blob: ec6aa3445a973e7e9f456890de15cd0aa64f1375 [file] [log] [blame] [edit]
/*
* Copyright (c) 2022 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/timing/frame_delay_variation_kalman_filter.h"
#include "api/units/data_size.h"
#include "api/units/time_delta.h"
namespace webrtc {
namespace {
// TODO(brandtr): The value below corresponds to 8 Gbps. Is that reasonable?
constexpr double kMaxBandwidth = 0.000001; // Unit: [1 / bytes per ms].
} // namespace
FrameDelayVariationKalmanFilter::FrameDelayVariationKalmanFilter() {
// TODO(brandtr): Is there a factor 1000 missing here?
estimate_[0] = 1 / (512e3 / 8); // Unit: [1 / bytes per ms]
estimate_[1] = 0; // Unit: [ms]
// Initial estimate covariance.
estimate_cov_[0][0] = 1e-4; // Unit: [(1 / bytes per ms)^2]
estimate_cov_[1][1] = 1e2; // Unit: [ms^2]
estimate_cov_[0][1] = estimate_cov_[1][0] = 0;
// Process noise covariance.
process_noise_cov_diag_[0] = 2.5e-10; // Unit: [(1 / bytes per ms)^2]
process_noise_cov_diag_[1] = 1e-10; // Unit: [ms^2]
}
void FrameDelayVariationKalmanFilter::PredictAndUpdate(
double frame_delay_variation_ms,
double frame_size_variation_bytes,
double max_frame_size_bytes,
double var_noise) {
// Sanity checks.
if (max_frame_size_bytes < 1) {
return;
}
if (var_noise <= 0.0) {
return;
}
// This member function follows the data flow in
// https://en.wikipedia.org/wiki/Kalman_filter#Details.
// 1) Estimate prediction: `x = F*x`.
// For this model, there is no need to explicitly predict the estimate, since
// the state transition matrix is the identity.
// 2) Estimate covariance prediction: `P = F*P*F' + Q`.
// Again, since the state transition matrix is the identity, this update
// is performed by simply adding the process noise covariance.
estimate_cov_[0][0] += process_noise_cov_diag_[0];
estimate_cov_[1][1] += process_noise_cov_diag_[1];
// 3) Innovation: `y = z - H*x`.
// This is the part of the measurement that cannot be explained by the current
// estimate.
double innovation =
frame_delay_variation_ms -
GetFrameDelayVariationEstimateTotal(frame_size_variation_bytes);
// 4) Innovation variance: `s = H*P*H' + r`.
double estim_cov_times_obs[2];
estim_cov_times_obs[0] =
estimate_cov_[0][0] * frame_size_variation_bytes + estimate_cov_[0][1];
estim_cov_times_obs[1] =
estimate_cov_[1][0] * frame_size_variation_bytes + estimate_cov_[1][1];
double observation_noise_stddev =
(300.0 * exp(-fabs(frame_size_variation_bytes) /
(1e0 * max_frame_size_bytes)) +
1) *
sqrt(var_noise);
if (observation_noise_stddev < 1.0) {
observation_noise_stddev = 1.0;
}
// TODO(brandtr): Shouldn't we add observation_noise_stddev^2 here? Otherwise,
// the dimensional analysis fails.
double innovation_var = frame_size_variation_bytes * estim_cov_times_obs[0] +
estim_cov_times_obs[1] + observation_noise_stddev;
if ((innovation_var < 1e-9 && innovation_var >= 0) ||
(innovation_var > -1e-9 && innovation_var <= 0)) {
RTC_DCHECK_NOTREACHED();
return;
}
// 5) Optimal Kalman gain: `K = P*H'/s`.
// How much to trust the model vs. how much to trust the measurement.
double kalman_gain[2];
kalman_gain[0] = estim_cov_times_obs[0] / innovation_var;
kalman_gain[1] = estim_cov_times_obs[1] / innovation_var;
// 6) Estimate update: `x = x + K*y`.
// Optimally weight the new information in the innovation and add it to the
// old estimate.
estimate_[0] += kalman_gain[0] * innovation;
estimate_[1] += kalman_gain[1] * innovation;
// (This clamping is not part of the linear Kalman filter.)
if (estimate_[0] < kMaxBandwidth) {
estimate_[0] = kMaxBandwidth;
}
// 7) Estimate covariance update: `P = (I - K*H)*P`
double t00 = estimate_cov_[0][0];
double t01 = estimate_cov_[0][1];
estimate_cov_[0][0] =
(1 - kalman_gain[0] * frame_size_variation_bytes) * t00 -
kalman_gain[0] * estimate_cov_[1][0];
estimate_cov_[0][1] =
(1 - kalman_gain[0] * frame_size_variation_bytes) * t01 -
kalman_gain[0] * estimate_cov_[1][1];
estimate_cov_[1][0] = estimate_cov_[1][0] * (1 - kalman_gain[1]) -
kalman_gain[1] * frame_size_variation_bytes * t00;
estimate_cov_[1][1] = estimate_cov_[1][1] * (1 - kalman_gain[1]) -
kalman_gain[1] * frame_size_variation_bytes * t01;
// Covariance matrix, must be positive semi-definite.
RTC_DCHECK(estimate_cov_[0][0] + estimate_cov_[1][1] >= 0 &&
estimate_cov_[0][0] * estimate_cov_[1][1] -
estimate_cov_[0][1] * estimate_cov_[1][0] >=
0 &&
estimate_cov_[0][0] >= 0);
}
double FrameDelayVariationKalmanFilter::GetFrameDelayVariationEstimateSizeBased(
double frame_size_variation_bytes) const {
// Unit: [1 / bytes per millisecond] * [bytes] = [milliseconds].
return estimate_[0] * frame_size_variation_bytes;
}
double FrameDelayVariationKalmanFilter::GetFrameDelayVariationEstimateTotal(
double frame_size_variation_bytes) const {
double frame_transmission_delay_ms =
GetFrameDelayVariationEstimateSizeBased(frame_size_variation_bytes);
double link_queuing_delay_ms = estimate_[1];
return frame_transmission_delay_ms + link_queuing_delay_ms;
}
} // namespace webrtc