
TEST_F(NetworkTest, TestConvertIfAddrsMultiAddressesOnOneInterface) {
char if_name[20] = "rmnet0";
ifaddrs* list = nullptr;
list = AddIpv6Address(list, if_name, "1000:2000:3000:4000:0:0:0:1",
"FFFF:FFFF:FFFF:FFFF::", 0);
list = AddIpv6Address(list, if_name, "1000:2000:3000:4000:0:0:0:2",
"FFFF:FFFF:FFFF:FFFF::", 0);
std::vector<std::unique_ptr<Network>> result;
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&socket_server);
manager.StartUpdating();
CallConvertIfAddrs(manager, list, true, &result);
EXPECT_EQ(1U, result.size());
bool changed;
// This ensures we release the objects created in CallConvertIfAddrs.
MergeNetworkList(manager, std::move(result), &changed);
ReleaseIfAddrs(list);
}
TEST_F(NetworkTest, TestConvertIfAddrsNotRunning) {
ifaddrs list;
memset(&list, 0, sizeof(list));
list.ifa_name = const_cast<char*>("test_iface");
sockaddr ifa_addr;
ifa_addr.sa_family = AF_UNSPEC;
sockaddr ifa_netmask;
list.ifa_addr = &ifa_addr;
list.ifa_netmask = &ifa_netmask;
std::vector<std::unique_ptr<Network>> result;
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&socket_server);
manager.StartUpdating();
CallConvertIfAddrs(manager, &list, true, &result);
EXPECT_TRUE(result.empty());
}
TEST_F(NetworkTest, TestConvertIfAddrsGetsNullAddr) {
ifaddrs list;
memset(&list, 0, sizeof(list));
list.ifa_name = const_cast<char*>("test_iface");
list.ifa_addr = nullptr;
list.ifa_netmask = nullptr;
std::vector<std::unique_ptr<Network>> result;
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&socket_server);
manager.StartUpdating();
CallConvertIfAddrs(manager, &list, true, &result);
EXPECT_TRUE(result.empty());
}
// Tests that the network type can be determined from the network monitor when
// it would otherwise be unknown.
TEST_F(NetworkTest, TestGetAdapterTypeFromNetworkMonitor) {
char if_name[20] = "wifi0";
std::string ipv6_address = "1000:2000:3000:4000:0:0:0:1";
std::string ipv6_mask = "FFFF:FFFF:FFFF:FFFF::";
PhysicalSocketServer socket_server;
BasicNetworkManager manager_without_monitor(nullptr, &socket_server,
&field_trials_);
manager_without_monitor.StartUpdating();
// A network created without a network monitor will get UNKNOWN type.
ifaddrs* addr_list = InstallIpv6Network(if_name, ipv6_address, ipv6_mask,
manager_without_monitor);
EXPECT_EQ(ADAPTER_TYPE_UNKNOWN, GetAdapterType(manager_without_monitor));
ReleaseIfAddrs(addr_list);
// With the fake network monitor the type should be correctly determined.
FakeNetworkMonitorFactory factory;
BasicNetworkManager manager_with_monitor(&factory, &socket_server,
&field_trials_);
manager_with_monitor.StartUpdating();
// Add the same ipv6 address as before but it has the right network type
// detected by the network monitor now.
addr_list = InstallIpv6Network(if_name, ipv6_address, ipv6_mask,
manager_with_monitor);
EXPECT_EQ(ADAPTER_TYPE_WIFI, GetAdapterType(manager_with_monitor));
ReleaseIfAddrs(addr_list);
}
// Test that the network type can be determined based on name matching in
// a few cases. Note that UNKNOWN type for non-matching strings has been tested
// in the above test.
TEST_F(NetworkTest, TestGetAdapterTypeFromNameMatching) {
std::string ipv4_address1 = "192.0.0.121";
std::string ipv4_mask = "255.255.255.0";
std::string ipv6_address1 = "1000:2000:3000:4000:0:0:0:1";
std::string ipv6_address2 = "1000:2000:3000:8000:0:0:0:1";
std::string ipv6_mask = "FFFF:FFFF:FFFF:FFFF::";
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&socket_server);
manager.StartUpdating();
// IPSec interface; name is in form "ipsec<index>".
char if_name[20] = "ipsec11";
ifaddrs* addr_list =
InstallIpv6Network(if_name, ipv6_address1, ipv6_mask, manager);
EXPECT_EQ(ADAPTER_TYPE_VPN, GetAdapterType(manager));
ClearNetworks(manager);
ReleaseIfAddrs(addr_list);
strcpy(if_name, "lo0");
addr_list = InstallIpv6Network(if_name, ipv6_address1, ipv6_mask, manager);
EXPECT_EQ(ADAPTER_TYPE_LOOPBACK, GetAdapterType(manager));
ClearNetworks(manager);
ReleaseIfAddrs(addr_list);
strcpy(if_name, "eth0");
addr_list = InstallIpv4Network(if_name, ipv4_address1, ipv4_mask, manager);
EXPECT_EQ(ADAPTER_TYPE_ETHERNET, GetAdapterType(manager));
ClearNetworks(manager);
ReleaseIfAddrs(addr_list);
strcpy(if_name, "wlan0");
addr_list = InstallIpv6Network(if_name, ipv6_address1, ipv6_mask, manager);
EXPECT_EQ(ADAPTER_TYPE_WIFI, GetAdapterType(manager));
ClearNetworks(manager);
ReleaseIfAddrs(addr_list);
#if defined(WEBRTC_IOS)
strcpy(if_name, "pdp_ip0");
addr_list = InstallIpv6Network(if_name, ipv6_address1, ipv6_mask, manager);
EXPECT_EQ(ADAPTER_TYPE_CELLULAR, GetAdapterType(manager));
ClearNetworks(manager);
ReleaseIfAddrs(addr_list);
strcpy(if_name, "en0");
addr_list = InstallIpv6Network(if_name, ipv6_address1, ipv6_mask, manager);
EXPECT_EQ(ADAPTER_TYPE_WIFI, GetAdapterType(manager));
ClearNetworks(manager);
ReleaseIfAddrs(addr_list);
#elif defined(WEBRTC_ANDROID)
strcpy(if_name, "rmnet0");
addr_list = InstallIpv6Network(if_name, ipv6_address1, ipv6_mask, manager);
EXPECT_EQ(ADAPTER_TYPE_CELLULAR, GetAdapterType(manager));
ClearNetworks(manager);
ReleaseIfAddrs(addr_list);
strcpy(if_name, "v4-rmnet_data0");
addr_list = InstallIpv6Network(if_name, ipv6_address2, ipv6_mask, manager);
EXPECT_EQ(ADAPTER_TYPE_CELLULAR, GetAdapterType(manager));
ClearNetworks(manager);
ReleaseIfAddrs(addr_list);
strcpy(if_name, "clat4");
addr_list = InstallIpv4Network(if_name, ipv4_address1, ipv4_mask, manager);
EXPECT_EQ(ADAPTER_TYPE_CELLULAR, GetAdapterType(manager));
ClearNetworks(manager);
ReleaseIfAddrs(addr_list);
#endif
}
// Test that an adapter won't be included in the network list if there's a
// network monitor that says it's unavailable.
TEST_F(NetworkTest, TestNetworkMonitorIsAdapterAvailable) {
char if_name1[20] = "pdp_ip0";
char if_name2[20] = "pdp_ip1";
ifaddrs* list = nullptr;
list = AddIpv6Address(list, if_name1, "1000:2000:3000:4000:0:0:0:1",
"FFFF:FFFF:FFFF:FFFF::", 0);
list = AddIpv6Address(list, if_name2, "1000:2000:3000:4000:0:0:0:2",
"FFFF:FFFF:FFFF:FFFF::", 0);
std::vector<std::unique_ptr<Network>> result;
// Sanity check that both interfaces are included by default.
FakeNetworkMonitorFactory factory;
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&factory, &socket_server, &field_trials_);
manager.StartUpdating();
CallConvertIfAddrs(manager, list, /*include_ignored=*/false, &result);
EXPECT_EQ(2u, result.size());
bool changed;
// This ensures we release the objects created in CallConvertIfAddrs.
MergeNetworkList(manager, std::move(result), &changed);
result.clear();
// Now simulate one interface being unavailable.
FakeNetworkMonitor* network_monitor = GetNetworkMonitor(manager);
network_monitor->set_unavailable_adapters({if_name1});
CallConvertIfAddrs(manager, list, /*include_ignored=*/false, &result);
EXPECT_EQ(1u, result.size());
EXPECT_EQ(if_name2, result[0]->name());
MergeNetworkList(manager, std::move(result), &changed);
ReleaseIfAddrs(list);
}
#endif // defined(WEBRTC_POSIX)
// Test MergeNetworkList successfully combines all IPs for the same
// prefix/length into a single Network.
TEST_F(NetworkTest, TestMergeNetworkList) {
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&socket_server);
std::vector<std::unique_ptr<Network>> list;
// Create 2 IPAddress classes with only last digit different.
IPAddress ip1, ip2;
EXPECT_TRUE(IPFromString("2400:4030:1:2c00:be30:0:0:1", &ip1));
EXPECT_TRUE(IPFromString("2400:4030:1:2c00:be30:0:0:2", &ip2));
// Create 2 networks with the same prefix and length.
auto net1 = std::make_unique<Network>("em1", "em1", TruncateIP(ip1, 64), 64);
auto net2 = std::make_unique<Network>("em1", "em1", TruncateIP(ip1, 64), 64);
// Add different IP into each.
net1->AddIP(ip1);
net2->AddIP(ip2);
list.push_back(std::move(net1));
list.push_back(std::move(net2));
bool changed;
MergeNetworkList(manager, std::move(list), &changed);
EXPECT_TRUE(changed);
std::vector<const Network*> list2 = manager.GetNetworks();
// Make sure the resulted networklist has only 1 element and 2
// IPAddresses.
EXPECT_EQ(list2.size(), 1uL);
EXPECT_EQ(list2[0]->GetIPs().size(), 2uL);
EXPECT_THAT(list2[0]->GetIPs(), UnorderedElementsAre(InterfaceAddress(ip1),
InterfaceAddress(ip2)));
}
// Test that MergeNetworkList successfully detects the change if
// a network becomes inactive and then active again.
TEST_F(NetworkTest, TestMergeNetworkListWithInactiveNetworks) {
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&socket_server);
Network network1("test_wifi", "Test Network Adapter 1",
IPAddress(0x12345600U), 24);
Network network2("test_eth0", "Test Network Adapter 2",
IPAddress(0x00010000U), 16);
network1.AddIP(IPAddress(0x12345678));
network2.AddIP(IPAddress(0x00010004));
std::vector<std::unique_ptr<Network>> list;
auto net1 = std::make_unique<Network>(network1);
const Network* const net1_ptr = net1.get();
list.push_back(std::move(net1));
bool changed;
MergeNetworkList(manager, std::move(list), &changed);
EXPECT_TRUE(changed);
list.clear();
std::vector<const Network*> current = manager.GetNetworks();
ASSERT_EQ(1U, current.size());
EXPECT_EQ(net1_ptr, current[0]);
list.clear();
auto net2 = std::make_unique<Network>(network2);
const Network* const net2_ptr = net2.get();
list.push_back(std::move(net2));
MergeNetworkList(manager, std::move(list), &changed);
EXPECT_TRUE(changed);
list.clear();
current = manager.GetNetworks();
ASSERT_EQ(1U, current.size());
EXPECT_EQ(net2_ptr, current[0]);
// Now network1 is inactive. Try to merge it again.
list.clear();
list.push_back(std::make_unique<Network>(network1));
MergeNetworkList(manager, std::move(list), &changed);
EXPECT_TRUE(changed);
list.clear();
current = manager.GetNetworks();
ASSERT_EQ(1U, current.size());
EXPECT_TRUE(current[0]->active());
EXPECT_EQ(net1_ptr, current[0]);
}
// Test that the filtering logic follows the defined ruleset in network.h.
TEST_F(NetworkTest, TestIPv6Selection) {
InterfaceAddress ip;
std::string ipstr;
ipstr = "2401:fa00:4:1000:be30:5bff:fee5:c3";
ASSERT_TRUE(IPFromString(ipstr, IPV6_ADDRESS_FLAG_DEPRECATED, &ip));
// Create a network with this prefix.
Network ipv6_network("test_eth0", "Test NetworkAdapter", TruncateIP(ip, 64),
64);
EXPECT_EQ(AF_INET6, ipv6_network.family());
// When there is no address added, it should return an unspecified
// address.
EXPECT_EQ(ipv6_network.GetBestIP(), IPAddress());
EXPECT_TRUE(IPIsUnspec(ipv6_network.GetBestIP()));
// Deprecated one should not be returned.
ipv6_network.AddIP(ip);
EXPECT_EQ(ipv6_network.GetBestIP(), IPAddress());
// Add ULA one. ULA is unique local address which is starting either
// with 0xfc or 0xfd.
ipstr = "fd00:fa00:4:1000:be30:5bff:fee5:c4";
ASSERT_TRUE(IPFromString(ipstr, IPV6_ADDRESS_FLAG_NONE, &ip));
ipv6_network.AddIP(ip);
EXPECT_EQ(ipv6_network.GetBestIP(), static_cast<IPAddress>(ip));
// Add global one.
ipstr = "2401:fa00:4:1000:be30:5bff:fee5:c5";
ASSERT_TRUE(IPFromString(ipstr, IPV6_ADDRESS_FLAG_NONE, &ip));
ipv6_network.AddIP(ip);
EXPECT_EQ(ipv6_network.GetBestIP(), static_cast<IPAddress>(ip));
// Add global dynamic temporary one.
ipstr = "2401:fa00:4:1000:be30:5bff:fee5:c6";
ASSERT_TRUE(IPFromString(ipstr, IPV6_ADDRESS_FLAG_TEMPORARY, &ip));
ipv6_network.AddIP(ip);
EXPECT_EQ(ipv6_network.GetBestIP(), static_cast<IPAddress>(ip));
}
// Test that the filtering logic follows the defined ruleset in network.h.
TEST_F(NetworkTest, TestGetBestIPWithPreferGlobalIPv6ToLinkLocalEnabled) {
InterfaceAddress ip, link_local;
std::string ipstr;
ipstr = "2401:fa00:4:1000:be30:5bff:fee5:c3";
ASSERT_TRUE(IPFromString(ipstr, IPV6_ADDRESS_FLAG_DEPRECATED, &ip));
// Create a network with this prefix.
Network ipv6_network("test_eth0", "Test NetworkAdapter", TruncateIP(ip, 64),
64, ADAPTER_TYPE_UNKNOWN);
// When there is no address added, it should return an unspecified
// address.
EXPECT_EQ(ipv6_network.GetBestIP(), IPAddress());
EXPECT_TRUE(IPIsUnspec(ipv6_network.GetBestIP()));
// Deprecated one should not be returned.
ipv6_network.AddIP(ip);
EXPECT_EQ(ipv6_network.GetBestIP(), IPAddress());
// Add ULA one. ULA is unique local address which is starting either
// with 0xfc or 0xfd.
ipstr = "fd00:fa00:4:1000:be30:5bff:fee5:c4";
ASSERT_TRUE(IPFromString(ipstr, IPV6_ADDRESS_FLAG_NONE, &ip));
ipv6_network.AddIP(ip);
EXPECT_EQ(ipv6_network.GetBestIP(), static_cast<IPAddress>(ip));
// Add link local one.
ipstr = "fe80::aabb:ccff:fedd:eeff";
ASSERT_TRUE(IPFromString(ipstr, IPV6_ADDRESS_FLAG_NONE, &link_local));
ipv6_network.AddIP(link_local);
EXPECT_EQ(ipv6_network.GetBestIP(), static_cast<IPAddress>(link_local));
// Add global one.
ipstr = "2401:fa00:4:1000:be30:5bff:fee5:c5";
ASSERT_TRUE(IPFromString(ipstr, IPV6_ADDRESS_FLAG_NONE, &ip));
ipv6_network.AddIP(ip);
EXPECT_EQ(ipv6_network.GetBestIP(), static_cast<IPAddress>(ip));
// Add another link local address, then the compatible address is still global
// one.
ipstr = "fe80::aabb:ccff:fedd:eedd";
ASSERT_TRUE(IPFromString(ipstr, IPV6_ADDRESS_FLAG_NONE, &link_local));
ipv6_network.AddIP(link_local);
EXPECT_EQ(ipv6_network.GetBestIP(), static_cast<IPAddress>(ip));
// Add global dynamic temporary one.
ipstr = "2401:fa00:4:1000:be30:5bff:fee5:c6";
ASSERT_TRUE(IPFromString(ipstr, IPV6_ADDRESS_FLAG_TEMPORARY, &ip));
ipv6_network.AddIP(ip);
EXPECT_EQ(ipv6_network.GetBestIP(), static_cast<IPAddress>(ip));
// Add another link local address, then the compatible address is still global
// dynamic one.
ipstr = "fe80::aabb:ccff:fedd:eedd";
ASSERT_TRUE(IPFromString(ipstr, IPV6_ADDRESS_FLAG_NONE, &link_local));
ipv6_network.AddIP(link_local);
EXPECT_EQ(ipv6_network.GetBestIP(), static_cast<IPAddress>(ip));
}
TEST_F(NetworkTest, TestNetworkMonitoring) {
FakeNetworkMonitorFactory factory;
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&factory, &socket_server, &field_trials_);
manager.SignalNetworksChanged.connect(static_cast<NetworkTest*>(this),
&NetworkTest::OnNetworksChanged);
manager.StartUpdating();
FakeNetworkMonitor* network_monitor = GetNetworkMonitor(manager);
EXPECT_TRUE(network_monitor && network_monitor->started());
EXPECT_TRUE_WAIT(callback_called_, 1000);
callback_called_ = false;
// Clear the networks so that there will be network changes below.
ClearNetworks(manager);
// Network manager is started, so the callback is called when the network
// monitor fires the network-change event.
network_monitor->InovkeNetworksChangedCallbackForTesting();
EXPECT_TRUE_WAIT(callback_called_, 1000);
// Network manager is stopped.
manager.StopUpdating();
EXPECT_FALSE(GetNetworkMonitor(manager)->started());
}
// Fails on Android: https://bugs.chromium.org/p/webrtc/issues/detail?id=4364.
#if defined(WEBRTC_ANDROID)
#define MAYBE_DefaultLocalAddress DISABLED_DefaultLocalAddress
#else
#define MAYBE_DefaultLocalAddress DefaultLocalAddress
#endif
TEST_F(NetworkTest, MAYBE_DefaultLocalAddress) {
MAYBE_SKIP_IPV4;
IPAddress ip;
FakeNetworkMonitorFactory factory;
PhysicalSocketServer socket_server;
TestBasicNetworkManager manager(&factory, &socket_server, field_trials_);
manager.SignalNetworksChanged.connect(static_cast<NetworkTest*>(this),
&NetworkTest::OnNetworksChanged);
manager.StartUpdating();
EXPECT_TRUE_WAIT(callback_called_, 1000);
// Make sure we can query default local address when an address for such
// address family exists.
std::vector<const Network*> networks = manager.GetNetworks();
EXPECT_TRUE(!networks.empty());
for (const Network* network : networks) {
if (network->GetBestIP().family() == AF_INET) {
EXPECT_TRUE(QueryDefaultLocalAddress(manager, AF_INET) != IPAddress());
} else if (network->GetBestIP().family() == AF_INET6 &&
!IPIsLoopback(network->GetBestIP())) {
// Existence of an IPv6 loopback address doesn't mean it has IPv6 network
// enabled.
EXPECT_TRUE(QueryDefaultLocalAddress(manager, AF_INET6) != IPAddress());
}
}
// GetDefaultLocalAddress should return the valid default address after set.
manager.set_default_local_addresses(GetLoopbackIP(AF_INET),
GetLoopbackIP(AF_INET6));
EXPECT_TRUE(manager.GetDefaultLocalAddress(AF_INET, &ip));
EXPECT_EQ(ip, GetLoopbackIP(AF_INET));
EXPECT_TRUE(manager.GetDefaultLocalAddress(AF_INET6, &ip));
EXPECT_EQ(ip, GetLoopbackIP(AF_INET6));
// More tests on GetDefaultLocalAddress with ipv6 addresses where the set
// default address may be different from the best IP address of any network.
InterfaceAddress ip1;
EXPECT_TRUE(IPFromString("abcd::1234:5678:abcd:1111",
IPV6_ADDRESS_FLAG_TEMPORARY, &ip1));
// Create a network with a prefix of ip1.
Network ipv6_network("test_eth0", "Test NetworkAdapter", TruncateIP(ip1, 64),
64);
IPAddress ip2;
EXPECT_TRUE(IPFromString("abcd::1234:5678:abcd:2222", &ip2));
ipv6_network.AddIP(ip1);
ipv6_network.AddIP(ip2);
std::vector<std::unique_ptr<Network>> list;
list.push_back(std::make_unique<Network>(ipv6_network));
bool changed;
MergeNetworkList(manager, std::move(list), &changed);
// If the set default address is not in any network, GetDefaultLocalAddress
// should return it.
IPAddress ip3;
EXPECT_TRUE(IPFromString("abcd::1234:5678:abcd:3333", &ip3));
manager.set_default_local_addresses(GetLoopbackIP(AF_INET), ip3);
EXPECT_TRUE(manager.GetDefaultLocalAddress(AF_INET6, &ip));
EXPECT_EQ(ip3, ip);
// If the set default address is in a network, GetDefaultLocalAddress will
// return the best IP in that network.
manager.set_default_local_addresses(GetLoopbackIP(AF_INET), ip2);
EXPECT_TRUE(manager.GetDefaultLocalAddress(AF_INET6, &ip));
EXPECT_EQ(static_cast<IPAddress>(ip1), ip);
manager.StopUpdating();
}
// Test that MergeNetworkList does not set change = true
// when changing from cellular_X to cellular_Y.
TEST_F(NetworkTest, TestWhenNetworkListChangeReturnsChangedFlag) {
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&socket_server);
IPAddress ip1;
EXPECT_TRUE(IPFromString("2400:4030:1:2c00:be30:0:0:1", &ip1));
auto net1 = std::make_unique<Network>("em1", "em1", TruncateIP(ip1, 64), 64);
net1->set_type(ADAPTER_TYPE_CELLULAR_3G);
net1->AddIP(ip1);
std::vector<std::unique_ptr<Network>> list;
list.push_back(std::move(net1));
{
bool changed;
MergeNetworkList(manager, std::move(list), &changed);
EXPECT_TRUE(changed);
std::vector<const Network*> list2 = manager.GetNetworks();
EXPECT_EQ(list2.size(), 1uL);
EXPECT_EQ(ADAPTER_TYPE_CELLULAR_3G, list2[0]->type());
}
// Modify net1 from 3G to 4G
{
auto net2 =
std::make_unique<Network>("em1", "em1", TruncateIP(ip1, 64), 64);
net2->set_type(ADAPTER_TYPE_CELLULAR_4G);
net2->AddIP(ip1);
list.clear();
list.push_back(std::move(net2));
bool changed;
MergeNetworkList(manager, std::move(list), &changed);
// Change from 3G to 4G shall not trigger OnNetworksChanged,
// i.e changed = false.
EXPECT_FALSE(changed);
std::vector<const Network*> list2 = manager.GetNetworks();
ASSERT_EQ(list2.size(), 1uL);
EXPECT_EQ(ADAPTER_TYPE_CELLULAR_4G, list2[0]->type());
}
// Don't modify.
{
auto net2 =
std::make_unique<Network>("em1", "em1", TruncateIP(ip1, 64), 64);
net2->set_type(ADAPTER_TYPE_CELLULAR_4G);
net2->AddIP(ip1);
list.clear();
list.push_back(std::move(net2));
bool changed;
MergeNetworkList(manager, std::move(list), &changed);
// No change.
EXPECT_FALSE(changed);
std::vector<const Network*> list2 = manager.GetNetworks();
ASSERT_EQ(list2.size(), 1uL);
EXPECT_EQ(ADAPTER_TYPE_CELLULAR_4G, list2[0]->type());
}
}
#if defined(WEBRTC_POSIX)
TEST_F(NetworkTest, IgnoresMACBasedIPv6Address) {
std::string ipv6_address = "2607:fc20:f340:1dc8:214:22ff:fe01:2345";
std::string ipv6_mask = "FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF";
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&socket_server);
manager.StartUpdating();
// IPSec interface; name is in form "ipsec<index>".
char if_name[20] = "ipsec11";
ifaddrs* addr_list =
InstallIpv6Network(if_name, ipv6_address, ipv6_mask, manager);
std::vector<const Network*> list = manager.GetNetworks();
EXPECT_EQ(list.size(), 0u);
ReleaseIfAddrs(addr_list);
}
TEST_F(NetworkTest, WebRTC_AllowMACBasedIPv6Address) {
webrtc::test::ScopedFieldTrials field_trials(
"WebRTC-AllowMACBasedIPv6/Enabled/");
std::string ipv6_address = "2607:fc20:f340:1dc8:214:22ff:fe01:2345";
std::string ipv6_mask = "FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF";
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&socket_server);
manager.StartUpdating();
// IPSec interface; name is in form "ipsec<index>".
char if_name[20] = "ipsec11";
ifaddrs* addr_list =
InstallIpv6Network(if_name, ipv6_address, ipv6_mask, manager);
std::vector<const Network*> list = manager.GetNetworks();
EXPECT_EQ(list.size(), 1u);
ReleaseIfAddrs(addr_list);
}
#endif
#if defined(WEBRTC_POSIX)
TEST_F(NetworkTest, WebRTC_BindUsingInterfaceName) {
char if_name1[20] = "wlan0";
char if_name2[20] = "v4-wlan0";
ifaddrs* list = nullptr;
list = AddIpv6Address(list, if_name1, "1000:2000:3000:4000:0:0:0:1",
"FFFF:FFFF:FFFF:FFFF::", 0);
list = AddIpv4Address(list, if_name2, "192.168.0.2", "255.255.255.255");
std::vector<std::unique_ptr<Network>> result;
// Sanity check that both interfaces are included by default.
FakeNetworkMonitorFactory factory;
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&factory, &socket_server, &field_trials_);
manager.StartUpdating();
CallConvertIfAddrs(manager, list, /*include_ignored=*/false, &result);
EXPECT_EQ(2u, result.size());
ReleaseIfAddrs(list);
bool changed;
// This ensures we release the objects created in CallConvertIfAddrs.
MergeNetworkList(manager, std::move(result), &changed);
result.clear();
FakeNetworkMonitor* network_monitor = GetNetworkMonitor(manager);
IPAddress ipv6;
EXPECT_TRUE(IPFromString("1000:2000:3000:4000:0:0:0:1", &ipv6));
IPAddress ipv4;
EXPECT_TRUE(IPFromString("192.168.0.2", &ipv4));
// The network monitor only knwos about the ipv6 address, interface.
network_monitor->set_adapters({"wlan0"});
network_monitor->set_ip_addresses({ipv6});
EXPECT_EQ(manager.BindSocketToNetwork(/* fd */ 77, ipv6),
NetworkBindingResult::SUCCESS);
// But it will bind anyway using string matching...
EXPECT_EQ(manager.BindSocketToNetwork(/* fd */ 77, ipv4),
NetworkBindingResult::SUCCESS);
}
#endif
TEST_F(NetworkTest, NetworkCostVpn_Default) {
IPAddress ip1;
EXPECT_TRUE(IPFromString("2400:4030:1:2c00:be30:0:0:1", &ip1));
webrtc::test::ScopedKeyValueConfig field_trials;
Network* net1 = new Network("em1", "em1", TruncateIP(ip1, 64), 64);
net1->set_type(ADAPTER_TYPE_VPN);
net1->set_underlying_type_for_vpn(ADAPTER_TYPE_ETHERNET);
Network* net2 = new Network("em1", "em1", TruncateIP(ip1, 64), 64);
net2->set_type(ADAPTER_TYPE_ETHERNET);
EXPECT_EQ(net1->GetCost(field_trials), net2->GetCost(field_trials));
delete net1;
delete net2;
}
TEST_F(NetworkTest, NetworkCostVpn_VpnMoreExpensive) {
webrtc::test::ScopedKeyValueConfig field_trials(
"WebRTC-AddNetworkCostToVpn/Enabled/");
IPAddress ip1;
EXPECT_TRUE(IPFromString("2400:4030:1:2c00:be30:0:0:1", &ip1));
Network* net1 = new Network("em1", "em1", TruncateIP(ip1, 64), 64);
net1->set_type(ADAPTER_TYPE_VPN);
net1->set_underlying_type_for_vpn(ADAPTER_TYPE_ETHERNET);
Network* net2 = new Network("em1", "em1", TruncateIP(ip1, 64), 64);
net2->set_type(ADAPTER_TYPE_ETHERNET);
EXPECT_GT(net1->GetCost(field_trials), net2->GetCost(field_trials));
delete net1;
delete net2;
}
TEST_F(NetworkTest, GuessAdapterFromNetworkCost) {
webrtc::test::ScopedKeyValueConfig field_trials(
"WebRTC-AddNetworkCostToVpn/Enabled/"
"WebRTC-UseDifferentiatedCellularCosts/Enabled/");
IPAddress ip1;
EXPECT_TRUE(IPFromString("2400:4030:1:2c00:be30:0:0:1", &ip1));
for (auto type : kAllAdapterTypes) {
if (type == rtc::ADAPTER_TYPE_VPN)
continue;
Network net1("em1", "em1", TruncateIP(ip1, 64), 64);
net1.set_type(type);
auto [guess, vpn] =
Network::GuessAdapterFromNetworkCost(net1.GetCost(field_trials));
EXPECT_FALSE(vpn);
if (type == rtc::ADAPTER_TYPE_LOOPBACK) {
EXPECT_EQ(guess, rtc::ADAPTER_TYPE_ETHERNET);
} else {
EXPECT_EQ(type, guess);
}
}
// VPN
for (auto type : kAllAdapterTypes) {
if (type == rtc::ADAPTER_TYPE_VPN)
continue;
Network net1("em1", "em1", TruncateIP(ip1, 64), 64);
net1.set_type(rtc::ADAPTER_TYPE_VPN);
net1.set_underlying_type_for_vpn(type);
auto [guess, vpn] =
Network::GuessAdapterFromNetworkCost(net1.GetCost(field_trials));
EXPECT_TRUE(vpn);
if (type == rtc::ADAPTER_TYPE_LOOPBACK) {
EXPECT_EQ(guess, rtc::ADAPTER_TYPE_ETHERNET);
} else {
EXPECT_EQ(type, guess);
}
}
}
TEST_F(NetworkTest, VpnList) {
PhysicalSocketServer socket_server;
{
BasicNetworkManager manager(&socket_server);
manager.set_vpn_list({NetworkMask(IPFromString("192.168.0.0"), 16)});
manager.StartUpdating();
EXPECT_TRUE(manager.IsConfiguredVpn(IPFromString("192.168.1.1"), 32));
EXPECT_TRUE(manager.IsConfiguredVpn(IPFromString("192.168.12.1"), 24));
EXPECT_TRUE(manager.IsConfiguredVpn(IPFromString("192.168.0.0"), 16));
EXPECT_TRUE(manager.IsConfiguredVpn(IPFromString("192.168.0.0"), 24));
EXPECT_FALSE(manager.IsConfiguredVpn(IPFromString("192.133.1.1"), 32));
EXPECT_FALSE(manager.IsConfiguredVpn(IPFromString("192.133.0.0"), 16));
EXPECT_FALSE(manager.IsConfiguredVpn(IPFromString("192.168.0.0"), 15));
}
{
BasicNetworkManager manager(&socket_server);
manager.set_vpn_list({NetworkMask(IPFromString("192.168.0.0"), 24)});
manager.StartUpdating();
EXPECT_FALSE(manager.IsConfiguredVpn(IPFromString("192.168.1.1"), 32));
EXPECT_TRUE(manager.IsConfiguredVpn(IPFromString("192.168.0.1"), 32));
}
}
#if defined(WEBRTC_POSIX)
// TODO(webrtc:13114): Implement the InstallIpv4Network for windows.
TEST_F(NetworkTest, VpnListOverrideAdapterType) {
PhysicalSocketServer socket_server;
BasicNetworkManager manager(&socket_server);
manager.set_vpn_list({NetworkMask(IPFromString("192.168.0.0"), 16)});
manager.StartUpdating();
char if_name[20] = "eth0";
auto addr_list =
InstallIpv4Network(if_name, "192.168.1.23", "255.255.255.255", manager);
std::vector<const Network*> list = manager.GetNetworks();
ASSERT_EQ(1u, list.size());
EXPECT_EQ(ADAPTER_TYPE_VPN, list[0]->type());
EXPECT_EQ(ADAPTER_TYPE_ETHERNET, list[0]->underlying_type_for_vpn());
ClearNetworks(manager);
ReleaseIfAddrs(addr_list);
}
#endif // defined(WEBRTC_POSIX)
TEST_F(NetworkTest, HardcodedVpn) {
const uint8_t cisco[] = {0x0, 0x5, 0x9A, 0x3C, 0x7A, 0x0};
const uint8_t global[] = {0x2, 0x50, 0x41, 0x0, 0x0, 0x1};
const uint8_t unknown[] = {0x2, 0x50, 0x41, 0x0, 0x0, 0x0};
const uint8_t five_bytes[] = {0x2, 0x50, 0x41, 0x0, 0x0};
EXPECT_TRUE(NetworkManagerBase::IsVpnMacAddress(cisco));
EXPECT_TRUE(NetworkManagerBase::IsVpnMacAddress(global));
EXPECT_FALSE(NetworkManagerBase::IsVpnMacAddress(
rtc::ArrayView<const uint8_t>(cisco, 5)));
EXPECT_FALSE(NetworkManagerBase::IsVpnMacAddress(five_bytes));
EXPECT_FALSE(NetworkManagerBase::IsVpnMacAddress(unknown));
EXPECT_FALSE(NetworkManagerBase::IsVpnMacAddress(nullptr));
}
TEST(CompareNetworks, IrreflexivityTest) {
// x < x is false
auto network = std::make_unique<Network>(
"test_eth0", "Test Network Adapter 1", IPAddress(0x12345600U), 24);
EXPECT_FALSE(webrtc_network_internal::CompareNetworks(network, network));
}
TEST(CompareNetworks, AsymmetryTest) {
// x < y and y < x cannot be both true
auto network_a = std::make_unique<Network>(
"test_eth0", "Test Network Adapter 1", IPAddress(0x12345600U), 24);
auto network_b = std::make_unique<Network>(
"test_eth1", "Test Network Adapter 1", IPAddress(0x12345600U), 24);
EXPECT_TRUE(webrtc_network_internal::CompareNetworks(network_a, network_b));
EXPECT_FALSE(webrtc_network_internal::CompareNetworks(network_b, network_a));
auto network_c = std::make_unique<Network>(
"test_eth0", "Test Network Adapter 1", IPAddress(0x12345500U), 24);
auto network_d = std::make_unique<Network>(
"test_eth0", "Test Network Adapter 1", IPAddress(0x12345600U), 24);
EXPECT_TRUE(webrtc_network_internal::CompareNetworks(network_c, network_d));
EXPECT_FALSE(webrtc_network_internal::CompareNetworks(network_d, network_c));
}
TEST(CompareNetworks, TransitivityTest) {
// x < y and y < z imply x < z
auto network_a = std::make_unique<Network>(
"test_eth0", "Test Network Adapter 1", IPAddress(0x12345600U), 24);
auto network_b = std::make_unique<Network>(
"test_eth1", "Test Network Adapter 1", IPAddress(0x12345600U), 24);
auto network_c = std::make_unique<Network>(
"test_eth2", "Test Network Adapter 1", IPAddress(0x12345600U), 24);
EXPECT_TRUE(webrtc_network_internal::CompareNetworks(network_a, network_b));
EXPECT_TRUE(webrtc_network_internal::CompareNetworks(network_b, network_c));
auto network_d = std::make_unique<Network>(
"test_eth0", "Test Network Adapter 1", IPAddress(0x12345600U), 24);
auto network_e = std::make_unique<Network>(
"test_eth0", "Test Network Adapter 1", IPAddress(0x12345700U), 24);
auto network_f = std::make_unique<Network>(
"test_eth0", "Test Network Adapter 1", IPAddress(0x12345800U), 24);
EXPECT_TRUE(webrtc_network_internal::CompareNetworks(network_d, network_e));
EXPECT_TRUE(webrtc_network_internal::CompareNetworks(network_e, network_f));
EXPECT_TRUE(webrtc_network_internal::CompareNetworks(network_d, network_f));
EXPECT_TRUE(webrtc_network_internal::CompareNetworks(network_a, network_c));
}
TEST(CompareNetworks, TransitivityOfIncomparabilityTest) {
// x == y and y == z imply x == z,
// where x == y means x < y and y < x are both false
auto network_a = std::make_unique<Network>(
"test_eth0", "Test Network Adapter 1", IPAddress(0x12345600U), 23);
auto network_b = std::make_unique<Network>(
"test_eth0", "Test Network Adapter 1", IPAddress(0x12345600U), 24);
auto network_c = std::make_unique<Network>(
"test_eth0", "Test Network Adapter 1", IPAddress(0x12345700U), 24);
// network_a < network_b
EXPECT_TRUE(webrtc_network_internal::CompareNetworks(network_a, network_b));
EXPECT_FALSE(webrtc_network_internal::CompareNetworks(network_b, network_a));
// network_b < network_c
EXPECT_TRUE(webrtc_network_internal::CompareNetworks(network_b, network_c));
EXPECT_FALSE(webrtc_network_internal::CompareNetworks(network_c, network_b));
// network_a < network_c
EXPECT_TRUE(webrtc_network_internal::CompareNetworks(network_a, network_c));
EXPECT_FALSE(webrtc_network_internal::CompareNetworks(network_c, network_a));
auto network_d = std::make_unique<Network>(
"test_eth0", "Test Network Adapter 1", IPAddress(0x12345600U), 24);
auto network_e = std::make_unique<Network>(
"test_eth0", "Test Network Adapter 1", IPAddress(0x12345600U), 24);
auto network_f = std::make_unique<Network>(
"test_eth0", "Test Network Adapter 1", IPAddress(0x12345600U), 24);
// network_d == network_e
EXPECT_FALSE(webrtc_network_internal::CompareNetworks(network_d, network_e));
EXPECT_FALSE(webrtc_network_internal::CompareNetworks(network_e, network_d));
// network_e == network_f
EXPECT_FALSE(webrtc_network_internal::CompareNetworks(network_e, network_f));
EXPECT_FALSE(webrtc_network_internal::CompareNetworks(network_f, network_e));
// network_d == network_f
EXPECT_FALSE(webrtc_network_internal::CompareNetworks(network_d, network_f));
EXPECT_FALSE(webrtc_network_internal::CompareNetworks(network_f, network_d));
}
} // namespace rtc