blob: eb10aef34c152235499195fbd53674301387da15 [file] [log] [blame]
/*
* Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "test/pc/e2e/analyzer/video/default_video_quality_analyzer_frames_comparator.h"
#include <algorithm>
#include <map>
#include <string>
#include <utility>
#include <vector>
#include "absl/types/optional.h"
#include "api/array_view.h"
#include "api/scoped_refptr.h"
#include "api/video/i420_buffer.h"
#include "api/video/video_frame_type.h"
#include "common_video/libyuv/include/webrtc_libyuv.h"
#include "rtc_base/checks.h"
#include "rtc_base/platform_thread.h"
#include "rtc_base/synchronization/mutex.h"
#include "rtc_tools/frame_analyzer/video_geometry_aligner.h"
#include "test/pc/e2e/analyzer/video/default_video_quality_analyzer_internal_shared_objects.h"
#include "test/pc/e2e/analyzer/video/default_video_quality_analyzer_shared_objects.h"
#include "test/pc/e2e/metric_metadata_keys.h"
namespace webrtc {
namespace {
using ::webrtc::webrtc_pc_e2e::SampleMetadataKey;
constexpr TimeDelta kFreezeThreshold = TimeDelta::Millis(150);
constexpr int kMaxActiveComparisons = 10;
constexpr int kMillisInSecond = 1000;
SamplesStatsCounter::StatsSample StatsSample(
double value,
Timestamp sampling_time,
std::map<std::string, std::string> metadata) {
return SamplesStatsCounter::StatsSample{value, sampling_time,
std::move(metadata)};
}
SamplesStatsCounter::StatsSample StatsSample(
TimeDelta duration,
Timestamp sampling_time,
std::map<std::string, std::string> metadata) {
return SamplesStatsCounter::StatsSample{duration.ms<double>(), sampling_time,
std::move(metadata)};
}
FrameComparison ValidateFrameComparison(FrameComparison comparison) {
RTC_DCHECK(comparison.frame_stats.captured_time.IsFinite())
<< "Any comparison has to have finite captured_time";
switch (comparison.type) {
case FrameComparisonType::kRegular:
// Regular comparison has to have all FrameStats filled in.
RTC_DCHECK(comparison.captured.has_value() ||
comparison.overload_reason != OverloadReason::kNone)
<< "Regular comparison has to have captured frame if it's not "
<< "overloaded comparison";
RTC_DCHECK(comparison.rendered.has_value() ||
comparison.overload_reason != OverloadReason::kNone)
<< "rendered frame has to be presented if it's not overloaded "
<< "comparison";
RTC_DCHECK(comparison.frame_stats.pre_encode_time.IsFinite())
<< "Regular comparison has to have finite pre_encode_time";
RTC_DCHECK(comparison.frame_stats.encoded_time.IsFinite())
<< "Regular comparison has to have finite encoded_time";
RTC_DCHECK(comparison.frame_stats.received_time.IsFinite())
<< "Regular comparison has to have finite received_time";
RTC_DCHECK(comparison.frame_stats.decode_start_time.IsFinite())
<< "Regular comparison has to have finite decode_start_time";
RTC_DCHECK(comparison.frame_stats.decode_end_time.IsFinite())
<< "Regular comparison has to have finite decode_end_time";
RTC_DCHECK(comparison.frame_stats.rendered_time.IsFinite())
<< "Regular comparison has to have finite rendered_time";
RTC_DCHECK(comparison.frame_stats.decoded_frame_width.has_value())
<< "Regular comparison has to have decoded_frame_width";
RTC_DCHECK(comparison.frame_stats.decoded_frame_height.has_value())
<< "Regular comparison has to have decoded_frame_height";
RTC_DCHECK(comparison.frame_stats.used_encoder.has_value())
<< "Regular comparison has to have used_encoder";
RTC_DCHECK(comparison.frame_stats.used_decoder.has_value())
<< "Regular comparison has to have used_decoder";
RTC_DCHECK(!comparison.frame_stats.decoder_failed)
<< "Regular comparison can't have decoder failure";
break;
case FrameComparisonType::kDroppedFrame:
// Frame can be dropped before encoder, by encoder, inside network or
// after decoder.
RTC_DCHECK(!comparison.captured.has_value())
<< "Dropped frame comparison can't have captured frame";
RTC_DCHECK(!comparison.rendered.has_value())
<< "Dropped frame comparison can't have rendered frame";
if (comparison.frame_stats.encoded_time.IsFinite()) {
RTC_DCHECK(comparison.frame_stats.used_encoder.has_value())
<< "Dropped frame comparison has to have used_encoder when "
<< "encoded_time is set";
RTC_DCHECK(comparison.frame_stats.pre_encode_time.IsFinite())
<< "Dropped frame comparison has to have finite pre_encode_time "
<< "when encoded_time is finite.";
}
if (comparison.frame_stats.decode_end_time.IsFinite() ||
comparison.frame_stats.decoder_failed) {
RTC_DCHECK(comparison.frame_stats.received_time.IsFinite())
<< "Dropped frame comparison has to have received_time when "
<< "decode_end_time is set or decoder_failed is true";
RTC_DCHECK(comparison.frame_stats.decode_start_time.IsFinite())
<< "Dropped frame comparison has to have decode_start_time when "
<< "decode_end_time is set or decoder_failed is true";
RTC_DCHECK(comparison.frame_stats.used_decoder.has_value())
<< "Dropped frame comparison has to have used_decoder when "
<< "decode_end_time is set or decoder_failed is true";
} else if (comparison.frame_stats.decode_end_time.IsFinite()) {
RTC_DCHECK(comparison.frame_stats.decoded_frame_width.has_value())
<< "Dropped frame comparison has to have decoded_frame_width when "
<< "decode_end_time is set";
RTC_DCHECK(comparison.frame_stats.decoded_frame_height.has_value())
<< "Dropped frame comparison has to have decoded_frame_height when "
<< "decode_end_time is set";
}
RTC_DCHECK(!comparison.frame_stats.rendered_time.IsFinite())
<< "Dropped frame comparison can't have rendered_time";
break;
case FrameComparisonType::kFrameInFlight:
// Frame in flight comparison may miss almost any FrameStats, but if
// stats for stage X are set, then stats for stage X - 1 also has to be
// set. Also these frames were never rendered.
RTC_DCHECK(!comparison.captured.has_value())
<< "Frame in flight comparison can't have captured frame";
RTC_DCHECK(!comparison.rendered.has_value())
<< "Frame in flight comparison can't have rendered frame";
RTC_DCHECK(!comparison.frame_stats.rendered_time.IsFinite())
<< "Frame in flight comparison can't have rendered_time";
if (comparison.frame_stats.decode_end_time.IsFinite() ||
comparison.frame_stats.decoder_failed) {
RTC_DCHECK(comparison.frame_stats.used_decoder.has_value())
<< "Frame in flight comparison has to have used_decoder when "
<< "decode_end_time is set or decoder_failed is true.";
RTC_DCHECK(comparison.frame_stats.decode_start_time.IsFinite())
<< "Frame in flight comparison has to have finite "
<< "decode_start_time when decode_end_time is finite or "
<< "decoder_failed is true.";
}
if (comparison.frame_stats.decode_end_time.IsFinite()) {
RTC_DCHECK(comparison.frame_stats.decoded_frame_width.has_value())
<< "Frame in flight comparison has to have decoded_frame_width "
<< "when decode_end_time is set.";
RTC_DCHECK(comparison.frame_stats.decoded_frame_height.has_value())
<< "Frame in flight comparison has to have decoded_frame_height "
<< "when decode_end_time is set.";
}
if (comparison.frame_stats.decode_start_time.IsFinite()) {
RTC_DCHECK(comparison.frame_stats.received_time.IsFinite())
<< "Frame in flight comparison has to have finite received_time "
<< "when decode_start_time is finite.";
}
if (comparison.frame_stats.received_time.IsFinite()) {
RTC_DCHECK(comparison.frame_stats.encoded_time.IsFinite())
<< "Frame in flight comparison has to have finite encoded_time "
<< "when received_time is finite.";
}
if (comparison.frame_stats.encoded_time.IsFinite()) {
RTC_DCHECK(comparison.frame_stats.used_encoder.has_value())
<< "Frame in flight comparison has to have used_encoder when "
<< "encoded_time is set";
RTC_DCHECK(comparison.frame_stats.pre_encode_time.IsFinite())
<< "Frame in flight comparison has to have finite pre_encode_time "
<< "when encoded_time is finite.";
}
break;
}
return comparison;
}
} // namespace
void DefaultVideoQualityAnalyzerFramesComparator::Start(int max_threads_count) {
for (int i = 0; i < max_threads_count; i++) {
thread_pool_.push_back(rtc::PlatformThread::SpawnJoinable(
[this] { ProcessComparisons(); },
"DefaultVideoQualityAnalyzerFramesComparator-" + std::to_string(i)));
}
{
MutexLock lock(&mutex_);
RTC_CHECK_EQ(state_, State::kNew) << "Frames comparator is already started";
state_ = State::kActive;
}
cpu_measurer_.StartMeasuringCpuProcessTime();
}
void DefaultVideoQualityAnalyzerFramesComparator::Stop(
const std::map<InternalStatsKey, Timestamp>& last_rendered_frame_times) {
{
MutexLock lock(&mutex_);
if (state_ == State::kStopped) {
return;
}
RTC_CHECK_EQ(state_, State::kActive)
<< "Frames comparator has to be started before it will be used";
state_ = State::kStopped;
}
cpu_measurer_.StopMeasuringCpuProcessTime();
comparison_available_event_.Set();
thread_pool_.clear();
{
MutexLock lock(&mutex_);
// Perform final Metrics update. On this place analyzer is stopped and no
// one holds any locks.
// Time between freezes.
// Count time since the last freeze to the end of the call as time
// between freezes.
for (auto& entry : last_rendered_frame_times) {
const InternalStatsKey& stats_key = entry.first;
const Timestamp& last_rendered_frame_time = entry.second;
// If there are no freezes in the call we have to report
// time_between_freezes_ms as call duration and in such case
// `last_rendered_frame_time` for this stream will be stream start time.
// If there is freeze, then we need add time from last rendered frame
// to last freeze end as time between freezes.
stream_stats_.at(stats_key).time_between_freezes_ms.AddSample(StatsSample(
last_rendered_frame_time - stream_last_freeze_end_time_.at(stats_key),
Now(), /*metadata=*/{}));
}
for (auto& [key, stream_stats] : stream_stats_) {
// Freeze Time:
// If there were no freezes on a video stream, add only one sample with
// value 0 (0ms freezes time).
if (stream_stats.freeze_time_ms.IsEmpty()) {
stream_stats.freeze_time_ms.AddSample(0);
}
// Harmonic framerate (fps):
// sum of interframe delays / squared sum of interframe delays.
// The metric aims to reflect overall experience related to smoothness of
// video playback and includes both freezes and pauses.
double sum_squared_interframe_delays_secs = 0;
double sum_interframe_delays_ms = 0;
for (const SamplesStatsCounter::StatsSample& sample :
stream_stats.time_between_rendered_frames_ms.GetTimedSamples()) {
double interframe_delay_ms = sample.value;
const double interframe_delays_secs =
interframe_delay_ms / static_cast<double>(kMillisInSecond);
sum_squared_interframe_delays_secs +=
interframe_delays_secs * interframe_delays_secs;
sum_interframe_delays_ms += interframe_delay_ms;
}
if (sum_squared_interframe_delays_secs > 0.0) {
stream_stats.harmonic_framerate_fps =
sum_interframe_delays_ms / static_cast<double>(kMillisInSecond) /
sum_squared_interframe_delays_secs;
}
}
}
}
void DefaultVideoQualityAnalyzerFramesComparator::EnsureStatsForStream(
size_t stream_index,
size_t sender_peer_index,
size_t peers_count,
Timestamp captured_time,
Timestamp start_time) {
MutexLock lock(&mutex_);
RTC_CHECK_EQ(state_, State::kActive)
<< "Frames comparator has to be started before it will be used";
for (size_t i = 0; i < peers_count; ++i) {
if (i == sender_peer_index && !options_.enable_receive_own_stream) {
continue;
}
InternalStatsKey stats_key(stream_index, sender_peer_index, i);
if (stream_stats_.find(stats_key) == stream_stats_.end()) {
stream_stats_.insert({stats_key, StreamStats(captured_time)});
// Assume that the first freeze was before first stream frame captured.
// This way time before the first freeze would be counted as time
// between freezes.
stream_last_freeze_end_time_.insert({stats_key, start_time});
} else {
// When we see some `stream_label` for the first time we need to create
// stream stats object for it and set up some states, but we need to do
// it only once and for all receivers, so on the next frame on the same
// `stream_label` we can be sure, that it's already done and we needn't
// to scan though all peers again.
break;
}
}
}
void DefaultVideoQualityAnalyzerFramesComparator::RegisterParticipantInCall(
rtc::ArrayView<std::pair<InternalStatsKey, Timestamp>> stream_started_time,
Timestamp start_time) {
MutexLock lock(&mutex_);
RTC_CHECK_EQ(state_, State::kActive)
<< "Frames comparator has to be started before it will be used";
for (const std::pair<InternalStatsKey, Timestamp>& pair :
stream_started_time) {
stream_stats_.insert({pair.first, StreamStats(pair.second)});
stream_last_freeze_end_time_.insert({pair.first, start_time});
}
}
void DefaultVideoQualityAnalyzerFramesComparator::AddComparison(
InternalStatsKey stats_key,
absl::optional<VideoFrame> captured,
absl::optional<VideoFrame> rendered,
FrameComparisonType type,
FrameStats frame_stats) {
MutexLock lock(&mutex_);
RTC_CHECK_EQ(state_, State::kActive)
<< "Frames comparator has to be started before it will be used";
AddComparisonInternal(std::move(stats_key), std::move(captured),
std::move(rendered), type, std::move(frame_stats));
}
void DefaultVideoQualityAnalyzerFramesComparator::AddComparison(
InternalStatsKey stats_key,
int skipped_between_rendered,
absl::optional<VideoFrame> captured,
absl::optional<VideoFrame> rendered,
FrameComparisonType type,
FrameStats frame_stats) {
MutexLock lock(&mutex_);
RTC_CHECK_EQ(state_, State::kActive)
<< "Frames comparator has to be started before it will be used";
stream_stats_.at(stats_key).skipped_between_rendered.AddSample(
StatsSample(skipped_between_rendered, Now(),
/*metadata=*/
{{SampleMetadataKey::kFrameIdMetadataKey,
std::to_string(frame_stats.frame_id)}}));
AddComparisonInternal(std::move(stats_key), std::move(captured),
std::move(rendered), type, std::move(frame_stats));
}
void DefaultVideoQualityAnalyzerFramesComparator::AddComparisonInternal(
InternalStatsKey stats_key,
absl::optional<VideoFrame> captured,
absl::optional<VideoFrame> rendered,
FrameComparisonType type,
FrameStats frame_stats) {
cpu_measurer_.StartExcludingCpuThreadTime();
frames_comparator_stats_.comparisons_queue_size.AddSample(
StatsSample(comparisons_.size(), Now(), /*metadata=*/{}));
// If there too many computations waiting in the queue, we won't provide
// frames itself to make future computations lighter.
if (comparisons_.size() >= kMaxActiveComparisons) {
comparisons_.emplace_back(ValidateFrameComparison(
FrameComparison(std::move(stats_key), /*captured=*/absl::nullopt,
/*rendered=*/absl::nullopt, type,
std::move(frame_stats), OverloadReason::kCpu)));
} else {
OverloadReason overload_reason = OverloadReason::kNone;
if (!captured && type == FrameComparisonType::kRegular) {
overload_reason = OverloadReason::kMemory;
}
comparisons_.emplace_back(ValidateFrameComparison(FrameComparison(
std::move(stats_key), std::move(captured), std::move(rendered), type,
std::move(frame_stats), overload_reason)));
}
comparison_available_event_.Set();
cpu_measurer_.StopExcludingCpuThreadTime();
}
void DefaultVideoQualityAnalyzerFramesComparator::ProcessComparisons() {
while (true) {
// Try to pick next comparison to perform from the queue.
absl::optional<FrameComparison> comparison = absl::nullopt;
bool more_new_comparisons_expected;
{
MutexLock lock(&mutex_);
if (!comparisons_.empty()) {
comparison = comparisons_.front();
comparisons_.pop_front();
if (!comparisons_.empty()) {
comparison_available_event_.Set();
}
}
// If state is stopped => no new frame comparisons are expected.
more_new_comparisons_expected = state_ != State::kStopped;
}
if (!comparison) {
if (!more_new_comparisons_expected) {
comparison_available_event_.Set();
return;
}
comparison_available_event_.Wait(TimeDelta::Seconds(1));
continue;
}
cpu_measurer_.StartExcludingCpuThreadTime();
ProcessComparison(comparison.value());
cpu_measurer_.StopExcludingCpuThreadTime();
}
}
void DefaultVideoQualityAnalyzerFramesComparator::ProcessComparison(
const FrameComparison& comparison) {
// Comparison is checked to be valid before adding, so we can use this
// assumptions during computations.
// Perform expensive psnr and ssim calculations while not holding lock.
double psnr = -1.0;
double ssim = -1.0;
if ((options_.compute_psnr || options_.compute_ssim) &&
comparison.captured.has_value() && comparison.rendered.has_value()) {
rtc::scoped_refptr<I420BufferInterface> reference_buffer =
comparison.captured->video_frame_buffer()->ToI420();
rtc::scoped_refptr<I420BufferInterface> test_buffer =
comparison.rendered->video_frame_buffer()->ToI420();
if (options_.adjust_cropping_before_comparing_frames) {
test_buffer = ScaleVideoFrameBuffer(
*test_buffer, reference_buffer->width(), reference_buffer->height());
reference_buffer = test::AdjustCropping(reference_buffer, test_buffer);
}
if (options_.compute_psnr) {
psnr = options_.use_weighted_psnr
? I420WeightedPSNR(*reference_buffer, *test_buffer)
: I420PSNR(*reference_buffer, *test_buffer);
}
if (options_.compute_ssim) {
ssim = I420SSIM(*reference_buffer, *test_buffer);
}
}
const FrameStats& frame_stats = comparison.frame_stats;
MutexLock lock(&mutex_);
auto stats_it = stream_stats_.find(comparison.stats_key);
RTC_CHECK(stats_it != stream_stats_.end()) << comparison.stats_key.ToString();
StreamStats* stats = &stats_it->second;
frames_comparator_stats_.comparisons_done++;
if (comparison.overload_reason == OverloadReason::kCpu) {
frames_comparator_stats_.cpu_overloaded_comparisons_done++;
} else if (comparison.overload_reason == OverloadReason::kMemory) {
frames_comparator_stats_.memory_overloaded_comparisons_done++;
}
std::map<std::string, std::string> metadata;
metadata.emplace(SampleMetadataKey::kFrameIdMetadataKey,
std::to_string(frame_stats.frame_id));
if (psnr > 0) {
stats->psnr.AddSample(
StatsSample(psnr, frame_stats.rendered_time, metadata));
}
if (ssim > 0) {
stats->ssim.AddSample(
StatsSample(ssim, frame_stats.received_time, metadata));
}
stats->capture_frame_rate.AddEvent(frame_stats.captured_time);
if (frame_stats.time_between_captured_frames.has_value()) {
stats->time_between_captured_frames_ms.AddSample(
StatsSample(*frame_stats.time_between_captured_frames,
frame_stats.captured_time, metadata));
}
// Compute dropped phase for dropped frame
if (comparison.type == FrameComparisonType::kDroppedFrame) {
FrameDropPhase dropped_phase;
if (frame_stats.decode_end_time.IsFinite()) {
dropped_phase = FrameDropPhase::kAfterDecoder;
} else if (frame_stats.decode_start_time.IsFinite()) {
dropped_phase = FrameDropPhase::kByDecoder;
} else if (frame_stats.encoded_time.IsFinite()) {
dropped_phase = FrameDropPhase::kTransport;
} else if (frame_stats.pre_encode_time.IsFinite()) {
dropped_phase = FrameDropPhase::kByEncoder;
} else {
dropped_phase = FrameDropPhase::kBeforeEncoder;
}
stats->dropped_by_phase[dropped_phase]++;
}
if (frame_stats.encoded_time.IsFinite()) {
stats->encode_time_ms.AddSample(
StatsSample(frame_stats.encoded_time - frame_stats.pre_encode_time,
frame_stats.encoded_time, metadata));
stats->encode_frame_rate.AddEvent(frame_stats.encoded_time);
if (frame_stats.time_between_encoded_frames.has_value()) {
stats->time_between_encoded_frames_ms.AddSample(
StatsSample(*frame_stats.time_between_encoded_frames,
frame_stats.encoded_time, metadata));
}
stats->total_encoded_images_payload +=
frame_stats.encoded_image_size.bytes();
stats->target_encode_bitrate.AddSample(StatsSample(
frame_stats.target_encode_bitrate, frame_stats.encoded_time, metadata));
for (const auto& [spatial_layer, qp_values] :
frame_stats.spatial_layers_qp) {
for (SamplesStatsCounter::StatsSample qp : qp_values.GetTimedSamples()) {
qp.metadata = metadata;
stats->spatial_layers_qp[spatial_layer].AddSample(std::move(qp));
}
}
// Stats sliced on encoded frame type.
if (frame_stats.encoded_frame_type == VideoFrameType::kVideoFrameKey) {
++stats->num_send_key_frames;
}
}
// Next stats can be calculated only if frame was received on remote side.
if (comparison.type != FrameComparisonType::kDroppedFrame ||
comparison.frame_stats.decoder_failed) {
if (frame_stats.rendered_time.IsFinite()) {
stats->total_delay_incl_transport_ms.AddSample(
StatsSample(frame_stats.rendered_time - frame_stats.captured_time,
frame_stats.received_time, metadata));
stats->receive_to_render_time_ms.AddSample(
StatsSample(frame_stats.rendered_time - frame_stats.received_time,
frame_stats.rendered_time, metadata));
}
if (frame_stats.decode_start_time.IsFinite()) {
stats->transport_time_ms.AddSample(
StatsSample(frame_stats.decode_start_time - frame_stats.encoded_time,
frame_stats.decode_start_time, metadata));
// Stats sliced on decoded frame type.
if (frame_stats.pre_decoded_frame_type ==
VideoFrameType::kVideoFrameKey) {
++stats->num_recv_key_frames;
stats->recv_key_frame_size_bytes.AddSample(
StatsSample(frame_stats.pre_decoded_image_size.bytes(),
frame_stats.decode_start_time, metadata));
} else if (frame_stats.pre_decoded_frame_type ==
VideoFrameType::kVideoFrameDelta) {
stats->recv_delta_frame_size_bytes.AddSample(
StatsSample(frame_stats.pre_decoded_image_size.bytes(),
frame_stats.decode_start_time, metadata));
}
}
if (frame_stats.decode_end_time.IsFinite()) {
stats->decode_time_ms.AddSample(StatsSample(
frame_stats.decode_end_time - frame_stats.decode_start_time,
frame_stats.decode_end_time, metadata));
stats->resolution_of_decoded_frame.AddSample(
StatsSample(*comparison.frame_stats.decoded_frame_width *
*comparison.frame_stats.decoded_frame_height,
frame_stats.decode_end_time, metadata));
}
if (frame_stats.prev_frame_rendered_time.has_value() &&
frame_stats.rendered_time.IsFinite()) {
RTC_DCHECK(frame_stats.time_between_rendered_frames.has_value());
stats->time_between_rendered_frames_ms.AddSample(
StatsSample(*frame_stats.time_between_rendered_frames,
frame_stats.rendered_time, metadata));
TimeDelta average_time_between_rendered_frames = TimeDelta::Millis(
stats->time_between_rendered_frames_ms.GetAverage());
if (*frame_stats.time_between_rendered_frames >
std::max(kFreezeThreshold + average_time_between_rendered_frames,
3 * average_time_between_rendered_frames)) {
stats->freeze_time_ms.AddSample(
StatsSample(*frame_stats.time_between_rendered_frames,
frame_stats.rendered_time, metadata));
auto freeze_end_it =
stream_last_freeze_end_time_.find(comparison.stats_key);
RTC_DCHECK(freeze_end_it != stream_last_freeze_end_time_.end());
// TODO(bugs.webrtc.org/14995): rethink this metric for paused stream.
stats->time_between_freezes_ms.AddSample(StatsSample(
*frame_stats.prev_frame_rendered_time - freeze_end_it->second,
frame_stats.rendered_time, metadata));
freeze_end_it->second = frame_stats.rendered_time;
}
}
}
// Compute stream codec info.
if (frame_stats.used_encoder.has_value()) {
if (stats->encoders.empty() || stats->encoders.back().codec_name !=
frame_stats.used_encoder->codec_name) {
stats->encoders.push_back(*frame_stats.used_encoder);
}
stats->encoders.back().last_frame_id =
frame_stats.used_encoder->last_frame_id;
stats->encoders.back().switched_from_at =
frame_stats.used_encoder->switched_from_at;
}
if (frame_stats.used_decoder.has_value()) {
if (stats->decoders.empty() || stats->decoders.back().codec_name !=
frame_stats.used_decoder->codec_name) {
stats->decoders.push_back(*frame_stats.used_decoder);
}
stats->decoders.back().last_frame_id =
frame_stats.used_decoder->last_frame_id;
stats->decoders.back().switched_from_at =
frame_stats.used_decoder->switched_from_at;
}
}
Timestamp DefaultVideoQualityAnalyzerFramesComparator::Now() {
return clock_->CurrentTime();
}
} // namespace webrtc