| /* |
| * Copyright 2004 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <algorithm> |
| |
| #include "webrtc/pc/srtpfilter.h" |
| |
| #include "webrtc/media/base/cryptoparams.h" |
| #include "webrtc/media/base/fakertp.h" |
| #include "webrtc/p2p/base/sessiondescription.h" |
| #include "webrtc/pc/srtptestutil.h" |
| #include "webrtc/rtc_base/buffer.h" |
| #include "webrtc/rtc_base/byteorder.h" |
| #include "webrtc/rtc_base/constructormagic.h" |
| #include "webrtc/rtc_base/gunit.h" |
| #include "webrtc/rtc_base/thread.h" |
| |
| using cricket::CryptoParams; |
| using cricket::CS_LOCAL; |
| using cricket::CS_REMOTE; |
| |
| namespace rtc { |
| |
| static const uint8_t kTestKeyGcm128_1[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ12"; |
| static const uint8_t kTestKeyGcm128_2[] = "21ZYXWVUTSRQPONMLKJIHGFEDCBA"; |
| static const int kTestKeyGcm128Len = 28; // 128 bits key + 96 bits salt. |
| static const uint8_t kTestKeyGcm256_1[] = |
| "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqr"; |
| static const uint8_t kTestKeyGcm256_2[] = |
| "rqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"; |
| static const int kTestKeyGcm256Len = 44; // 256 bits key + 96 bits salt. |
| static const std::string kTestKeyParams1 = |
| "inline:WVNfX19zZW1jdGwgKCkgewkyMjA7fQp9CnVubGVz"; |
| static const std::string kTestKeyParams2 = |
| "inline:PS1uQCVeeCFCanVmcjkpPywjNWhcYD0mXXtxaVBR"; |
| static const std::string kTestKeyParams3 = |
| "inline:1234X19zZW1jdGwgKCkgewkyMjA7fQp9CnVubGVz"; |
| static const std::string kTestKeyParams4 = |
| "inline:4567QCVeeCFCanVmcjkpPywjNWhcYD0mXXtxaVBR"; |
| static const std::string kTestKeyParamsGcm1 = |
| "inline:e166KFlKzJsGW0d5apX+rrI05vxbrvMJEzFI14aTDCa63IRTlLK4iH66uOI="; |
| static const std::string kTestKeyParamsGcm2 = |
| "inline:6X0oCd55zfz4VgtOwsuqcFq61275PDYN5uwuu3p7ZUHbfUY2FMpdP4m2PEo="; |
| static const std::string kTestKeyParamsGcm3 = |
| "inline:YKlABGZWMgX32xuMotrG0v0T7G83veegaVzubQ=="; |
| static const std::string kTestKeyParamsGcm4 = |
| "inline:gJ6tWoUym2v+/F6xjr7xaxiS3QbJJozl3ZD/0A=="; |
| static const cricket::CryptoParams kTestCryptoParams1( |
| 1, "AES_CM_128_HMAC_SHA1_80", kTestKeyParams1, ""); |
| static const cricket::CryptoParams kTestCryptoParams2( |
| 1, "AES_CM_128_HMAC_SHA1_80", kTestKeyParams2, ""); |
| static const cricket::CryptoParams kTestCryptoParamsGcm1( |
| 1, "AEAD_AES_256_GCM", kTestKeyParamsGcm1, ""); |
| static const cricket::CryptoParams kTestCryptoParamsGcm2( |
| 1, "AEAD_AES_256_GCM", kTestKeyParamsGcm2, ""); |
| static const cricket::CryptoParams kTestCryptoParamsGcm3( |
| 1, "AEAD_AES_128_GCM", kTestKeyParamsGcm3, ""); |
| static const cricket::CryptoParams kTestCryptoParamsGcm4( |
| 1, "AEAD_AES_128_GCM", kTestKeyParamsGcm4, ""); |
| |
| class SrtpFilterTest : public testing::Test { |
| protected: |
| SrtpFilterTest() |
| // Need to initialize |sequence_number_|, the value does not matter. |
| : sequence_number_(1) { |
| } |
| static std::vector<CryptoParams> MakeVector(const CryptoParams& params) { |
| std::vector<CryptoParams> vec; |
| vec.push_back(params); |
| return vec; |
| } |
| void TestSetParams(const std::vector<CryptoParams>& params1, |
| const std::vector<CryptoParams>& params2) { |
| EXPECT_TRUE(f1_.SetOffer(params1, CS_LOCAL)); |
| EXPECT_TRUE(f2_.SetOffer(params1, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_FALSE(f2_.IsActive()); |
| EXPECT_TRUE(f2_.SetAnswer(params2, CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetAnswer(params2, CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| EXPECT_TRUE(f2_.IsActive()); |
| } |
| void TestRtpAuthParams(cricket::SrtpFilter* filter, const std::string& cs) { |
| int overhead; |
| EXPECT_TRUE(filter->GetSrtpOverhead(&overhead)); |
| switch (SrtpCryptoSuiteFromName(cs)) { |
| case SRTP_AES128_CM_SHA1_32: |
| EXPECT_EQ(32/8, overhead); // 32-bit tag. |
| break; |
| case SRTP_AES128_CM_SHA1_80: |
| EXPECT_EQ(80/8, overhead); // 80-bit tag. |
| break; |
| default: |
| RTC_NOTREACHED(); |
| break; |
| } |
| |
| uint8_t* auth_key = nullptr; |
| int key_len = 0; |
| int tag_len = 0; |
| EXPECT_TRUE(filter->GetRtpAuthParams(&auth_key, &key_len, &tag_len)); |
| EXPECT_NE(nullptr, auth_key); |
| EXPECT_EQ(160/8, key_len); // Length of SHA-1 is 160 bits. |
| EXPECT_EQ(overhead, tag_len); |
| } |
| void TestProtectUnprotect(const std::string& cs1, const std::string& cs2) { |
| Buffer rtp_buffer(sizeof(kPcmuFrame) + rtp_auth_tag_len(cs1)); |
| char* rtp_packet = rtp_buffer.data<char>(); |
| char original_rtp_packet[sizeof(kPcmuFrame)]; |
| Buffer rtcp_buffer(sizeof(kRtcpReport) + 4 + rtcp_auth_tag_len(cs2)); |
| char* rtcp_packet = rtcp_buffer.data<char>(); |
| int rtp_len = sizeof(kPcmuFrame), rtcp_len = sizeof(kRtcpReport), out_len; |
| memcpy(rtp_packet, kPcmuFrame, rtp_len); |
| // In order to be able to run this test function multiple times we can not |
| // use the same sequence number twice. Increase the sequence number by one. |
| SetBE16(reinterpret_cast<uint8_t*>(rtp_packet) + 2, ++sequence_number_); |
| memcpy(original_rtp_packet, rtp_packet, rtp_len); |
| memcpy(rtcp_packet, kRtcpReport, rtcp_len); |
| |
| EXPECT_TRUE(f1_.ProtectRtp(rtp_packet, rtp_len, |
| static_cast<int>(rtp_buffer.size()), |
| &out_len)); |
| EXPECT_EQ(out_len, rtp_len + rtp_auth_tag_len(cs1)); |
| EXPECT_NE(0, memcmp(rtp_packet, original_rtp_packet, rtp_len)); |
| if (!f1_.IsExternalAuthActive()) { |
| EXPECT_TRUE(f2_.UnprotectRtp(rtp_packet, out_len, &out_len)); |
| EXPECT_EQ(rtp_len, out_len); |
| EXPECT_EQ(0, memcmp(rtp_packet, original_rtp_packet, rtp_len)); |
| } else { |
| // With external auth enabled, SRTP doesn't write the auth tag and |
| // unprotect would fail. Check accessing the information about the |
| // tag instead, similar to what the actual code would do that relies |
| // on external auth. |
| TestRtpAuthParams(&f1_, cs1); |
| } |
| |
| EXPECT_TRUE(f2_.ProtectRtp(rtp_packet, rtp_len, |
| static_cast<int>(rtp_buffer.size()), |
| &out_len)); |
| EXPECT_EQ(out_len, rtp_len + rtp_auth_tag_len(cs2)); |
| EXPECT_NE(0, memcmp(rtp_packet, original_rtp_packet, rtp_len)); |
| if (!f2_.IsExternalAuthActive()) { |
| EXPECT_TRUE(f1_.UnprotectRtp(rtp_packet, out_len, &out_len)); |
| EXPECT_EQ(rtp_len, out_len); |
| EXPECT_EQ(0, memcmp(rtp_packet, original_rtp_packet, rtp_len)); |
| } else { |
| TestRtpAuthParams(&f2_, cs2); |
| } |
| |
| EXPECT_TRUE(f1_.ProtectRtcp(rtcp_packet, rtcp_len, |
| static_cast<int>(rtcp_buffer.size()), |
| &out_len)); |
| EXPECT_EQ(out_len, rtcp_len + 4 + rtcp_auth_tag_len(cs1)); // NOLINT |
| EXPECT_NE(0, memcmp(rtcp_packet, kRtcpReport, rtcp_len)); |
| EXPECT_TRUE(f2_.UnprotectRtcp(rtcp_packet, out_len, &out_len)); |
| EXPECT_EQ(rtcp_len, out_len); |
| EXPECT_EQ(0, memcmp(rtcp_packet, kRtcpReport, rtcp_len)); |
| |
| EXPECT_TRUE(f2_.ProtectRtcp(rtcp_packet, rtcp_len, |
| static_cast<int>(rtcp_buffer.size()), |
| &out_len)); |
| EXPECT_EQ(out_len, rtcp_len + 4 + rtcp_auth_tag_len(cs2)); // NOLINT |
| EXPECT_NE(0, memcmp(rtcp_packet, kRtcpReport, rtcp_len)); |
| EXPECT_TRUE(f1_.UnprotectRtcp(rtcp_packet, out_len, &out_len)); |
| EXPECT_EQ(rtcp_len, out_len); |
| EXPECT_EQ(0, memcmp(rtcp_packet, kRtcpReport, rtcp_len)); |
| } |
| void TestProtectUnprotectHeaderEncryption(const std::string& cs1, |
| const std::string& cs2, |
| const std::vector<int>& encrypted_header_ids) { |
| Buffer rtp_buffer(sizeof(kPcmuFrameWithExtensions) + rtp_auth_tag_len(cs1)); |
| char* rtp_packet = rtp_buffer.data<char>(); |
| size_t rtp_packet_size = rtp_buffer.size(); |
| char original_rtp_packet[sizeof(kPcmuFrameWithExtensions)]; |
| size_t original_rtp_packet_size = sizeof(original_rtp_packet); |
| int rtp_len = sizeof(kPcmuFrameWithExtensions), out_len; |
| memcpy(rtp_packet, kPcmuFrameWithExtensions, rtp_len); |
| // In order to be able to run this test function multiple times we can not |
| // use the same sequence number twice. Increase the sequence number by one. |
| SetBE16(reinterpret_cast<uint8_t*>(rtp_packet) + 2, ++sequence_number_); |
| memcpy(original_rtp_packet, rtp_packet, rtp_len); |
| |
| EXPECT_TRUE(f1_.ProtectRtp(rtp_packet, rtp_len, |
| static_cast<int>(rtp_buffer.size()), |
| &out_len)); |
| EXPECT_EQ(out_len, rtp_len + rtp_auth_tag_len(cs1)); |
| EXPECT_NE(0, memcmp(rtp_packet, original_rtp_packet, rtp_len)); |
| CompareHeaderExtensions(rtp_packet, rtp_packet_size, |
| original_rtp_packet, original_rtp_packet_size, |
| encrypted_header_ids, false); |
| EXPECT_TRUE(f2_.UnprotectRtp(rtp_packet, out_len, &out_len)); |
| EXPECT_EQ(rtp_len, out_len); |
| EXPECT_EQ(0, memcmp(rtp_packet, original_rtp_packet, rtp_len)); |
| CompareHeaderExtensions(rtp_packet, rtp_packet_size, |
| original_rtp_packet, original_rtp_packet_size, |
| encrypted_header_ids, true); |
| |
| EXPECT_TRUE(f2_.ProtectRtp(rtp_packet, rtp_len, |
| static_cast<int>(rtp_buffer.size()), |
| &out_len)); |
| EXPECT_EQ(out_len, rtp_len + rtp_auth_tag_len(cs2)); |
| EXPECT_NE(0, memcmp(rtp_packet, original_rtp_packet, rtp_len)); |
| CompareHeaderExtensions(rtp_packet, rtp_packet_size, |
| original_rtp_packet, original_rtp_packet_size, |
| encrypted_header_ids, false); |
| EXPECT_TRUE(f1_.UnprotectRtp(rtp_packet, out_len, &out_len)); |
| EXPECT_EQ(rtp_len, out_len); |
| EXPECT_EQ(0, memcmp(rtp_packet, original_rtp_packet, rtp_len)); |
| CompareHeaderExtensions(rtp_packet, rtp_packet_size, |
| original_rtp_packet, original_rtp_packet_size, |
| encrypted_header_ids, true); |
| } |
| void TestProtectSetParamsDirect(bool enable_external_auth, int cs, |
| const uint8_t* key1, int key1_len, const uint8_t* key2, int key2_len, |
| const std::string& cs_name) { |
| EXPECT_EQ(key1_len, key2_len); |
| EXPECT_EQ(cs_name, SrtpCryptoSuiteToName(cs)); |
| if (enable_external_auth) { |
| f1_.EnableExternalAuth(); |
| f2_.EnableExternalAuth(); |
| } |
| EXPECT_TRUE(f1_.SetRtpParams(cs, key1, key1_len, cs, key2, key2_len)); |
| EXPECT_TRUE(f2_.SetRtpParams(cs, key2, key2_len, cs, key1, key1_len)); |
| EXPECT_TRUE(f1_.SetRtcpParams(cs, key1, key1_len, cs, key2, key2_len)); |
| EXPECT_TRUE(f2_.SetRtcpParams(cs, key2, key2_len, cs, key1, key1_len)); |
| EXPECT_TRUE(f1_.IsActive()); |
| EXPECT_TRUE(f2_.IsActive()); |
| if (IsGcmCryptoSuite(cs)) { |
| EXPECT_FALSE(f1_.IsExternalAuthActive()); |
| EXPECT_FALSE(f2_.IsExternalAuthActive()); |
| } else if (enable_external_auth) { |
| EXPECT_TRUE(f1_.IsExternalAuthActive()); |
| EXPECT_TRUE(f2_.IsExternalAuthActive()); |
| } |
| TestProtectUnprotect(cs_name, cs_name); |
| } |
| void TestProtectSetParamsDirectHeaderEncryption(int cs, |
| const uint8_t* key1, int key1_len, const uint8_t* key2, int key2_len, |
| const std::string& cs_name) { |
| std::vector<int> encrypted_headers; |
| encrypted_headers.push_back(1); |
| // Don't encrypt header ids 2 and 3. |
| encrypted_headers.push_back(4); |
| EXPECT_EQ(key1_len, key2_len); |
| EXPECT_EQ(cs_name, SrtpCryptoSuiteToName(cs)); |
| f1_.SetEncryptedHeaderExtensionIds(CS_LOCAL, encrypted_headers); |
| f1_.SetEncryptedHeaderExtensionIds(CS_REMOTE, encrypted_headers); |
| f2_.SetEncryptedHeaderExtensionIds(CS_LOCAL, encrypted_headers); |
| f2_.SetEncryptedHeaderExtensionIds(CS_REMOTE, encrypted_headers); |
| EXPECT_TRUE(f1_.SetRtpParams(cs, key1, key1_len, cs, key2, key2_len)); |
| EXPECT_TRUE(f2_.SetRtpParams(cs, key2, key2_len, cs, key1, key1_len)); |
| EXPECT_TRUE(f1_.IsActive()); |
| EXPECT_TRUE(f2_.IsActive()); |
| EXPECT_FALSE(f1_.IsExternalAuthActive()); |
| EXPECT_FALSE(f2_.IsExternalAuthActive()); |
| TestProtectUnprotectHeaderEncryption(cs_name, cs_name, encrypted_headers); |
| } |
| cricket::SrtpFilter f1_; |
| cricket::SrtpFilter f2_; |
| int sequence_number_; |
| }; |
| |
| // Test that we can set up the session and keys properly. |
| TEST_F(SrtpFilterTest, TestGoodSetupOneCipherSuite) { |
| EXPECT_TRUE(f1_.SetOffer(MakeVector(kTestCryptoParams1), CS_LOCAL)); |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_TRUE(f1_.SetAnswer(MakeVector(kTestCryptoParams2), CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| } |
| |
| TEST_F(SrtpFilterTest, TestGoodSetupOneCipherSuiteGcm) { |
| EXPECT_TRUE(f1_.SetOffer(MakeVector(kTestCryptoParamsGcm1), CS_LOCAL)); |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_TRUE(f1_.SetAnswer(MakeVector(kTestCryptoParamsGcm2), CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| } |
| |
| // Test that we can set up things with multiple params. |
| TEST_F(SrtpFilterTest, TestGoodSetupMultipleCipherSuites) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| offer.push_back(kTestCryptoParams1); |
| offer[1].tag = 2; |
| offer[1].cipher_suite = CS_AES_CM_128_HMAC_SHA1_32; |
| answer[0].tag = 2; |
| answer[0].cipher_suite = CS_AES_CM_128_HMAC_SHA1_32; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_TRUE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| } |
| |
| TEST_F(SrtpFilterTest, TestGoodSetupMultipleCipherSuitesGcm) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParamsGcm1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParamsGcm3)); |
| offer.push_back(kTestCryptoParamsGcm4); |
| offer[1].tag = 2; |
| answer[0].tag = 2; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_TRUE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| } |
| |
| // Test that we handle the cases where crypto is not desired. |
| TEST_F(SrtpFilterTest, TestGoodSetupNoCipherSuites) { |
| std::vector<CryptoParams> offer, answer; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we handle the cases where crypto is not desired by the remote side. |
| TEST_F(SrtpFilterTest, TestGoodSetupNoAnswerCipherSuites) { |
| std::vector<CryptoParams> answer; |
| EXPECT_TRUE(f1_.SetOffer(MakeVector(kTestCryptoParams1), CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we fail if we call the functions the wrong way. |
| TEST_F(SrtpFilterTest, TestBadSetup) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we can set offer multiple times from the same source. |
| TEST_F(SrtpFilterTest, TestGoodSetupMultipleOffers) { |
| EXPECT_TRUE(f1_.SetOffer(MakeVector(kTestCryptoParams1), CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetOffer(MakeVector(kTestCryptoParams2), CS_LOCAL)); |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_TRUE(f1_.SetAnswer(MakeVector(kTestCryptoParams2), CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| EXPECT_TRUE(f1_.SetOffer(MakeVector(kTestCryptoParams1), CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetOffer(MakeVector(kTestCryptoParams2), CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetAnswer(MakeVector(kTestCryptoParams2), CS_REMOTE)); |
| |
| EXPECT_TRUE(f2_.SetOffer(MakeVector(kTestCryptoParams1), CS_REMOTE)); |
| EXPECT_TRUE(f2_.SetOffer(MakeVector(kTestCryptoParams2), CS_REMOTE)); |
| EXPECT_FALSE(f2_.IsActive()); |
| EXPECT_TRUE(f2_.SetAnswer(MakeVector(kTestCryptoParams2), CS_LOCAL)); |
| EXPECT_TRUE(f2_.IsActive()); |
| EXPECT_TRUE(f2_.SetOffer(MakeVector(kTestCryptoParams1), CS_REMOTE)); |
| EXPECT_TRUE(f2_.SetOffer(MakeVector(kTestCryptoParams2), CS_REMOTE)); |
| EXPECT_TRUE(f2_.SetAnswer(MakeVector(kTestCryptoParams2), CS_LOCAL)); |
| } |
| // Test that we can't set offer multiple times from different sources. |
| TEST_F(SrtpFilterTest, TestBadSetupMultipleOffers) { |
| EXPECT_TRUE(f1_.SetOffer(MakeVector(kTestCryptoParams1), CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetOffer(MakeVector(kTestCryptoParams2), CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_TRUE(f1_.SetAnswer(MakeVector(kTestCryptoParams1), CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| EXPECT_TRUE(f1_.SetOffer(MakeVector(kTestCryptoParams2), CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetOffer(MakeVector(kTestCryptoParams1), CS_REMOTE)); |
| EXPECT_TRUE(f1_.SetAnswer(MakeVector(kTestCryptoParams2), CS_REMOTE)); |
| |
| EXPECT_TRUE(f2_.SetOffer(MakeVector(kTestCryptoParams2), CS_REMOTE)); |
| EXPECT_FALSE(f2_.SetOffer(MakeVector(kTestCryptoParams1), CS_LOCAL)); |
| EXPECT_FALSE(f2_.IsActive()); |
| EXPECT_TRUE(f2_.SetAnswer(MakeVector(kTestCryptoParams2), CS_LOCAL)); |
| EXPECT_TRUE(f2_.IsActive()); |
| EXPECT_TRUE(f2_.SetOffer(MakeVector(kTestCryptoParams2), CS_REMOTE)); |
| EXPECT_FALSE(f2_.SetOffer(MakeVector(kTestCryptoParams1), CS_LOCAL)); |
| EXPECT_TRUE(f2_.SetAnswer(MakeVector(kTestCryptoParams2), CS_LOCAL)); |
| } |
| |
| // Test that we fail if we have params in the answer when none were offered. |
| TEST_F(SrtpFilterTest, TestNoAnswerCipherSuites) { |
| std::vector<CryptoParams> offer; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(MakeVector(kTestCryptoParams2), CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we fail if we have too many params in our answer. |
| TEST_F(SrtpFilterTest, TestMultipleAnswerCipherSuites) { |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| answer.push_back(kTestCryptoParams2); |
| answer[1].tag = 2; |
| answer[1].cipher_suite = CS_AES_CM_128_HMAC_SHA1_32; |
| EXPECT_TRUE(f1_.SetOffer(MakeVector(kTestCryptoParams1), CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we fail if we don't support the cipher-suite. |
| TEST_F(SrtpFilterTest, TestInvalidCipherSuite) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| offer[0].cipher_suite = answer[0].cipher_suite = "FOO"; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we fail if we can't agree on a tag. |
| TEST_F(SrtpFilterTest, TestNoMatchingTag) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| answer[0].tag = 99; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we fail if we can't agree on a cipher-suite. |
| TEST_F(SrtpFilterTest, TestNoMatchingCipherSuite) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| answer[0].tag = 2; |
| answer[0].cipher_suite = "FOO"; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we fail keys with bad base64 content. |
| TEST_F(SrtpFilterTest, TestInvalidKeyData) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| answer[0].key_params = "inline:!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we fail keys with the wrong key-method. |
| TEST_F(SrtpFilterTest, TestWrongKeyMethod) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| answer[0].key_params = "outline:PS1uQCVeeCFCanVmcjkpPywjNWhcYD0mXXtxaVBR"; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we fail keys of the wrong length. |
| TEST_F(SrtpFilterTest, TestKeyTooShort) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| answer[0].key_params = "inline:PS1uQCVeeCFCanVmcjkpPywjNWhcYD0mXXtx"; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we fail keys of the wrong length. |
| TEST_F(SrtpFilterTest, TestKeyTooLong) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| answer[0].key_params = "inline:PS1uQCVeeCFCanVmcjkpPywjNWhcYD0mXXtxaVBRABCD"; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we fail keys with lifetime or MKI set (since we don't support) |
| TEST_F(SrtpFilterTest, TestUnsupportedOptions) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| answer[0].key_params = |
| "inline:PS1uQCVeeCFCanVmcjkpPywjNWhcYD0mXXtxaVBR|2^20|1:4"; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we can encrypt/decrypt after setting the same CryptoParams again on |
| // one side. |
| TEST_F(SrtpFilterTest, TestSettingSameKeyOnOneSide) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| TestSetParams(offer, answer); |
| |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_80, |
| CS_AES_CM_128_HMAC_SHA1_80); |
| |
| // Re-applying the same keys on one end and it should not reset the ROC. |
| EXPECT_TRUE(f2_.SetOffer(offer, CS_REMOTE)); |
| EXPECT_TRUE(f2_.SetAnswer(answer, CS_LOCAL)); |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_80, CS_AES_CM_128_HMAC_SHA1_80); |
| } |
| |
| // Test that we can encrypt/decrypt after negotiating AES_CM_128_HMAC_SHA1_80. |
| TEST_F(SrtpFilterTest, TestProtect_AES_CM_128_HMAC_SHA1_80) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| offer.push_back(kTestCryptoParams1); |
| offer[1].tag = 2; |
| offer[1].cipher_suite = CS_AES_CM_128_HMAC_SHA1_32; |
| TestSetParams(offer, answer); |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_80, CS_AES_CM_128_HMAC_SHA1_80); |
| } |
| |
| // Test that we can encrypt/decrypt after negotiating AES_CM_128_HMAC_SHA1_32. |
| TEST_F(SrtpFilterTest, TestProtect_AES_CM_128_HMAC_SHA1_32) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| offer.push_back(kTestCryptoParams1); |
| offer[1].tag = 2; |
| offer[1].cipher_suite = CS_AES_CM_128_HMAC_SHA1_32; |
| answer[0].tag = 2; |
| answer[0].cipher_suite = CS_AES_CM_128_HMAC_SHA1_32; |
| TestSetParams(offer, answer); |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_32, CS_AES_CM_128_HMAC_SHA1_32); |
| } |
| |
| // Test that we can change encryption parameters. |
| TEST_F(SrtpFilterTest, TestChangeParameters) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| |
| TestSetParams(offer, answer); |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_80, CS_AES_CM_128_HMAC_SHA1_80); |
| |
| // Change the key parameters and cipher_suite. |
| offer[0].key_params = kTestKeyParams3; |
| offer[0].cipher_suite = CS_AES_CM_128_HMAC_SHA1_32; |
| answer[0].key_params = kTestKeyParams4; |
| answer[0].cipher_suite = CS_AES_CM_128_HMAC_SHA1_32; |
| |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_TRUE(f2_.SetOffer(offer, CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| EXPECT_TRUE(f1_.IsActive()); |
| |
| // Test that the old keys are valid until the negotiation is complete. |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_80, CS_AES_CM_128_HMAC_SHA1_80); |
| |
| // Complete the negotiation and test that we can still understand each other. |
| EXPECT_TRUE(f2_.SetAnswer(answer, CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetAnswer(answer, CS_REMOTE)); |
| |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_32, CS_AES_CM_128_HMAC_SHA1_32); |
| } |
| |
| // Test that we can send and receive provisional answers with crypto enabled. |
| // Also test that we can change the crypto. |
| TEST_F(SrtpFilterTest, TestProvisionalAnswer) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| offer.push_back(kTestCryptoParams1); |
| offer[1].tag = 2; |
| offer[1].cipher_suite = CS_AES_CM_128_HMAC_SHA1_32; |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_TRUE(f2_.SetOffer(offer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_FALSE(f2_.IsActive()); |
| EXPECT_TRUE(f2_.SetProvisionalAnswer(answer, CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetProvisionalAnswer(answer, CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| EXPECT_TRUE(f2_.IsActive()); |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_80, CS_AES_CM_128_HMAC_SHA1_80); |
| |
| answer[0].key_params = kTestKeyParams4; |
| answer[0].tag = 2; |
| answer[0].cipher_suite = CS_AES_CM_128_HMAC_SHA1_32; |
| EXPECT_TRUE(f2_.SetAnswer(answer, CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| EXPECT_TRUE(f2_.IsActive()); |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_32, CS_AES_CM_128_HMAC_SHA1_32); |
| } |
| |
| // Test that a provisional answer doesn't need to contain a crypto. |
| TEST_F(SrtpFilterTest, TestProvisionalAnswerWithoutCrypto) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer; |
| |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_TRUE(f2_.SetOffer(offer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_FALSE(f2_.IsActive()); |
| EXPECT_TRUE(f2_.SetProvisionalAnswer(answer, CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetProvisionalAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_FALSE(f2_.IsActive()); |
| |
| answer.push_back(kTestCryptoParams2); |
| EXPECT_TRUE(f2_.SetAnswer(answer, CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| EXPECT_TRUE(f2_.IsActive()); |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_80, CS_AES_CM_128_HMAC_SHA1_80); |
| } |
| |
| // Test that if we get a new local offer after a provisional answer |
| // with no crypto, that we are in an inactive state. |
| TEST_F(SrtpFilterTest, TestLocalOfferAfterProvisionalAnswerWithoutCrypto) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer; |
| |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_TRUE(f2_.SetOffer(offer, CS_REMOTE)); |
| EXPECT_TRUE(f1_.SetProvisionalAnswer(answer, CS_REMOTE)); |
| EXPECT_TRUE(f2_.SetProvisionalAnswer(answer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_FALSE(f2_.IsActive()); |
| // The calls to set an offer after a provisional answer fail, so the |
| // state doesn't change. |
| EXPECT_FALSE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f2_.SetOffer(offer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_FALSE(f2_.IsActive()); |
| |
| answer.push_back(kTestCryptoParams2); |
| EXPECT_TRUE(f2_.SetAnswer(answer, CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| EXPECT_TRUE(f2_.IsActive()); |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_80, CS_AES_CM_128_HMAC_SHA1_80); |
| } |
| |
| // Test that we can disable encryption. |
| TEST_F(SrtpFilterTest, TestDisableEncryption) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| |
| TestSetParams(offer, answer); |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_80, CS_AES_CM_128_HMAC_SHA1_80); |
| |
| offer.clear(); |
| answer.clear(); |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_TRUE(f2_.SetOffer(offer, CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| EXPECT_TRUE(f2_.IsActive()); |
| |
| // Test that the old keys are valid until the negotiation is complete. |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_80, CS_AES_CM_128_HMAC_SHA1_80); |
| |
| // Complete the negotiation. |
| EXPECT_TRUE(f2_.SetAnswer(answer, CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetAnswer(answer, CS_REMOTE)); |
| |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_FALSE(f2_.IsActive()); |
| } |
| |
| class SrtpFilterProtectSetParamsDirectTest |
| : public SrtpFilterTest, |
| public testing::WithParamInterface<bool> { |
| }; |
| |
| // Test directly setting the params with AES_CM_128_HMAC_SHA1_80. |
| TEST_P(SrtpFilterProtectSetParamsDirectTest, Test_AES_CM_128_HMAC_SHA1_80) { |
| bool enable_external_auth = GetParam(); |
| TestProtectSetParamsDirect(enable_external_auth, SRTP_AES128_CM_SHA1_80, |
| kTestKey1, kTestKeyLen, kTestKey2, kTestKeyLen, |
| CS_AES_CM_128_HMAC_SHA1_80); |
| } |
| |
| TEST_F(SrtpFilterTest, |
| TestProtectSetParamsDirectHeaderEncryption_AES_CM_128_HMAC_SHA1_80) { |
| TestProtectSetParamsDirectHeaderEncryption( |
| SRTP_AES128_CM_SHA1_80, kTestKey1, kTestKeyLen, kTestKey2, kTestKeyLen, |
| CS_AES_CM_128_HMAC_SHA1_80); |
| } |
| |
| // Test directly setting the params with AES_CM_128_HMAC_SHA1_32. |
| TEST_P(SrtpFilterProtectSetParamsDirectTest, Test_AES_CM_128_HMAC_SHA1_32) { |
| bool enable_external_auth = GetParam(); |
| TestProtectSetParamsDirect(enable_external_auth, SRTP_AES128_CM_SHA1_32, |
| kTestKey1, kTestKeyLen, kTestKey2, kTestKeyLen, |
| CS_AES_CM_128_HMAC_SHA1_32); |
| } |
| |
| TEST_F(SrtpFilterTest, |
| TestProtectSetParamsDirectHeaderEncryption_AES_CM_128_HMAC_SHA1_32) { |
| TestProtectSetParamsDirectHeaderEncryption( |
| SRTP_AES128_CM_SHA1_32, kTestKey1, kTestKeyLen, kTestKey2, kTestKeyLen, |
| CS_AES_CM_128_HMAC_SHA1_32); |
| } |
| |
| // Test directly setting the params with SRTP_AEAD_AES_128_GCM. |
| TEST_P(SrtpFilterProtectSetParamsDirectTest, Test_SRTP_AEAD_AES_128_GCM) { |
| bool enable_external_auth = GetParam(); |
| TestProtectSetParamsDirect(enable_external_auth, SRTP_AEAD_AES_128_GCM, |
| kTestKeyGcm128_1, kTestKeyGcm128Len, |
| kTestKeyGcm128_2, kTestKeyGcm128Len, |
| CS_AEAD_AES_128_GCM); |
| } |
| |
| TEST_F(SrtpFilterTest, |
| TestProtectSetParamsDirectHeaderEncryption_SRTP_AEAD_AES_128_GCM) { |
| TestProtectSetParamsDirectHeaderEncryption( |
| SRTP_AEAD_AES_128_GCM, kTestKeyGcm128_1, kTestKeyGcm128Len, |
| kTestKeyGcm128_2, kTestKeyGcm128Len, CS_AEAD_AES_128_GCM); |
| } |
| |
| // Test directly setting the params with SRTP_AEAD_AES_256_GCM. |
| TEST_P(SrtpFilterProtectSetParamsDirectTest, Test_SRTP_AEAD_AES_256_GCM) { |
| bool enable_external_auth = GetParam(); |
| TestProtectSetParamsDirect(enable_external_auth, SRTP_AEAD_AES_256_GCM, |
| kTestKeyGcm256_1, kTestKeyGcm256Len, |
| kTestKeyGcm256_2, kTestKeyGcm256Len, |
| CS_AEAD_AES_256_GCM); |
| } |
| |
| TEST_F(SrtpFilterTest, |
| TestProtectSetParamsDirectHeaderEncryption_SRTP_AEAD_AES_256_GCM) { |
| TestProtectSetParamsDirectHeaderEncryption( |
| SRTP_AEAD_AES_256_GCM, kTestKeyGcm256_1, kTestKeyGcm256Len, |
| kTestKeyGcm256_2, kTestKeyGcm256Len, CS_AEAD_AES_256_GCM); |
| } |
| |
| // Run all tests both with and without external auth enabled. |
| INSTANTIATE_TEST_CASE_P(ExternalAuth, |
| SrtpFilterProtectSetParamsDirectTest, |
| ::testing::Values(true, false)); |
| |
| // Test directly setting the params with bogus keys. |
| TEST_F(SrtpFilterTest, TestSetParamsKeyTooShort) { |
| EXPECT_FALSE(f1_.SetRtpParams(SRTP_AES128_CM_SHA1_80, kTestKey1, |
| kTestKeyLen - 1, SRTP_AES128_CM_SHA1_80, |
| kTestKey1, kTestKeyLen - 1)); |
| EXPECT_FALSE(f1_.SetRtcpParams(SRTP_AES128_CM_SHA1_80, kTestKey1, |
| kTestKeyLen - 1, SRTP_AES128_CM_SHA1_80, |
| kTestKey1, kTestKeyLen - 1)); |
| } |
| |
| } // namespace rtc |