blob: 12f8e0860c382af5f9c41da0dbb0a9578b32f4ff [file] [log] [blame]
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "api/video/video_frame.h"
#include <math.h>
#include <string.h>
#include "api/video/i010_buffer.h"
#include "api/video/i210_buffer.h"
#include "api/video/i410_buffer.h"
#include "api/video/i420_buffer.h"
#include "api/video/i422_buffer.h"
#include "api/video/i444_buffer.h"
#include "api/video/nv12_buffer.h"
#include "rtc_base/time_utils.h"
#include "test/fake_texture_frame.h"
#include "test/frame_utils.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
struct SubSampling {
int x;
int y;
};
SubSampling SubSamplingForType(VideoFrameBuffer::Type type) {
switch (type) {
case VideoFrameBuffer::Type::kI420:
return {.x = 2, .y = 2};
case VideoFrameBuffer::Type::kI420A:
return {.x = 2, .y = 2};
case VideoFrameBuffer::Type::kI422:
return {.x = 2, .y = 1};
case VideoFrameBuffer::Type::kI444:
return {.x = 1, .y = 1};
case VideoFrameBuffer::Type::kI010:
return {.x = 2, .y = 2};
case VideoFrameBuffer::Type::kI210:
return {.x = 2, .y = 1};
case VideoFrameBuffer::Type::kI410:
return {.x = 1, .y = 1};
default:
return {};
}
}
// Helper function to create a buffer and fill it with a gradient for
// PlanarYuvBuffer based buffers.
template <class T>
rtc::scoped_refptr<T> CreateGradient(int width, int height) {
rtc::scoped_refptr<T> buffer(T::Create(width, height));
// Initialize with gradient, Y = 128(x/w + y/h), U = 256 x/w, V = 256 y/h
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
buffer->MutableDataY()[x + y * width] =
128 * (x * height + y * width) / (width * height);
}
}
int chroma_width = buffer->ChromaWidth();
int chroma_height = buffer->ChromaHeight();
for (int x = 0; x < chroma_width; x++) {
for (int y = 0; y < chroma_height; y++) {
buffer->MutableDataU()[x + y * chroma_width] =
255 * x / (chroma_width - 1);
buffer->MutableDataV()[x + y * chroma_width] =
255 * y / (chroma_height - 1);
}
}
return buffer;
}
// Helper function to create a buffer and fill it with a gradient.
rtc::scoped_refptr<NV12BufferInterface> CreateNV12Gradient(int width,
int height) {
rtc::scoped_refptr<NV12Buffer> buffer(NV12Buffer::Create(width, height));
// Initialize with gradient, Y = 128(x/w + y/h), U = 256 x/w, V = 256 y/h
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
buffer->MutableDataY()[x + y * width] =
128 * (x * height + y * width) / (width * height);
}
}
int chroma_width = buffer->ChromaWidth();
int chroma_height = buffer->ChromaHeight();
for (int x = 0; x < chroma_width; x++) {
for (int y = 0; y < chroma_height; y++) {
buffer->MutableDataUV()[x * 2 + y * buffer->StrideUV()] =
255 * x / (chroma_width - 1);
buffer->MutableDataUV()[x * 2 + 1 + y * buffer->StrideUV()] =
255 * y / (chroma_height - 1);
}
}
return buffer;
}
// The offsets and sizes describe the rectangle extracted from the
// original (gradient) frame, in relative coordinates where the
// original frame correspond to the unit square, 0.0 <= x, y < 1.0.
template <class T>
void CheckCrop(const T& frame,
double offset_x,
double offset_y,
double rel_width,
double rel_height) {
int width = frame.width();
int height = frame.height();
SubSampling plane_divider = SubSamplingForType(frame.type());
// Check that pixel values in the corners match the gradient used
// for initialization.
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
// Pixel coordinates of the corner.
int x = i * (width - 1);
int y = j * (height - 1);
// Relative coordinates, range 0.0 - 1.0 correspond to the
// size of the uncropped input frame.
double orig_x = offset_x + i * rel_width;
double orig_y = offset_y + j * rel_height;
EXPECT_NEAR(frame.DataY()[x + y * frame.StrideY()] / 256.0,
(orig_x + orig_y) / 2, 0.02);
EXPECT_NEAR(frame.DataU()[x / plane_divider.x +
(y / plane_divider.y) * frame.StrideU()] /
256.0,
orig_x, 0.02);
EXPECT_NEAR(frame.DataV()[x / plane_divider.x +
(y / plane_divider.y) * frame.StrideV()] /
256.0,
orig_y, 0.02);
}
}
}
template <class T>
void CheckRotate(int width,
int height,
webrtc::VideoRotation rotation,
const T& rotated) {
int rotated_width = width;
int rotated_height = height;
if (rotation == kVideoRotation_90 || rotation == kVideoRotation_270) {
std::swap(rotated_width, rotated_height);
}
EXPECT_EQ(rotated_width, rotated.width());
EXPECT_EQ(rotated_height, rotated.height());
// Clock-wise order (with 0,0 at top-left)
const struct {
int x;
int y;
} corners[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}};
// Corresponding corner colors of the frame produced by CreateGradient.
const struct {
int y;
int u;
int v;
} colors[] = {{0, 0, 0}, {127, 255, 0}, {255, 255, 255}, {127, 0, 255}};
int corner_offset = static_cast<int>(rotation) / 90;
SubSampling plane_divider = SubSamplingForType(rotated.type());
for (int i = 0; i < 4; i++) {
int j = (i + corner_offset) % 4;
int x = corners[j].x * (rotated_width - 1);
int y = corners[j].y * (rotated_height - 1);
EXPECT_EQ(colors[i].y, rotated.DataY()[x + y * rotated.StrideY()]);
if (rotated.type() == VideoFrameBuffer::Type::kI422 ||
rotated.type() == VideoFrameBuffer::Type::kI210) {
EXPECT_NEAR(colors[i].u,
rotated.DataU()[(x / plane_divider.x) +
(y / plane_divider.y) * rotated.StrideU()],
1);
EXPECT_NEAR(colors[i].v,
rotated.DataV()[(x / plane_divider.x) +
(y / plane_divider.y) * rotated.StrideV()],
1);
} else {
EXPECT_EQ(colors[i].u,
rotated.DataU()[(x / plane_divider.x) +
(y / plane_divider.y) * rotated.StrideU()]);
EXPECT_EQ(colors[i].v,
rotated.DataV()[(x / plane_divider.x) +
(y / plane_divider.y) * rotated.StrideV()]);
}
}
}
} // namespace
TEST(TestVideoFrame, WidthHeightValues) {
VideoFrame frame =
VideoFrame::Builder()
.set_video_frame_buffer(I420Buffer::Create(10, 10, 10, 14, 90))
.set_rotation(webrtc::kVideoRotation_0)
.set_timestamp_ms(789)
.build();
const int valid_value = 10;
EXPECT_EQ(valid_value, frame.width());
EXPECT_EQ(valid_value, frame.height());
frame.set_rtp_timestamp(123u);
EXPECT_EQ(123u, frame.rtp_timestamp());
frame.set_ntp_time_ms(456);
EXPECT_EQ(456, frame.ntp_time_ms());
EXPECT_EQ(789, frame.render_time_ms());
}
TEST(TestVideoFrame, ShallowCopy) {
uint32_t timestamp = 1;
int64_t ntp_time_ms = 2;
int64_t timestamp_us = 3;
int stride_y = 15;
int stride_u = 10;
int stride_v = 10;
int width = 15;
int height = 15;
const int kSizeY = 400;
const int kSizeU = 100;
const int kSizeV = 100;
const VideoRotation kRotation = kVideoRotation_270;
uint8_t buffer_y[kSizeY];
uint8_t buffer_u[kSizeU];
uint8_t buffer_v[kSizeV];
memset(buffer_y, 16, kSizeY);
memset(buffer_u, 8, kSizeU);
memset(buffer_v, 4, kSizeV);
VideoFrame frame1 = VideoFrame::Builder()
.set_video_frame_buffer(I420Buffer::Copy(
width, height, buffer_y, stride_y, buffer_u,
stride_u, buffer_v, stride_v))
.set_rotation(kRotation)
.set_timestamp_us(0)
.build();
frame1.set_rtp_timestamp(timestamp);
frame1.set_ntp_time_ms(ntp_time_ms);
frame1.set_timestamp_us(timestamp_us);
VideoFrame frame2(frame1);
EXPECT_EQ(frame1.video_frame_buffer(), frame2.video_frame_buffer());
const webrtc::I420BufferInterface* yuv1 =
frame1.video_frame_buffer()->GetI420();
const webrtc::I420BufferInterface* yuv2 =
frame2.video_frame_buffer()->GetI420();
EXPECT_EQ(yuv1->DataY(), yuv2->DataY());
EXPECT_EQ(yuv1->DataU(), yuv2->DataU());
EXPECT_EQ(yuv1->DataV(), yuv2->DataV());
EXPECT_EQ(frame2.rtp_timestamp(), frame1.rtp_timestamp());
EXPECT_EQ(frame2.ntp_time_ms(), frame1.ntp_time_ms());
EXPECT_EQ(frame2.timestamp_us(), frame1.timestamp_us());
EXPECT_EQ(frame2.rotation(), frame1.rotation());
frame2.set_rtp_timestamp(timestamp + 1);
frame2.set_ntp_time_ms(ntp_time_ms + 1);
frame2.set_timestamp_us(timestamp_us + 1);
frame2.set_rotation(kVideoRotation_90);
EXPECT_NE(frame2.rtp_timestamp(), frame1.rtp_timestamp());
EXPECT_NE(frame2.ntp_time_ms(), frame1.ntp_time_ms());
EXPECT_NE(frame2.timestamp_us(), frame1.timestamp_us());
EXPECT_NE(frame2.rotation(), frame1.rotation());
}
TEST(TestVideoFrame, TextureInitialValues) {
VideoFrame frame = test::FakeNativeBuffer::CreateFrame(
640, 480, 100, 10, webrtc::kVideoRotation_0);
EXPECT_EQ(640, frame.width());
EXPECT_EQ(480, frame.height());
EXPECT_EQ(100u, frame.rtp_timestamp());
EXPECT_EQ(10, frame.render_time_ms());
ASSERT_TRUE(frame.video_frame_buffer() != nullptr);
EXPECT_TRUE(frame.video_frame_buffer()->type() ==
VideoFrameBuffer::Type::kNative);
frame.set_rtp_timestamp(200);
EXPECT_EQ(200u, frame.rtp_timestamp());
frame.set_timestamp_us(20);
EXPECT_EQ(20, frame.timestamp_us());
}
template <typename T>
class TestPlanarYuvBuffer : public ::testing::Test {};
TYPED_TEST_SUITE_P(TestPlanarYuvBuffer);
template <class T>
rtc::scoped_refptr<T> CreateAndFillBuffer() {
auto buf = T::Create(20, 10);
memset(buf->MutableDataY(), 1, 200);
if (buf->type() == VideoFrameBuffer::Type::kI444 ||
buf->type() == VideoFrameBuffer::Type::kI410) {
memset(buf->MutableDataU(), 2, 200);
memset(buf->MutableDataV(), 3, 200);
} else if (buf->type() == VideoFrameBuffer::Type::kI422 ||
buf->type() == VideoFrameBuffer::Type::kI210) {
memset(buf->MutableDataU(), 2, 100);
memset(buf->MutableDataV(), 3, 100);
} else {
memset(buf->MutableDataU(), 2, 50);
memset(buf->MutableDataV(), 3, 50);
}
return buf;
}
TYPED_TEST_P(TestPlanarYuvBuffer, Copy) {
rtc::scoped_refptr<TypeParam> buf1 = CreateAndFillBuffer<TypeParam>();
rtc::scoped_refptr<TypeParam> buf2 = TypeParam::Copy(*buf1);
EXPECT_TRUE(test::FrameBufsEqual(buf1, buf2));
}
TYPED_TEST_P(TestPlanarYuvBuffer, CropXCenter) {
rtc::scoped_refptr<TypeParam> buf = CreateGradient<TypeParam>(200, 100);
// Pure center cropping, no scaling.
rtc::scoped_refptr<TypeParam> scaled_buffer = TypeParam::Create(100, 100);
scaled_buffer->CropAndScaleFrom(*buf, 50, 0, 100, 100);
CheckCrop<TypeParam>(*scaled_buffer, 0.25, 0.0, 0.5, 1.0);
}
TYPED_TEST_P(TestPlanarYuvBuffer, CropXNotCenter) {
rtc::scoped_refptr<TypeParam> buf = CreateGradient<TypeParam>(200, 100);
// Non-center cropping, no scaling.
rtc::scoped_refptr<TypeParam> scaled_buffer = TypeParam::Create(100, 100);
scaled_buffer->CropAndScaleFrom(*buf, 25, 0, 100, 100);
CheckCrop<TypeParam>(*scaled_buffer, 0.125, 0.0, 0.5, 1.0);
}
TYPED_TEST_P(TestPlanarYuvBuffer, CropYCenter) {
rtc::scoped_refptr<TypeParam> buf = CreateGradient<TypeParam>(100, 200);
// Pure center cropping, no scaling.
rtc::scoped_refptr<TypeParam> scaled_buffer = TypeParam::Create(100, 100);
scaled_buffer->CropAndScaleFrom(*buf, 0, 50, 100, 100);
CheckCrop<TypeParam>(*scaled_buffer, 0.0, 0.25, 1.0, 0.5);
}
TYPED_TEST_P(TestPlanarYuvBuffer, CropYNotCenter) {
rtc::scoped_refptr<TypeParam> buf = CreateGradient<TypeParam>(100, 200);
// Pure center cropping, no scaling.
rtc::scoped_refptr<TypeParam> scaled_buffer = TypeParam::Create(100, 100);
scaled_buffer->CropAndScaleFrom(*buf, 0, 25, 100, 100);
CheckCrop<TypeParam>(*scaled_buffer, 0.0, 0.125, 1.0, 0.5);
}
TYPED_TEST_P(TestPlanarYuvBuffer, CropAndScale16x9) {
const int buffer_width = 640;
const int buffer_height = 480;
const int crop_width = 320;
const int crop_height = 180;
rtc::scoped_refptr<TypeParam> buf = CreateGradient<TypeParam>(640, 480);
// Pure center cropping, no scaling.
const int out_width =
std::min(buffer_width, crop_width * buffer_height / crop_height);
const int out_height =
std::min(buffer_height, crop_height * buffer_width / crop_width);
rtc::scoped_refptr<TypeParam> scaled_buffer =
TypeParam::Create(out_width, out_height);
scaled_buffer->CropAndScaleFrom(*buf, (buffer_width - out_width) / 2,
(buffer_height - out_height) / 2, out_width,
out_height);
CheckCrop<TypeParam>(*scaled_buffer, 0.0, 0.125, 1.0, 0.75);
}
REGISTER_TYPED_TEST_SUITE_P(TestPlanarYuvBuffer,
Copy,
CropXCenter,
CropXNotCenter,
CropYCenter,
CropYNotCenter,
CropAndScale16x9);
using TestTypesAll = ::testing::Types<I420Buffer,
I010Buffer,
I444Buffer,
I422Buffer,
I210Buffer,
I410Buffer>;
INSTANTIATE_TYPED_TEST_SUITE_P(All, TestPlanarYuvBuffer, TestTypesAll);
template <class T>
class TestPlanarYuvBufferScale : public ::testing::Test {};
TYPED_TEST_SUITE_P(TestPlanarYuvBufferScale);
TYPED_TEST_P(TestPlanarYuvBufferScale, Scale) {
rtc::scoped_refptr<TypeParam> buf = CreateGradient<TypeParam>(200, 100);
// Pure scaling, no cropping.
rtc::scoped_refptr<TypeParam> scaled_buffer = TypeParam::Create(150, 75);
scaled_buffer->ScaleFrom(*buf);
CheckCrop<TypeParam>(*scaled_buffer, 0.0, 0.0, 1.0, 1.0);
}
REGISTER_TYPED_TEST_SUITE_P(TestPlanarYuvBufferScale, Scale);
using TestTypesScale =
::testing::Types<I420Buffer, I010Buffer, I210Buffer, I410Buffer>;
INSTANTIATE_TYPED_TEST_SUITE_P(All, TestPlanarYuvBufferScale, TestTypesScale);
template <class T>
class TestPlanarYuvBufferRotate : public ::testing::Test {
public:
std::vector<webrtc::VideoRotation> RotationParams = {
kVideoRotation_0, kVideoRotation_90, kVideoRotation_180,
kVideoRotation_270};
};
TYPED_TEST_SUITE_P(TestPlanarYuvBufferRotate);
TYPED_TEST_P(TestPlanarYuvBufferRotate, Rotates) {
for (const webrtc::VideoRotation& rotation : this->RotationParams) {
rtc::scoped_refptr<TypeParam> buffer = CreateGradient<TypeParam>(640, 480);
rtc::scoped_refptr<TypeParam> rotated_buffer =
TypeParam::Rotate(*buffer, rotation);
CheckRotate(640, 480, rotation, *rotated_buffer);
}
}
REGISTER_TYPED_TEST_SUITE_P(TestPlanarYuvBufferRotate, Rotates);
using TestTypesRotate = ::testing::
Types<I420Buffer, I010Buffer, I444Buffer, I422Buffer, I210Buffer>;
INSTANTIATE_TYPED_TEST_SUITE_P(Rotate,
TestPlanarYuvBufferRotate,
TestTypesRotate);
TEST(TestNV12Buffer, CropAndScale) {
const int kSourceWidth = 640;
const int kSourceHeight = 480;
const int kScaledWidth = 320;
const int kScaledHeight = 240;
const int kCropLeft = 40;
const int kCropTop = 30;
const int kCropRight = 0;
const int kCropBottom = 30;
rtc::scoped_refptr<VideoFrameBuffer> buf =
CreateNV12Gradient(kSourceWidth, kSourceHeight);
rtc::scoped_refptr<VideoFrameBuffer> scaled_buffer = buf->CropAndScale(
kCropLeft, kCropTop, kSourceWidth - kCropLeft - kCropRight,
kSourceHeight - kCropTop - kCropBottom, kScaledWidth, kScaledHeight);
// Parameters to CheckCrop indicate what part of the source frame is in the
// scaled frame.
const float kOffsetX = (kCropLeft + 0.0) / kSourceWidth;
const float kOffsetY = (kCropTop + 0.0) / kSourceHeight;
const float kRelativeWidth =
(kSourceWidth - kCropLeft - kCropRight + 0.0) / kSourceWidth;
const float kRelativeHeight =
(kSourceHeight - kCropTop - kCropBottom + 0.0) / kSourceHeight;
CheckCrop(*scaled_buffer->ToI420(), kOffsetX, kOffsetY, kRelativeWidth,
kRelativeHeight);
}
TEST(TestUpdateRect, CanCompare) {
VideoFrame::UpdateRect a = {0, 0, 100, 200};
VideoFrame::UpdateRect b = {0, 0, 100, 200};
VideoFrame::UpdateRect c = {1, 0, 100, 200};
VideoFrame::UpdateRect d = {0, 1, 100, 200};
EXPECT_TRUE(a == b);
EXPECT_FALSE(a == c);
EXPECT_FALSE(a == d);
}
TEST(TestUpdateRect, ComputesIsEmpty) {
VideoFrame::UpdateRect a = {0, 0, 0, 0};
VideoFrame::UpdateRect b = {0, 0, 100, 200};
VideoFrame::UpdateRect c = {1, 100, 0, 0};
VideoFrame::UpdateRect d = {1, 100, 100, 200};
EXPECT_TRUE(a.IsEmpty());
EXPECT_FALSE(b.IsEmpty());
EXPECT_TRUE(c.IsEmpty());
EXPECT_FALSE(d.IsEmpty());
}
TEST(TestUpdateRectUnion, NonIntersecting) {
VideoFrame::UpdateRect a = {0, 0, 10, 20};
VideoFrame::UpdateRect b = {100, 200, 10, 20};
a.Union(b);
EXPECT_EQ(a, VideoFrame::UpdateRect({0, 0, 110, 220}));
}
TEST(TestUpdateRectUnion, Intersecting) {
VideoFrame::UpdateRect a = {0, 0, 10, 10};
VideoFrame::UpdateRect b = {5, 5, 30, 20};
a.Union(b);
EXPECT_EQ(a, VideoFrame::UpdateRect({0, 0, 35, 25}));
}
TEST(TestUpdateRectUnion, OneInsideAnother) {
VideoFrame::UpdateRect a = {0, 0, 100, 100};
VideoFrame::UpdateRect b = {5, 5, 30, 20};
a.Union(b);
EXPECT_EQ(a, VideoFrame::UpdateRect({0, 0, 100, 100}));
}
TEST(TestUpdateRectIntersect, NonIntersecting) {
VideoFrame::UpdateRect a = {0, 0, 10, 20};
VideoFrame::UpdateRect b = {100, 200, 10, 20};
a.Intersect(b);
EXPECT_EQ(a, VideoFrame::UpdateRect({0, 0, 0, 0}));
}
TEST(TestUpdateRectIntersect, Intersecting) {
VideoFrame::UpdateRect a = {0, 0, 10, 10};
VideoFrame::UpdateRect b = {5, 5, 30, 20};
a.Intersect(b);
EXPECT_EQ(a, VideoFrame::UpdateRect({5, 5, 5, 5}));
}
TEST(TestUpdateRectIntersect, OneInsideAnother) {
VideoFrame::UpdateRect a = {0, 0, 100, 100};
VideoFrame::UpdateRect b = {5, 5, 30, 20};
a.Intersect(b);
EXPECT_EQ(a, VideoFrame::UpdateRect({5, 5, 30, 20}));
}
TEST(TestUpdateRectScale, NoScale) {
const int width = 640;
const int height = 480;
VideoFrame::UpdateRect a = {100, 50, 100, 200};
VideoFrame::UpdateRect scaled =
a.ScaleWithFrame(width, height, 0, 0, width, height, width, height);
EXPECT_EQ(scaled, VideoFrame::UpdateRect({100, 50, 100, 200}));
}
TEST(TestUpdateRectScale, CropOnly) {
const int width = 640;
const int height = 480;
VideoFrame::UpdateRect a = {100, 50, 100, 200};
VideoFrame::UpdateRect scaled = a.ScaleWithFrame(
width, height, 10, 10, width - 20, height - 20, width - 20, height - 20);
EXPECT_EQ(scaled, VideoFrame::UpdateRect({90, 40, 100, 200}));
}
TEST(TestUpdateRectScale, CropOnlyToOddOffset) {
const int width = 640;
const int height = 480;
VideoFrame::UpdateRect a = {100, 50, 100, 200};
VideoFrame::UpdateRect scaled = a.ScaleWithFrame(
width, height, 5, 5, width - 10, height - 10, width - 10, height - 10);
EXPECT_EQ(scaled, VideoFrame::UpdateRect({94, 44, 102, 202}));
}
TEST(TestUpdateRectScale, ScaleByHalf) {
const int width = 640;
const int height = 480;
VideoFrame::UpdateRect a = {100, 60, 100, 200};
VideoFrame::UpdateRect scaled = a.ScaleWithFrame(
width, height, 0, 0, width, height, width / 2, height / 2);
// Scaled by half and +2 pixels in all directions.
EXPECT_EQ(scaled, VideoFrame::UpdateRect({48, 28, 54, 104}));
}
TEST(TestUpdateRectScale, CropToUnchangedRegionBelowUpdateRect) {
const int width = 640;
const int height = 480;
VideoFrame::UpdateRect a = {100, 60, 100, 200};
VideoFrame::UpdateRect scaled = a.ScaleWithFrame(
width, height, (width - 10) / 2, (height - 10) / 2, 10, 10, 10, 10);
// Update is out of the cropped frame.
EXPECT_EQ(scaled, VideoFrame::UpdateRect({0, 0, 0, 0}));
}
TEST(TestUpdateRectScale, CropToUnchangedRegionAboveUpdateRect) {
const int width = 640;
const int height = 480;
VideoFrame::UpdateRect a = {600, 400, 10, 10};
VideoFrame::UpdateRect scaled = a.ScaleWithFrame(
width, height, (width - 10) / 2, (height - 10) / 2, 10, 10, 10, 10);
// Update is out of the cropped frame.
EXPECT_EQ(scaled, VideoFrame::UpdateRect({0, 0, 0, 0}));
}
TEST(TestUpdateRectScale, CropInsideUpdate) {
const int width = 640;
const int height = 480;
VideoFrame::UpdateRect a = {300, 200, 100, 100};
VideoFrame::UpdateRect scaled = a.ScaleWithFrame(
width, height, (width - 10) / 2, (height - 10) / 2, 10, 10, 10, 10);
// Cropped frame is inside the update rect.
EXPECT_EQ(scaled, VideoFrame::UpdateRect({0, 0, 10, 10}));
}
TEST(TestUpdateRectScale, CropAndScaleByHalf) {
const int width = 640;
const int height = 480;
VideoFrame::UpdateRect a = {100, 60, 100, 200};
VideoFrame::UpdateRect scaled =
a.ScaleWithFrame(width, height, 10, 10, width - 20, height - 20,
(width - 20) / 2, (height - 20) / 2);
// Scaled by half and +3 pixels in all directions, because of odd offset after
// crop and scale.
EXPECT_EQ(scaled, VideoFrame::UpdateRect({42, 22, 56, 106}));
}
} // namespace webrtc